Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки диффузия

    Основы химической термодинамики, термохимии, кинетики, катализа, учения о растворах, диффузии, осмосе, тургоре и плазмолизе рассмотрены в нх приложении к биологии и сельскому хозяйству. Описаны коллоидно-химические свойства белков, протоплазмы, роль свободной воды в коллоидах, свойства коллоидов почвы. [c.2]

    Диффузия в студнях лежит в основе гель-фильтрации — эффективного метода разделения молекул по их размеру. Этот метод позволяет отделять от макромолекул не только ионы солей, но и молекулы с низкой молекулярной массой. С помощью гель-фильтрации можно отделить полисахариды от моносахаридов, белки от аминокислот и других низкомолекулярных соединений. [c.268]


    Инициация и регуляция транскрипции ДНК у эукариот с участием РНК-полимеразы в большей степени, чем у прокариот, зависит от множества других белков — факторов транскрипции, взаимодействующих с дискретными участками ДНК, образующих сложный эукариотический про.мотор. В районе промотора, прилегающего к сайту инициации транскрипции (кзп-сайту), обнаружены участки с характерными нуклеотидными последовательностями (мотивами), которые оказывают цис-действие на экспрессию близлежащего гена. Эти элементы могут взаимодействовать с РНК-полимеразой и другими белками-факторами транскрипции. Разные ядерные белковые факторы транскрипции, представляющие собой регуляторные белки, способны связываться с теми или иными нуклеотидными последовательностями ДНК, оказывая тем самым влияние На экспрессию разных генов. Такие белки, способные к диффузии [c.195]

    Все эти примеры служат иллюстрацией пассивного, но стереоселективного переноса, когда органические модельные системы осуществляют асимметричное узнавание. Однако можно провести аналогию между этими результатами и процессом опосредованного переноса через биологические мембраны. Все липидные мембраны практически непроницаемы для внутриклеточных белков и высокозаряженных органических и неорганических ионов, находящихся с обеих сторон мембраны. Диффузия Na+ через клеточную мембрану из клетки и К+ в клетку происходит в направлении отрицательного градиента химического потенциала и называется пассивным переносом. Пассивный перенос ионов через мембраны может быть вызван ионофорами [см. разд. 5.1.3]. К счастью, концентрации катионов по обе стороны мембраны различные, и такое состояние поддерживается активным переносом, который зависит от метаболической энергии. Механизм этого процесса известен под названием натриевый насос, функция которого сводится к поддержанию высокой внутриклеточной концентрации К+ и низкой концентрации Na+. Кальций, по-внднмому, также активно выводится из клеток. В этих случаях энергия для переноса обеспечивается за счет гидролиза АТР. Однако диффузия сахаров и аминокислот к важнейшим клеточным объектам — пример простого опосредованного пассивного переноса. [c.282]

    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные на стр. 13 данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. Поскольку дисперсность, как мы уже видели, существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по целому ряду свойств (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова, молекулярными коллоидами, в отличие от другого класса, — типичных высокодисперсных систем — суспензоидов [1].  [c.14]


    Согласно той же формуле (18.4) коэффициент диффузии обратно пропорционален вязкости растворителя. Поэтому особенно высокого качества разделения удается достигнуть, проводя электрофорез в гелях, вязкость которых чрезвычайно высока. Для разделения белков и нуклеиновых кислот наиболее широко используются полиакриламидные гели (см. 8.5). С помощью электрофореза в таких гелях удается в один прием разделить десятки компонентов. В качестве иллюстрации на рис. 91 приведен результат разделения смеси фрагментов нуклеиновой кислоты разной длины от 40 до 72 нуклеотидных звеньев. Электрофорезу подвергались фрагменты, меченые радиоактивным фосфором После завершения разде- [c.331]

    Ионообменная хроматография для фракционирования смеси белков используется значительно реже, чем для их очистки. Большие молекулярные массы обусловливают замедленную диффузию белков в жидких фазах и в связи с этим — невысокую разрешающую способность метода. Для смеси небольшого числа относительно некрупных белков ионообменное фракционирование еще себя оправдывает, однако в более сложных ситуациях оно явно уступает электрофорезу и изоэлектрофокусированию. Приведем несколько примеров фракционирования белков методом ионообменной хроматографии в более или менее благоприятных ситуациях. [c.309]

    Оценить радиус глобулярного белка цитохрома с (молекулярный вес 13000), если его коэффициент диффузии в воде при 20° С равен 1,01-10- см /сек. Вязкость воды в условиях опыта равна 0,89 спз. [c.271]

    Согласно ранним представлениям снижение о во времени объясняется замедленной диффузией молекул ПАВ из объема в поверхностный слой раствора [7]. Однако проведенные на основе этих представлений расчеты привели к выводу, что диффузия не является фактором, лимитирующим скорость установления адсорбционного равновесия (по крайней мере, в случае низкомолекулярных ПАВ). Роль этого фактора не исключена в случае высокомолекулярных ПАВ (например, белков), крупные громоздкие молекулы которых обладают значительно меньшей подвижностью, чем молекулы (ионы) обычных дифильных ПАВ. [c.31]

    Вычислить коэффициент диффузии сферической молекулы фибриллярного белка с молекулярной массой 10 и [c.72]

    В 1861 —1864 гг. английский ученый Грем, изучая диффузию различных растворов, заметил, что некоторые вещества в растворах диффундируют очень медленно. К медленно диффундирующим веществам Грем отнес гидраты окисей алюминия, цинка, железа и других металлов, некоторые природные вещества крахмал, декстрины, белки, гуммиарабик, танин и т. д. Сравнивая эти вещества и электролиты, он установил, что соляная кислота, например, диффундирует почти в 50 раз быстрее яичного белка и в 100 раз — крахмала. Растворы таких трудно диффундирующих веществ, как гуммиарабик, агар, крахмал, декстрин, по физическому состоянию напоминают клей поэтому Грем предложил все подобные вещества назвать коллоидами.  [c.7]

    В свою очередь, диффузия в живых организмах регулируется функциональным состоянием тканей и зависит от их физико-химического строения. Например, когда эфир диффундирует в тканях организма, то он встречает жиры и растворы белков, причем в жире эфир растворяется лучше. Вследствие этого он будет диффундировать в жир, несмотря на то, что концентрация его в жире будет больше, чем в растворе белка, т. е. диффузия эфира пойдет против градиента его концентрации. Это явление называется отрицательной диффузией. [c.22]

    Для определения молекулярного веса белков почти не применимы обычные методы, основанные на измерении упругости пара, повышения температуры кипения и понижения температуры замерзания растворов. Чаще всего пользуются специальными методами, разработанными для исследования высокомолекулярных веществ определение скорости диффузии, вязкости растворов, ультрацентрифугирование и др. [c.389]

    Исследования советских ученых — В.А. Каргина и др.— показали, что это деление неправильно. К лиофильным коллоидным растворам не относятся растворы высокомолекулярных соединений — белки, гуммиарабик, каучук, некоторые углеводы и т. д. Они образуют истинные, т. е. молекулярные растворы, но благодаря большой величине молекул эти растворы обладают некоторыми свойствами, характерными для коллоидных систем, а именно они не фильтруются через полупроницаемые перепонки, обладают такой же скоростью диффузии, как и лиофобные коллоидные растворы, и дают явления светорассеяния. [c.206]

    Константы равновесия в том и другом случае отличаются незначительно (в 2—4 раза). В то же время при переходе от профлавина к родамину 6Q процесс комплексообразования красителя с активным центром замедляется почти в 10 paat Структуры молекул этих лигандов различаются в основном лишь тем, что молекула родамина 6Q содержит дополнительное бензольное кольцо. Как показало изучение температурной зависимости кинетики комплексообразования, энергия активации этого процесса порядка 17 ккал/моль (71,4 кДж/моль). С другой, стороны, известна, что энергия активации процессов, контролируемых диффузией, не превышает, как правило, 5 ккал/моль (21 кДж/моль) [62, 63]. Поэтому следует заключить, что образование комплекса химотрипсина с более объемной молекулой родамина 6G возможно лишь в результате конформационных изменений в молекуле фермента. Такой механизм (1.8) комплексообразования органических молекул с белками, по-видимому, весьма распространен. [c.31]


    Способность натурального каучука поглощать и пропускать воду связана с наличием у него глобулярной структуры и некаучуковых составных частей, образующих оболочки глобул (белки, смолы, минеральные вещества). Оболочки глобул в каучуке образуют непрерывную сетку, служащую путем, по которому происходит диффузия влаги. При вальцевании каучука эта сетка разрушается и каучук становится менее водопроницаемым. [c.89]

    Существует класс весьма важных веществ с очень большими молекулами, так называемые высокомолекулярные соединения, или полимеры. Сюда относятся белки, целлюлоза, каучук и ряд синтетических продуктов. Размеры молекул этих веществ в отдельных случаях могут даже превышать размер коллоидных частиц. Возникает вопрос, являются ли растворы этих веществ коллоидными системами. Казалось бы, на этот вопрос следует ответить положительно, так как эти растворы, содержащие гигантские молекулы, обладают многими свойствами, характерными для коллоидных растворов, например, способностью к диализу и малой диффузией. Однако, как показали исследования последних десятилетий, в достаточно разбавленных растворах высокомолекулярные соединения раздроблены до молекул и, следовательно, эти растворы представляют собою гомогенные системы. Поэтому их нельзя отнести к типичным коллоидным системам. Растворы белков, целлюлозы, каучука и других подобных веществ во избежание путаницы лучше называть не коллоидными растворами, как это было принято раньше, а растворами высокомолекулярных веществ. Это название указывает, что данные системы, во-первых, являются истинными растворами и, во-вторых, что в них содержатся гигантские молекулы. [c.14]

    Все белки денатурируются под действием кислот или при нагревании, что проявляется в коагуляции и уменьЩенин растворимости, а также в потере специфических биологических свойств. Определение молекулярного веса белков является трудной задачей. Исходя из содержания железа в гемоглобине крупного рогатого скота, было найдено, что молекулярный вес этого белка лежит в пределах 16 000— 17 000. Молекулярный вес казеина, определенный по содержанию легко отщепляющейся серы, равен 16 000 и т. д. Подобные выводы, однако, справедливы лншь прн том условии, что данный белок однороден и содержит в своей молекуле только один атом того элемента, который используется для расчета молекулярного веса. Криоскопическое определение молекулярного веса затрудняется тем, что даже растворимые белки образуют коллоидные растворы наблюдаемое малое понижение точки плавления соответствует большому весу мицеллы. Более подходящими являются методы, основанные на определении скорости диффузии и вязкости. Помимо них практическое значение приобрел предложенный Сведбергом способ определения велич1п-1ы частиц по скорости седиментации в ультрацентрифуге. [c.396]

    Вследствие большого размера макромолекул растворы высокомолекулярных веществ по своей малой диффузионной способности близки к типичным коллоидным системам. Тем не менее определение коэффициента диффузии широко используется для установления молекулярного Веса высокомолекулярных соединений, например белков.  [c.456]

    Получают митохондрии печени крысы согласно описанию на с. 406. В кювету с постоянным перемещиванием, содержащую 3 мл среды инкубации, помещают К+ Чувствительный электрод и, установив перо самописца на середину шкалы, калибруют чувствительность прибора внесением 4—6 добавок раствора КС1 с точно известной концентрацией (по 20—30 мкМ). В другой пробе в среду инкубации вносят суспензию митохондрий (3—5 мг белка на 1 мл пробы), 5 мкМ ротенон и регистрируют в течение 1—2 мин концентрацию К+ во внешней среде. В пробу добавляют валиномицин (около 0,1 нмоль на 1 мг белка), измеряют концентрацию ионов К+ во внешней среде и рассчитывают скорость его диффузии в стационарном состоянии. Внесением 2,4-динитрофенола (100 мкМ) индуцируют выход ионов К+ во внешнюю среду. Содержание эндогенного К+ в митохондриях определяют добавлением к суспензии митохондрий в среде инкубации раствора детергента (тритон-Х-100) до конечной концентрации 0,1%- Изменения концентрации К+ в среде рассчитывают по калибровочной кривой. [c.444]

    Рассмотренные соотношения дают возможность на основании результатов измерений скорости диффузии определить частичный вес коллоида. (Так называют средний вес частиц коллоида, выраженный в обычных единицах молекулярных весов частичный вес коллоида иначе условно называют молекулярным весом его.) Например, установлено, что величина частичного веса некоторых белков состявляет 50 ООО—70 ООО. Это значение лишь немного отличается от приближенного значения, полученного криоскопическим методом. [c.512]

    Вычислить, во сколько раз будут различаться коэффициенты диффузии глицина (мол. вес 75) и глобулярного белка уреа-зы (мол. вес 480 ООО) в воде. [c.271]

    Энергия, необходимая для работы мышцы, выделяется в результате ферментативного гидролиза АТФ под действием мышечного белка миозина. Удельный вес мышцы, содержащей 10% миозина (мол. вес 2-10 ), приблизительно равен единице, коэффициент диффузии АТФ в мышце равен 10 см /сек. Реакция гидролиза АТФ под действием миозина характеризуется значениями кат=100 сек-, /(т(каж)= 10- М. Оцбнить, (при какой толщине мышечного волокна (моделируя его пластинкой) работа мышцы начнет лимитироваться диффузией, если начальная концентрация АТФ равна 1 10 3 М. [c.275]

    Имеется раствор фермента с молекулярным весом 100000 Плотность фермента в кристаллическом состоянии равна 1,25 г/см . С помощью критерия Тиле оценить, при каких значениях кат/ 7п(каж) реакция ферментз с нейтральной молекулой субстрата небольшого размера начнет зависеть от диффузии, если коэффициент диффузии субстрата в растворе равен 3-10- см /сек. В расчетах учесть, что в растворе объем молекулы белка за счет гидратации увеличивается примерно на 30%. [c.275]

    Для гидратации белка наибольшее значение имеют пептидные связи, за счет которых притягивается примерно /3 всей гидрата-ционной воды. В общем частицы гидрофильных коллоидов связывают значительные количества воды так, 1 г сухого крахмала при растворении связывает 0,18 г воды, 1 г яичного альбумина (белка) — 0,35 г воды, 1 г карбоксигемоглобина — 0,353 г воды. Связанная полярными группами вода приобретает новые качества, приближающие ее к твердому веществу ее молекулы имеют уплотненное расположение, свойства воды как растворителя понижены, она не замерзает при низких температурах и т. п. В свою очередь, гидратированное вещество также приобретает иные свойства повышается его устойчивость в растворе, уменьшается скорость диффузии и др. Вязкость и скорость образования внутренних структур в этих растворах значительно выше, чем в коллоидных. [c.174]

    В это же время М. Фарадей разработал методы получения золей металлов (например, Аи, Ag) и показал, что коллоидные частицы в них состоят из чистых металлов. Таким образом, ко второй половине XIX в. сложился ряд представлений о жидких коллоидных растворах и других дисперсных системах. Обобщение в 60-х годах XIX в. этих взглядов, формулировка основных коллоидно-химических идей и введение термина и понятия коллоиды принадлежат Грэму. Изучая физико-химические свойства растворов, в частности диффузию, он обнаружил, что вещества, не кристаллизующиеся из раствора, а образующие студневидные аморфные осадки (АЬОз, белки, гуммиарабик, клей) обладают весьма малой скоростью диффузии, по сравнению с кристаллизующимися веществами (Na I, сахароза и др.), и не проходят через тонкие поры, например пергаментные мембраны, т. е. не диализируют, по терминологии Грэма. Основываясь на этом свойстве, Грэм разработал метод очистки коллоидов от растворенных молекулярных веществ, названный им диализом (см. главу II). После того, как был найден способ получения чистых объектов исследования, началось бурное развитие коллоидной химии. [c.18]

    В ходе диффузии сахарозы из стружки в диффузионный сок переходят несахара аминный и аммиачный азот — 95%, оксид кальция—10, Р2О5 — 75—80, общий азот, оксиды калия, натрия, магния- 60—70 %. В сок из стружки переходит 30 % белка. Эффект очистки сока на диффузии составляет 10—15 %. [c.48]

    Для обессоливанпя и рассортировки молекул скорость элюции может быть выбрана довольно большой — порядка 20 мл/см- ч (следует предварительно проверить сжимаемость геля ). Как было показано в гл. 1, с позиций достижения наилучшего разрешения пиков существует оптидгальная скорость хро.матографического фракционирования. Слишком медленная элюция приводит к резкому уширению пиков за счет продольной диффузии, слишком быстрая — к более ностененному их уширению за счет нарушения равновесия поперечной диффузии. Оптимальная скорость зависит от размеров молекул и гранул, увеличиваясь с уменьшением тех и других. Для ориентировки можно указать, что оптимальная скорость элюции для белков составляет примерно 2 мл/см -ч (для определения объемной скорости элюции это значение надо умножить на илощадь сечения колонки). Однако нередко имеет смысл в интересах оптимизации условий эксперимента в целом значительно отступить от оптимальной скорости элюции в сторону ее увеличения. [c.136]

    Рассмотренный только что для обычной сефарозы, этот вариант элюции, естественно, находит применение и при использовании гидрофобизированной агарозы. В качестве примера процитируем недавно опубликованную работу по мягкой очистке HMG-белка из ядер печени на колонке со-аминобутилагарозы. Этот белок растворим в растворе сульфата аммония вплоть до концентрации, достигающей 70% от насыщения. Сначала такой концентрацией СА в нейтральном 0,01 М трис-буфере высаливали из экстракта ядер большое количество балластного белка. Затем надосадочную жидкость, содержащую около 40 мг белка, вносили на колонку размером 2 X X 30 см, уравновешенную тем же раствором СА. Элюцию вели снижающимся линейным градиентом концентрации СА в том же буфере (500 мл) со скоростью 20 мл/ч, т. е. примерно 7 мл/см -ч. Низкая скорость элюции характерна для всех опытов такого рода ввиду повышенной вязкости концентрированных солевых растворов и соответствующего снижения скорости диффузии макромолекул. Около 30% белка не садилось на колонку и удалялось при первоначальной промывке. В ходе элюции выходило четыре пика, в первом из которых методом электрофореза идентифицировали HMG-белок [ onner. omings, 1981]. [c.181]

    Описано фракционирование радиоактивно меченных пептидов трипсинового гидролизата белка на колонке Spherisorb ODS (0,46 25 см) линейным градиентом (0—62,5%) этанола в 4,5%-ном растворе НСООН. Фракционирование вели при температуре 40° со скоростью элюции 1,4 мл/мин в течение 95 мин [Smart et al., 1981]. В растворах с высоким содержанием этанола (как и ацетонитрила) растворимы ие все пептиды. Хроматографию труднорастворимых пептидов иногда удается осуществить, используя в качестве органического растворителя пропанол. В силу своей большей, чем у этанола, гидрофобности пропанол элюирует с октадециловых колонок даже крупные пептиды при концентрации менее 20%. Относительно высокая вязкость пропанола заставляет снижать скорость элюции, но для крупных пептидов это все равно необходимо делать ввиду их замедленной диффузии. [c.202]

    Ионообменная ЖХВД позволяет вести хроматографию низкомолекулярных веществ с большой скоростью — до 800 мл/см -ч. Уже не раз подчеркивалось, что скорости такого порядка нельзя применять при хроматографии белков. Линейные размеры гранул для ЖХВД уменьшены по сравнению с обычными ионообменниками в. 5 — 10 раз, а скорость поперечной диффузии тяжелых макролго-лекул, естественно, остается той же самой. Соответственно и скорость элюции при хроматографии белков можно увеличить лишь пропорционально линейным расстояниям диффузии, т. е. до 10— 50 мл/см -ч. [c.295]

    Из рис. 134, А видно, что за 30 мин высокая степень связывания лактатдегидрогеназы на 5 -АМР-сефарозе достигается лишь начиная с исходной концентрации фермента 1 ед./мл (2 мкг/мл, если считать, что активность фермента составляет ориентировочно 500 ед./мг). Дальнейший ход зависимости полноты связывания от концентрации фермента имеет пологий характер. Процесс связывания фермента при малой его концентрации сильно растягивается во времени (рис. 134, В). Даже при исходной концентрации 0,1 ед./мл связать фермент полностью удается лишь за 16 ч. Очевидно, что такое замедление нельзя объяснить с чисто кинетических позиций соотношения концентрации реагентов (в растворе). Возможно, что имеет место временное задерживание диффундирующих молекул на местах неспецифической сорбции. Свой вклад дает и замедление диффузии белков внутри гранул за счет столкновений с сеткой матргщы. [c.402]


Смотреть страницы где упоминается термин Белки диффузия: [c.295]    [c.23]    [c.264]    [c.282]    [c.423]    [c.193]    [c.224]    [c.241]    [c.45]    [c.155]    [c.223]    [c.332]    [c.401]   
Физическая биохимия (1949) -- [ c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Белки коэффициенты диффузии

Белки скорость диффузии

Мембранные белки диффузия

Скорость взрыва I движения истечения газов I диффузии газов I растворов I белка

Фибриллярные белки измерение диффузии



© 2024 chem21.info Реклама на сайте