Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность тока химической реакции

    Химическая поляризация. Химическая поляризация связана с замедленностью одной из стадий электрохимической реакции. Такая замедленная стадия ограничивает в целом весь электрохимический процесс и в конечном итоге лимитирует величину тока, который может проходить через электрод. Этот вид поляризации в отдельных случаях может проявляться даже при очень малых плотностях тока. Химическая поляризация часто наблюдается при разряде ионов водорода и кислорода. Она зависит от материала электрола, на котором происходит выделение водорода. Например, если в элементе Вольта заменить медный электрод на платиновый, то процесс разряда ионов водорода сохранится как токообразующий процесс, но напряжение элемента возрастет при этом на 0,45 В. Если заменить медный электрод на свинцовый, то напряжение, наоборот, уменьшится на 0,57 В. [c.22]


    Если свойства поверхностного слоя не изменяются во времени, то протекающий через электрод ток определяется только скоростью самого электродного процесса и размерами электрода. В этом случае плотность тока является мерой скорости электрохимической реакции. Если скорость наиболее замедленной стадии электрохимической реакции определяется стадией массопереноса, то поляризация называется концентрационной. Поляризация электрода, обусловленная медленной химической реакцией (в результате разряда или ионизации), называется химической поляризацией. Если скорость электролиза лимитируется процессами образования новой фазы, как, например, при катодном выделении металлов, то возникающая поляризация называется фазовой. Зависимость скорости процесса от потенциала поляризации, т. е. /=[(АЕ), графически выражается поляризационной кривой. Она может состоять из нескольких ветвей (рис. 191), причем участки кривой (сс1, е1 и т. п.) отвечают возникновению нового электрохимического процесса. [c.458]

    Важным фактором в процессе образования хлоратов является pH среды. Оптимальные значения pH лежат в пределах 6,0—6,7 (рис. VI-3). Эти значения pH наиболее благоприятны также и для протекания реакции химического образования хлората (кривая 1). Однако при pH > 10, т. е. в условиях, когда реакция химического образования хлората не протекает, выход его по току достигает 65—75%, что свидетельствует о преимущественном протекании реакции (VI,3) при получении хлората и в оптимальном значении pH. С повышением анодной плотности тока возрастает выход хлората по току, а с увеличением объемной плотности тока наоборот— выход снижается (рис. VI-4). [c.185]

    При т)хам >0 / = /а > 0 при Т]хим <0 / = /к < 0. Предельная плотность тока химической реакции= lim / при — оо определяется выражением  [c.33]

    Для определения типа химической реакции необходимо изучить зависимость функции G в уравнении (4-72) от плотности тока. Для реакции первого порядка G не зависит от 2, для реакции (4-67) функция G пропорциональна i l для реакций (4-68) и (4-69) функция G и для реакций (4-70) и (4-71) G 2- /з. [c.101]

    Понятия порядки электрохимических реакций Zo, у и Zb, j, а для электродов металл/ионы металла —. введены в кинетику электрохимических реакций Феттером Эти величины соответствуют порядкам химических реакций в химической кинетике и, как и там, необходимы для выяснения механизма реакций. Величины j, Zg j и уже использовались в 50 и 52. Анодная (г+) или катодная ( ) составляющие плотности тока замедленной реакции перехода, по закону Фарадея, являются мерой скорости электрохимической реакции. Поэтому г+ и i ирИ заданном постоянном потенциале как и в химической кинетике, зависят от концентраций j веществ Sj в электролите. Порядки [c.465]


    Однако неограниченный рост пористой части оксидного покрытия, учитывая его электро- и теплоизоляционные свойства, невозможен. С увеличением толщины возрастает интенсивность тепловых процессов в зоне реакции, что приводит к повышению температуры электролита в порах у поверхности оксида. Следствием этого будет увеличение скорости растворения покрытия. Скорость электрохимического процесса определяется плотностью тока, химического — составом электролита и температурой в зоне реакции. [c.229]

    В условиях электрохимической коррозии при отсутствии внешней поляризации на поверхности металла устанавливается коррозионный или стационарный потенциал <р, соответствующий равенству скоростей анодной и катодной реакций. Величина потенциала коррозии зависит от природы металла, состояния поверхности, состава и концентрации электролита, условий диффузии, температуры и других факторов, которые влияют на скорость катодных и анодных реакций. При стационарном потенциале в случае коррозии металла с физически и химически однородной поверхностью плотности тока катодной и анодной реакций равны. В случае локализации катодных и анодных процессов при этом потенциале оказываются равными нулю не плотности токов этих реакций, а силы токов, поскольку величины катодной и анодной поверхностей могут быть различны. В этом случае величина коррозионного разрушения металла характеризуется плотностью тока на анодных участках. [c.11]

    Двумя другими важными характеристиками электрохимических реакций являются их порядок и стехиометрическое число. Порядок электрохимической реакции v имеет здесь тот же физический смысл, что и в учении о кинетике химических реакций, хотя в этом случае V, кроме обычных параметров — давления и температуры, может быть функцией потенциала электрода. Порядок электрохимической реакции по отношению к какому-либо виду частиц vy можно найти на основании изучения зависимости плотности тока от концентрации частиц данного вида при условии постоянства концентрации всех остальных видов частиц, а также температуры, давления и потенциала электрода  [c.368]

    Помимо полярографического метода для исследования кинетики химических реакций, предшествующих (или последующих) электрохимической стадии, был широко применен хронопотенциометрический метод. Если процесс лимитируется медленной химической стадией, то произведение где —переходное время кинетического процесса, должно уменьшаться по линейному закону с увеличением плотности тока I. Из этой зависимости можно рассчитать константу скорости химической реакции первого порядка. Хронопотенциометрия позволяет изучать более быстро протекающие химические реакции, чем полярография. [c.311]

    Она является функцией тока чем выше плотность тока, тем больше значение поляризации. Если потенциал становится более отрицательным, поляризацию называют катодной, если более положительным — анодной. Возникновение поляризации обусловлено замедлением электродного процесса. Можно считать установленным тот факт, что в основе зависимостей ф —/ и Дф —/ лежат кинетические закономерности, характерные для данной электродной реакции. Методы изучения особенностей поляризационных кривых потенциал — плотность тока называют вольтамперометрией. Любой электродный процесс представляет собой сложную гетерогенную реакцию, состоящую из ряда последовательных стадий. Скорость многостадийной реакции определяется скоростью наиболее медленной стадии. Это представление справедливо и для электрохимической реакции. Возникновение электродной поляризации связано поэтому непосредственно с той стадией, которая определяет скорость всего процесса. Если изменить ход процесса, т. е. увеличить его скорость, то и налагаемое напряжение может уменьшиться и стать меньше обратимого потенциала. Уменьшение электродного потенциала по сравнению с обратимым и процесс, обусловливающий его, называют деполяризацией. Значение поляризационных и деполяризационных явлений при практическом использовании неравновесных электрохимических систем велико. Потенциалы поляризованных электродов определяют напряжение электрохимической цепи, а следовательно, и напряжение на клеммах химического источника тока, т. е. определяют энергетические затраты. Поэтому особенно важен выбор оптимальных условий проведения электрохимического процесса. [c.203]

    В отличие от химической кинетики для кинетики электродных процессов важнейшее значение имеет зависимость скорости процесса от потенциала электрода. Скорость электрохимической реакции определяется электрическим током, протекающим через электроды ячейки. Количество вещества, прореагировавшего на единице поверхности электрода за единицу времени (dN/dt), эквивалентно плотности тока эти величины связаны уравнением [c.334]


    При электролизе и эксплуатации химических источников тока через электрохимические системы протекает электрический ток. При этом равновесное состояние Ох -Ь ге Яес), существующее на электроде в отсутствие внешнего тока, нарушается. В зависимости от направления тока электродная реакция может идти в катодном Ох + + ге КЫ или анодном Red- - Ох + ге" направлениях. Мерой скорости электрохимической реакции является плотность тока — сила тока, отнесенная к единице площади поверхности электрода. Если в уравнении (162.3) массу вещества, участвующего в реакции, выразить в г-ионах, то скорость реакции будет [c.498]

    Скорость электрохимической реакции при равновесном потенциале называется током обмена (точнее плотностью тока обмена). Таким образом, электрохимическое равновесие, как любое химическое ран- [c.234]

    Чтобы выразить плотность тока, протекающего через электрод, через скорость химической реакции, необходимо воспользоваться дифференциальным уравнением, отражающим баланс вещества Р  [c.300]

    Однако на опыте доказательство замедленной поверхностной диффузии при помощи импедансных измерений осложняется необходимостью учета медленного встраивания адатома в место роста. При встраивании адатом окончательно теряет свою сольватную оболочку, что связано с затратой энергии. Эту стадию электрокристаллизации можно рассматривать как гетерогенную последующую химическую реакцию. Обратный процесс — выход адатомов из мест роста и последующая их ионизация — характеризуется некоторой предельной анодной плотностью тока. Импеданс стадии медленного вхождения адатома в места роста моделируется параллельным соединением емкости и сопротивления электрокристаллизации, для которых сохраняются те же самые выражения, что и для медленной гетерогенной химической реакции (см. 59). [c.326]

    Скорость электрохимической реакции при равновесном потенциале г о называется током обмена (точнее плотностью тока обмена). Таким образом, электрохимическое равновесие, как любое химическое равновесие, является динамическим. Отсутствие внешнего тока вовсе не означает полного прекращения электрохимического процесса, а лишь указывает, что скорость катодного процесса равна скорости анодной реакции, так что концентрации реагирующих веществ не изменяются во времени. [c.249]

    Долгое время не удавалось экспериментально подтвердить правильность соотношений (62.12) и (62.16). Это можно объяснить, во-первых, тем, что реальная структура поверхности кристалла оказывается гораздо более сложной, чем предполагалось в теории Фольмера и Эрдей-Груза. Так, на кристаллической поверхности электрода имеются ступени атомной высоты s, выступы, или кинки к, реберные вакансии I и дырки h (рис. 169). Во-вторых, поверхность электрода в ходе электроосаждения непрерывно изменяется, а потому меняется истинная плотность тока, а следовательно, и перенапряжение. В результате обычный метод снятия стационарных поляризационных кривых имеет ограниченные возможности. Наконец, на практике стадия образования зародышей не всегда оказывается наиболее медленной. В зависимости от природы металла и условий опыта процесс электрокристаллизации может лимитироваться диффузией реагирующих частиц к поверхности, химическими реакциями в объеме раствора и на поверхности электрода, стадией разряда, а также поверхностной диффузией разрядившегося иона (адатома) и встраиванием его в кристаллическую решетку. Поэтому количественная проверка изложенной теории оказалась возможной лишь после того, как в 50-х го- [c.331]

    Согласно теории кинетических токов для предшествующей электронному переносу мономолекулярной химической реакции плотность предельного кинетического тока t np на дисковом электроде описывается уравнением  [c.235]

    Как и катализаторы химических реакций, электрокатализаторы не изменяют термодинамику процесса, т.е. не влияют на равновесный потенциал электродных реакций. Электрокатализаторы увеличивают константу скоростей прямых и обратных реакций, т.е. плотности тока химических реакций и тока обм ена Jq (1.60), (1.64). Увеличение константы скорости реакции может быть обусловлено как снижением энергии активации, так и изменением значения предэкспоненциального коэффициента уравнения (1.61). Электрокатализатор изменяет не только скорость, но и механизм реакции и может влиять на состав продуктов реакции. Составной частью электрокатали-тической реакции является стадия адсорбции. Могут адсорбироваться исходные вещества, промежуточные частицы и продукты реакции. Кроме того, на реакцию оказывает влияние адсорбция молекул растворителя, ионов электролита, а также адсорбция примесей. [c.29]

    Превалирующими катодной и анодной реакциями при рафинировании серебра являются Ag е Ag+. Из-за малого перенапряжения при не слишком высоких плотностях тока эти реакции протекают при потенциалах, близких к равновесному. В соответствии с этим возможные примеси — золото, платиноиды, медь, сурьма, висмут, олово, селен, теллур, а также незначительные количества цинка, кадмия, никеля, железа — ведут себя в растворах рафинирования серебра в соответствии с их потенциалами и химическими свойствами. В шламе концентрируются золото и платиноиды, сурьма, висмут и олово в виде гидроокисей и метаоловян-ной кислоты, сера, селен и теллур в виде сульфидов, селенидов и теллуридов металлов. В растворе накапливается медь, которой в рафинируемом металле может быть довольно много (в сплаве д оре до 2—3%), а также все более электроотрицательные металлы. Контролирующей примесью является медь, допустимое содержание которой 30—40 г/л. При превышении этого количества часть электролита отбирают и заменяют свежим серебро из отработанного раствора извлекают методом цементации медьЕо. [c.316]

    Уравнения (15.68) и (15.69) внешне не отличаются от уравнения (15.6), выведенного ранее в предположении замедленности диффузии. В обоих случаях раствор вблизи электрода может оказаться полностью освобожденным от восстанавливаемых частиц, что резко увеличивает поляризацию (т1- -с ) и устанавливает предел росту плотности тока (/->/г)- В условиях диффузионных ограничений компенсация разрядившихся частиц происходит за счет их постушления из толщи раствора под действием градиента концентрации, возникающего внутри диффузионного слоя б. Предельная диффузионная плотность тока отвечает в зтом случае максимально возможному градиенту концентрации и является функцией коэффициентов диффузии реагирующих частиц. В условиях замедленности чисто химического превращения восполнение разряжающихся частиц совершается за счет химической реакции, протекающей в непосредственной близости от электрода или на его поверхности. Предельная реакционная плотность тока /г должна быть функцией констант скорости соотнетствующих химических превращений. Определение величин /г н установление закономерностей химического перенапряжения дает основу для изучения кинетики быстрых химических )еакций электрохимическими методами. [c.324]

    Теория электрохимического перенапряжения была разработана применительно к процессу катодного выделения водорода, а затем распространена на другие электродные процессы. Основой этой теории служит классическое учение о кинетике гетерогенных химических реакций. Количественные соотношения между величиной перенапряжения г и плотностью тока / были получены при использовании принципа Бренстеда о параллелизме между энергией активации 7а и тепловым эффектом <3р (или изобарным потенциалом АО) в ряду аналогичных реакций. Квантовомеханическая трактовка электродных процессов начала формироваться лишь сравнительно недавно, хотя отдельные попытки в этом направлении предпринимались уже начиная с середины 30-х годов (Герни, О. А. Есин и др.). Основные исследования в этом направлении были выполнены Бокрисом, Догонадзе, Христовым и др. [c.346]

    Подобных же отклонений от ПНПСР следует ожидать и в других случаях. Например, при протекании реакций электровосстановления или электроокисления, когда изменение кинетики частных реакций может быть обусловлено не только химическим взаимодействием их продуктов, но и иными причинами. Так, если восстанавливаемое соединение или продукт его восстановления способны адсорбироваться на электроде, то перепапряжение водорода может существенно измениться по сравнению с чистым раствором (не содержащим органического вещества) при той же плотности тока (или неизменная величина потенциала электрода будет соответствовать разным значениям плотности тока). Тем не менее и здесь оба принципа — ПНПСР и ПСПК — оказываются полезными, так как позволяют получать дополнительные сведения о процессе протекания совмещенных реакций. [c.389]

    Увеличение ШадсЗг должно нарушить равновесие б и вызвать химическую реакцию рекомбинации водородных атомов 2Надс = На- При этом скорость частной реакции рекомбинации, выраженная через плотность тока, будет [c.256]

    Расчет величины перенапряжения реакции т]р зависит от того, в предшествующей разряду или последующей ему химической реакции будет наибольшее торможение. При замедлении стадии vRed В зависимость перенапряжения от плотности тока i выражается уравнением [c.509]

    В условиях влажных сред и достаточно высокой проницаемости пленки по влаге и кислороду коррозионный процесс может лимитироваться скоростью химического растворения окиси по реакции (2.10). Поляризационная диаграмма для этого случая п))едставлена на рис. 2.15, а. Как показывает диаграмма, железо находится в пассивном состоянии, прп этом плотность тока коррозиЕ строго равна току полной пассивации. При увеличении скорости доставки активирующих частиц (С1, НС1, SO 2 и других) ток полной пассивации возрастает и соответственно увеличивается коррозионный ток (ij,. . ., ). Рассмотренный случай чаще всего реализуется на металле под сплошным покрытием в условиях чистой влажной атмосферы, во влажных грунтах и аэрируемых электролитах. [c.42]

    Известны теоретические и экспериментальные исследования, которые позволяют достаточно надежно определять параметры потока в соплах различной формы для идеального невяэкого газа, а также с учетом сопротивления трения, теплоотдачи и реальных свойств газа (диссоциация, химические реакции, конденсация и др.). В частности, можно рассчитать поле плотности тока в узком сечении сопла, что позволяет вычислить коэффици- [c.432]

    Одним из основных методов её исследования является анализ поляризационных кривых, отражающих зависимость скорости процесса г от величины электродного потенциала е. Такие кривые можно получить компенсационным методом, потенциостатически или гальваностатически с применением неподвижного электрода или вращающегося дискового электрода. Природу замедленной стадии можно установить по форме кривой, ее изменению с изменением температуры, концентрации и состава электролита. По характеру зависимости предельного тока от скорости вращения дискового электрода можно разграничить влияние диффузии и химической стадии. Форма кривых изменения потенциала электрода во времени при постоянной плотности тока или без него дает возможность судить об отсутствии или наличии пассивационных явлений. Температурная зависимость скорости электрохимических реакций (температурно-кинетический метод) используется для расчета [c.138]

    Стандартный потенциал основной анодной реакции составляет 0,56 В. На электродах протекают также побочные реакции на аноде — образование кислорода, на катоде — восстановление К2МПО4. Позтому выход по току всегда оказывается меньше 100 %, а выход по веществу сохраняется при этом весьма высоким, так как продукты упомянутых побочных реакций не загрязняют электролит. С увеличением концентрации К2М.ПО4, уменьшением температуры электролита и анодной плотности тока выход перманганата калия возрастает. В промышленности, однако, электролиз проводят при повышенной температуре, что позволяет несколько улучшить массоперенос и снизить напряжение на э.чектролизере. Для снижения потерь манганата вследствие восстановления его на катоде последний заключают в чехол из химически стойкой ткани, а также уменьшают поверхность катодов. Возможно применение микропористой диафрагмы, В этом случае поверхности катодов и анодов могут быть одинаковыми. [c.192]

    Это уравнение было экспериментально подтверждено А. Н. Фрумкиным с сотрудниками. Таким образом, впервые было показано, что скорость электродных процессов определяется электрическими характеристиками (величина поляризации) и концентрациями реагирующих на электродах ионов. Тем самым была открыта новая область явлений — электрохимическая кинетика. Очевидно, скорость электрохимического процесса разряда ионов (в расчете на единицу поверхности электрода) равна плотности тока . Как и для всякой химической реакции, величина константы скорости к разряда ионов при данной температуре зависит от энергии активации, т. е. к = ка е- . Таким образом, (ХУП1.67) может быть переписано  [c.402]


Смотреть страницы где упоминается термин Плотность тока химической реакции: [c.27]    [c.301]    [c.324]    [c.452]    [c.528]    [c.317]    [c.317]    [c.204]    [c.204]    [c.243]   
Теоретическая электрохимия (1981) -- [ c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Плотность тока

Тока плотность Плотность тока



© 2025 chem21.info Реклама на сайте