Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дезактивация эффективность

    Члены, стоящие в фигурных скобках в правой части, описывают соответственно V—Г-переходы при столкновениях со всеми компонентами смеси, V—У-обмен с молекулами того же сорта А, возбуждение и девозбуждение электронным ударом, радиационные переходы (этот член равен нулю для гомоядерных двухатомных молекул), гетерогенную дезактивацию. Эффективный коэффициент скорости гетерогенной дезактивации [c.98]


    На основе анализа кривых дезактивации катализатора, полученных при различных условиях процесса и на разных образцах катализатора, взятых с разл№шых точек реактора, высказывается мнение [ИЗ] о различной реакционной способности металлсодержащих соединений. Реак-1ЩЯ деметаллизации представляется рядом параллельных реакций, скорость которых определяется эффективностью диффузии металлсодержащих соединений и их реакционной способностью. [c.129]

    Тепло, выделяющееся во время реакции, должно быстро и эффективно отводиться, чтобы избежать резкого возрастания скорости метано-образования и дезактивации катализатора при повышении температуры. Действительно, большинство технологических проблем, возникающих при проектировании процесса и его технологическом оформлении, связано с отводом тепла и контролем за реакционной температурой. [c.520]

    При значительном увеличении концентрации катализатора и относительно высоком использовании мономеров эффективность катализатора снижается, так как при этом повышается роль процесса его дезактивации, а при существенном увеличении вязкости среды — и роль диффузии мономеров. Уменьшение [т]] сополимеров, по мнению ряда авторов, связано главным образом с передачей цепи через металлорганическое соединение [5, 6, 14]. С увеличением температуры сополимеризации константа реакции роста увеличивается [12]. В то же время возрастает скорость дезактивации катализатора. Поэтому изменение температуры неодинаковым -обрааом сказывается при полимеризации ня разных каталитических системах. Из рис. 2 видно, что с повышением температуры сополимеризации выход сополимера и [т]] его уменьшается состав не изменяется [11, 13]. [c.297]

    Неравновесные реакции (слабая неравновесность). Макроскопическая скорость реакции много меньше макроскопической скорости всех релаксационных процессов. Однако макроскопический коэффициент скорости (см. (2.57)) есть среднее из всех микроскопических коэффициентов скорости молекул, находящихся на разных уровнях, и может случиться так, что микроскопические скорости реакций для некоторых квантовых состояний окажутся больше микроскопических скоростей релаксации. В этом случае Макроскопическое уравнение для скорости реакции, содержащее концентрации, построить все же можно, однако оно не будет иметь обычной Аррениусовой формы (1.77). Объясняется это тем, что макроскопическая скорость определяется лишь скоростью активации, а поскольку вблизи порога активации имеет место обеднение высокоэнергетической части распределения, то средняя энергия активных молекул (т. е. молекул, имеющих запас энергии выше энергии активации Е > Ед и в принципе способных к реакции) меньше средней энергии активных молекул для случая равновесного распределения Е < Е . Это вызывает повышение эффективной энергии активации, причем величина повышения определяется механизмом активации (сильные столкновения либо многоступенчатая активация — дезактивация). [c.97]


    Кинетическая функция ш ( , Т) в моделях обоих реакторов представлена уравнением Темкина с параметрами, соответствующими типу используемого катализатора. Фактор эффективности диффузии т] (Т) определяется по аналитическому решению уравнения диффузии для реакции первого порядка. Для описания скорости снижения активности GTK и НТК в условиях эксплуатации катализаторов на крупнотоннажных агрегатах принята модель независимой дезактивации, описываемой уравнением da/dx = [c.335]

    Более эффективным является смешанный. катализатор (6,6% Na+6,6% К) на АЬОз выход бутенов-2 в его присутствии при объемной скорости 17,0 4-1 составляет 87,8%, а селективность процесса равна 98,7%. Однако этот катализатор в ходе процесса быстро дезактивируется под действием воздуха, влаги и т. д. Если в те чение первого пробега степень превращения бутена-1 составляла 90,8% (мольн.), то во время второго она снизилась до 66,6% (мольн.). Дезактивация может быть существенно понижена, при введении в систему водорода (0,01—10 моль Нг на 1 моль олефина) вместе с олефиновым сырьем [7]. [c.181]

    Рассмотренный метод позволяет, проработав некоторое время на выбранном температурном режиме, оценить продолжительность жизни катализатора. Если выбранный температурный уровень нежелателен ввиду высокой скорости дезактивации, температуру можно понизить, восстановив катализатор до прежней активности, повысив временно кратность циркуляции. Этот метод эффективно использован для управления действующей установкой. [c.353]

    Образование каналов может сильно повлиять на эффективность работы реактора задолго до возникновения высокого перепада давления. В таких случаях часто предполагают, что снижение эффективности реактора произошло в результате дезактивации катализатора, не понимая, что слой катализатора, хотя и очень активного, не эффективно контактирует с сырьем. [c.130]

    Обычно при полимеризации с трихлоридом титана навеску катализатора помещают в стеклянную ампулу в боксе с контролируемой атмосферой. Величина навески зависит от ожидаемого выхода полимера. Слишком большая концентрация катализатора в реакторе может снизить его эффективность при низком давлении, так как лимитирующей процесс стадией может стать перенос мономера к активному центру. Наоборот, при очень низкой концентрации катализатора возрастает вероятность его дезактивации ядами. При испытании нового катализатора нужна серия опытов для оценки его оптимальной навески. Как правило, содержание твердого вещества в образовавшейся суспензии полимера не должно превышать 40%. При более высоких концентрациях катализатора на стадии полимеризации могут возникнуть затруднения со съемом тепла, приводящие к появлению горячих пятен и влияющие на результаты полимеризации. [c.196]

    В реакторах с кипящим слоем также происходит увеличение объема и разрушение частиц катализатора, но здесь по крайней мере не может иметь место закупоривание реактора, и процесс не прерывается. Основным недостатком разрушения катализатора является унос его мелких частиц из реактора, и, несмотря на высокую эффективность циклонов, происходит засорение аппаратов, в которые поступает газ из реактора. В настоящее время точно не установлено, ведет ли образование углистых частиц к дезактивации железных катализаторов. Так как реакция протекает в диффузионной области (скорость зависит от размера гранул катализатора), то возможно, что разрушение гранул в некоторой степени компенсирует процесс его дезактивации. [c.178]

    Использование современных высокоактивных катализаторов сводит к минимуму преимущества двухступенчатой системы очистки. Основная доля меркаптанов удаляется уже в первой ступени. Вторая ступень очистки работает в неблагоприятных условиях, поскольку отсутствие меркаптидов в щелочном растворе при регенерации ведет к ускоренной дезактивации катализатора и насыщению раствора кислородом. Меркаптиды образуют с фталоцианином устойчивый комплекс, ингибирующий деструкцию фталоцианина. При наличии кислорода в щелочном растворе меркаптаны окисляются до дисульфидов на стадии экстракции меркаптанов с последующей реэкстракцией дисульфидов в очищаемые углеводороды. Это резко снижает эффективность процесса, особенно при малых концентрациях меркаптанов. [c.173]

    Канал (б) мо>1<ег быть эффективным и в прямых обменных реакциях (см. 21). Так, механизм дезактивации через обмен был предложен также для интерпретации б лстрой релаксации Н2 на Н, галогеноводородов на Н и молекул галогеЕюв на атомах галогенов [5, 527]. Расчет вероятности дезактивации в процессе (14.7) в общем случае столь же сложен, как и расчет вероятности прямых реакций обмена (см. 21), причем здесь решающее значение имеет воличпна энергии активации. Теоретические исследования динамики данных столкновений показывают, что очень часто эффективности каналов (а) и (б) оказываются сравнимыми и намного превышающими эффективность простого К7 -процесса, вероятность которого оценена по формуле (14.2). Безусловно, здесь важную роль играют те особенности поверхности потенциал .ной эпергии, которые отличают взаимодействия химически инертны. п химически активных партнеров. В частности, большая эффективность кана.1а (п) связана с тем, что соответствующие ему траектории не отталкиваются от барьера (как при простом УГ-процессе), а дважды его пересекают — н прямом и обратном панравлении [3271. [c.91]


    Выражение Л/( )е / квантовое больцмановское распределение. Константа скорости дезактивации к полагается пропорциональной числу двойных соударений AZq. В выражение для Агг вводится параметр X - эффективность дезактивации, позволяющий предполагать, что дезактивация происходит за 1/Х столкновений активной молекулы с молекулой инертного газа. [c.189]

    Как указывалось выше, строгое решение задачи возможно лишь при исследовании динамики процесса, поэтому в настоящее время используются модельные функции. Модель эффективности передачи энергии при столкновении может быть задана аналитической функцией без анализа динамики столкновения. В работах Трое [422, 423] используется экспоненциальная модель активации. В этой модели скорость активации и дезактивации экспоненциально падает с ростом разности энергий начального и конечного состояний. Зависимость Аг (б, е) может быть получена и из рассмотрения качественных моделей столкновений. Остановимся здесь лишь на некоторых таких моделях. [c.194]

    В недавно развитой стохастической теории мономолекулярных реакций показано, что все степени свободы принимают участие в активации [3621. Недавно выполненные нами исследования показывают, что множитель s скорее можно интерпретировать как фактор, учитывающий эффективность дезактивации молекул при столкновениях. [c.179]

    Установлено [37], что при дезактивации алюмоплатинового катализатора сернистыми соединениями эффективность действия его по отношению к реакции образования ароматических углеводородов снижается. Расщепляющее л<е действие катализатора при этом не только не ослабевает, но значительно возрастает [37]. [c.76]

Рис. 3.33. Дезактивация цеолитсодержащего катализатора при различно. содержании эффективных металлов Рис. 3.33. Дезактивация <a href="/info/255379">цеолитсодержащего катализатора</a> при различно. <a href="/info/1479743">содержании эффективных</a> металлов
    Отмечено также, что чем ниже давление, тем вьпие должна быть начальная температура для достижения одинаковой степени превращения. Например, если при 16 МИа начальная температура 360 С, то при 7 МПа требуется 375 °С. Это, в свою очередь, усугубляет повышенное коксообразование, что ведет к увеличению дезактивации катализатора. Проблема снижения рабочего давления в реакторах процессов каталитического гидрооблагораживання является предметом многочисленных исследований и поисков. Несмотря на множество патентов на процессы с пониженным давлением, в литературе до сих пор пока нет публикаций, свидетельствующих об их практической реализации. Для рассматриваемых процессов, реакции которых протекают с очень большими диффузионными осложнениями, влияние давления практически равнозначно проблеме создания эффективного катализатора, стойкого к дезактива--ции отложениями углерода и металлов и обладающего повышенной селективностью в основньгх реакциях гидрогенолиза гетероатомных соединений. [c.67]

    В книге показано влияние различных факторов на старение и отравление алюмосиликатных катализаторов крекинга (аморфных и цеолнтных), а также изменение показателей процесса каталитического крекинга при дезактивации катализаторов. Описаны различные методы предупреждения старения катализаторов крекинга и способы предохранения их от отравления путем очистки сырья крекинга. Изложены способы поддержания активности катализатора на оптимальном уровне, основанные на удалении с его поверхности отравляющих металлов. Рассмотрены возможности повышения эффективности процесса крекинга путем добавления в катализатор металлов. [c.2]

    В гипотезе сильных столкновений предполагается, что в смысле дезактивации эффективным является каждое столкновение, активация же происходит в результате лишь таких переходов Е Е , для которых начальное состояние характеризуется равновесной функцией распределения. В гипотезе многоступенчатой активации предполагается, что при одном столкновении энергия молекулы А1А2 меняется в среднем на величину, меньщую ЛТ, [c.81]

    Из соотношения (11.21) следует, что ПКд учитывает достигнутую эффективность дезактивации АГд и требуемую К . Если при дезактивации достигнута цель и конечная загрязненность объекта равна допустимой, т. е. Ак = Адп, то ПКд = 1. Если же А = Ац, т. е. дезактивация не произошла, ПКд = 0. Следовательно, дезактивация эффективна тогда, когда ПКд > 1. Это дает возможность сравнивать качество дезактивационных работ, проводимых различными способами и в разных условиях по величине ПКд. Принято считать, что если ПКд > 2, т. е. Ак Адп, то дезактивация отличная. Когда ПКд лежит в пределах 1,5-2,0 (А < Адп), то ее можно оценить как хорошую. Если 1 < ПКд < 1,5, то обработка удовлетворительная. Плохой дезаьстивация будет в тех случаях, когда ПКд < 1. [c.187]

    Интеркомбинационная конверсия, процессы межмолекудярно-го переноса энергии и химические реакции конкурируют со всеми другими процессами дезактивации (флуоресценцией, фосфоресценцией, безызлучательной дезактивацией). Эффективность интересующего процесса определяется квантовым выходом  [c.52]

    М = А -Ь В плюс посторонние вещества, присутствующие в системе. Это предполагает, что выражения МА2 (Е) и МА2 (Е) являются не простыми, а сложными функциями. В приведенном выше случае нужно заменить М/сз (Е) суммой (Е) = Ак2А (Е) ВАгв-ЕЧ-. . ., где индивидуальные константы скорости гА. 23 представляют собой различные эффективности дезактивации А молекулами А, В,. . . .  [c.206]

    Те соединения, которые эффективно действуют в качестве антиокислителей при низких температурах, становятся неэффективными в условиях работы двигателя. Для смазочных масел были найдены добавки [53], которые не подвергаются прямому окислению кис.тюродом, ио могут активно вмешиваться в н])оцосс окисления. Высокая концентрация таких присадок (до 10%) способствует восстановитольиолу разложению пере-кисных продуктов и дезактивации металлов. Кроме того, присадки участвуют в процессах обрыва цепи.  [c.307]

    Из соображений экономичности и эффективности, а также возможности регенерации из отмывной воды, в качестве дезактиваторов катализатора в производстве изопренового каучука применяют метиловый или этиловый спирт. Процесс дезактивации осуществляется в интенсивных малообъемных смесителях и аппаратах с двухвальной 2-образной мешалкой. [c.221]

    Эффективный одностадийный процесс олигомеризации этилена разработала фирма Gulf Oil (США). Этилен и разбавленный раствор триэтилалюмииия в инертном растворителе вводят в реактор олигомеризации, где при 200 С и 20—28 МПа протекает синтез высших а-олефинов. После отделения непрореагировавшего этилена продукт, содержащий в основном высшие олефины и небольшое количество катализатора, поступает на дезактивацию и отмывку от катализатора. Затем смесь полученных олефинов поступает на ректификацию, где выделяются узкие фракции продуктов. Высокая эффективность катализатора в описываемом процессе позволяет исключить из схемы стадию его выделений и возврата. Применение трубчатых реакторов значительной длины и малого диаметра, помещенных в баню с кипящей водой, дает возможность подавить побочные реакции за счет ограничения обратного перемешивания и строгого контроля температурного режима — основного показателя, определяющего состав продукта. [c.327]

    Суммарный эффект этих двух поправок таков, что, например, для молекул, содержащих атомы водорода (быстрое вращение, малая приведенная масса ц), л оказывается заметно мепьше л,, и соответствующее этому уменьшение параметра 0 в (14.2) обусловливает сильное возрастание вероятности несмотря на малую долю предпочтительных конфигураций. Например, для столкновения НС1 с Аг эффективная масса fi оказывается равной (в зависимости от выбора потенциала взаимодействия) 3 или 4 вместо приведенной массы [X = 19. При подстановке в параметр OJT) l> вместо величины х вероятность дезактивации НС1 (у = 1) нри столкпов(Ч[иях с Аг попадает в полосу модели SSH (см. рис. 19). [c.88]

    Другим, также эффективным, механизмом колебательной активации или дезактивации является релаксация в симметричных реакциях обмена. Именно, если в системе А -Ь ВС атомы А и С (или А, R и С) тождестветтны, то процесс колебательной дезактивации может проходи1Ь, вообще говоря, по двум каналам [c.90]

    Эти два механизма описывают два противоположных случая активации. В обп(ем случае следовало бы основываться на уравнении (8.34), которое описывает релаксацию с произвольной величиной измепения энергии молекулы АВ при столквовении. Подход такого рода используется, иапример, для описания дезактивации молекул, возникающих при химической активации [1131, и при активации молекул в пределе низких давлений [.5501. Мы кратко остановимся на последнем вопросе в связи с обсуждением эффективности активации различными партнерами. [c.107]

    Механизм действия диалкил- и диарилдитиофосфатов металлов, применяющихся в качестве эффективных антиокислительных присадок к смазочным маслам, очень сложен и поэтому мало изучен, Антиокислительные свойства этих солей, вероятно, в основном определяются наличием в них атомов серы, поскольку ди-алкил- и диарилфосфаты металлов не обладают антиокислительными свойствами. Некоторые исследователи относят эти присадки к антиокислителям, способным прерывать цепные реакции за счет разложения гидропероксидов. Исследования Санина [2, с. 183] показали, что диалкилдитиофосфаты металлов задерживают реакцию окисления при введении их как до начала окисления, так и в процессе окисления, вплоть до самых глубоких стадий его развития. Вероятно, в начальной стадии окисления диалкилдитиофосфаты металлов тормозят процесс за счет дезактивации образующихся радикалов (в основном ROO ), а на глубоких стадиях— за счет разложения гидропероксидов. [c.64]

    Термоокислительную стабильность силоксановых масел можно повысить введением определенных добавок. Обычные присадки, используемые для минеральных масел, здесь непригодны из-за малой эффективности, слабой растворимости в силоксанах и низкой стабильности. Полиорганосилоксаны можно ингибировать ароматическими аминами, производными бензойной кислоты [пат. США 4174284]. Наиболее перспективными и специфическими стабилизаторами полиорганосилоксановых жидкостей в последние годы проявили себя соединения некоторых металлов переменной валентности (железа, кобальта, марганца, меди, индия, никеля, титана, церия), а также их смеси [33, с. 324 193, с. 33 пат. США 3267031, 3725273 а. с. СССР 722942]. Механизм стабилизирующего действия металлов переменной валентности в полисилокса-нах основан на дезактивации пероксирадикалов 8Ю0 . При этом металл переходит из одного валентного состояния в другое с [c.160]

    В соответствии с изложенными концепциями фирма Торяе предложила для улучшения экологических характеристик подвергать ДТ очистке от ароматических и серосодержащих соединений по специальным технологиям. При разработке технологий учитывали наличие на большей части нефтеперерабатывающих предприятий установок каталитического гидрообессеривания компонентов ДТ и необходимость повышения их эффективности. Для повышения эффективности этих установок было рекомендовано увеличить объем катализатора (т. е. уменьшить объемную скорость подачи сырья) и температуру в реакторе для компенсации дезактивации катализатора, использовать катализаторы повышенной гидрообессеривающей активности. [c.38]

    Включение в схему процесса деасфальтизации г-удрона как метода гфедварительногс облагораживания, значительно улучшает технико-экономические показатели процесса гидрообессеривания за счет резкого снижения скорости дезактивации катализатора. Выполненные е последние годы исследования показали,что использование пол1 аемо-го в процессе деасфальтизации концентрата асфальтенов не является обременительной задачей. Найден ряд весьма эффективных направлений его использования [I ].  [c.125]

    В нашем сознании традиционно укоренилась мысль о том, что залогом высокой эффективности технологического процесса, и в частности химического, является неизменность во времени всех режимных характеристик. Это, конечно, не относится к процессам, которым присуща генетическая нестационарность, связанная, например, с быстрой дезактивацией катализатора, с периодичностью процессов сушки, кристаллизации, прессования, термической обработки изделий и др. В производстве неизменность характеристик старательно поддерживается стабилизацией входных параметров, с полющью которых на основе многолетнего опыта и интуитивных соображений или на основе исследования процессов с использованием математических моделей отыскиваются оптимальные стационарные условия и в случае необходимости корректируется технологический режим. [c.3]

    При расчете частоты дезактивирующих соударений использовались газокинетические диаметры dI HjNO) =4,8 А, aiNj) =3,8 А и эффективность дезактивации на азоте X =0,36. [c.260]

    В промышленном масштабе индивидуальные изомеры и смеси зтилтолуолов до сего времени не производятся. Отсутствие промышленного спроса на этилтолуолы объясняется технологическими трудностями производства на их основе винилтолуола — продукта, который может конкурировать со стиролом. Процесс дегидрирования этилтолуола сопровождается значительным образованием побочных продуктов реакции и быстрой дезактивацией катализатора [9, с. 206—209]. Для выделения винилтолуола из продуктов реакции обычной ректификацией требуются колонны с большей эффективностью разделения, чем для выделения стирола. Поэтому изучали возможность применения для разделения системы этилтолуол — винилтолуол экстракции с использованием в качестве экстрагента диметилформамида и изопентана [13]. [c.216]


Смотреть страницы где упоминается термин Дезактивация эффективность: [c.472]    [c.275]    [c.64]    [c.301]    [c.180]    [c.103]    [c.104]    [c.104]    [c.162]    [c.27]    [c.327]   
Мономолекулярные реакции (1975) -- [ c.112 , c.189 , c.252 , c.331 ]




ПОИСК





Смотрите так же термины и статьи:

Дезактивация



© 2025 chem21.info Реклама на сайте