Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические вещества в азотистой кислоте

    НУКЛЕОТИДЫ — сложные органические вещества, природные биологически активные соединения, распространены в животных, растительных тканях и микроорганизмах как в свободном состоянии, так и в составе различных соединений (нуклеиновых кислот, некоторых коферментов и витаминов). Н. состоят из остатков фосфорной кислоты, углевода (рибозы или дезоксирибозы) и азотистого основания (нуклеозида). Играют огромную роль в процессах обмена веществ и энергии живых организмов. [c.177]


    Соединения азота с точки зрения техники безопасности работы в химических лабораториях заслуживают особого внимания. Многие как неорганические, так и органические соединения его являются высокотоксичными, многие идут на получение взрывчатых веществ. Сам азот не обладает ни ядовитыми, ни раздражающими свойствами, он пассивен в процессе горения. Но при вдыхании больших концентраций его у человека появляются патологические явления, связанные с недостатком кислорода (кессонная болезнь). В то же время в различных формах своих соединений азот участвует в жизненно важных физиологических процессах. Наруше-, ния нормального течения азотного обмена в организме часто являются причиной тяжелых заболеваний. В лабораториях находят широкое применение следующие соединения азота азотная и азотистая кислоты, аммиак, хлористый нитрозил и др. [c.190]

    Нуклеотиды — сложные органические вещества, состоящие из фосфорной кислоты, сахара (рибозы или дезоксирибозы) и азотистого основания, играют огромную роль в процессах обмена веществ и энергии, входят в состав нуклеиновых кислот, многих коферментов и других соединений. [c.91]

    Вероятность взрыва в технологической системе определяется, прежде всего, наличием или образованием з достаточном количестве взрывоопасных или других нестабильных соединений, склонных к самоускоряющимся экзотермическим физикохимическим превращениям. Такими веществами могут быть сырье, целевые или побочные продукты в газовой, жидкой или твердой фазе. К веществам такого рода относятся ацетилен и его производные, способные при сравнительно невысоких параметрах (температура и давление) к термическому разложению активные непредельные соединения, склонные к экзотермической спонтанной полимеризации пероксидные соединения, способные спонтанно саморазогреваться при сравнительно невысоких температурах реакционные массы процессов нитрования углеводородов и другие нитросоединения, получающиеся как побочные продукты нестабильные продукты осмоления, полимеризации, окисления и другие побочные соединения, накапливающиеся в аппаратуре в значительных количествах расплавы аммиачной селитры и других солей азотной и азотистой кислот, а также их смеси с органическими веществами. Наличие [c.79]

    Азот в сельском хозяйстве. Азот — элемент питания растений. Растения используют его из почвы в форме различных азотистых веществ, растворенных в почвенной жидкости (почвенный раствор). Однако основная масса азотистых веществ находится Б почве в форме нерастворимых в воде и непосредственно недоступных растениям органических веществ (главным образом мертвых остатков растений). Под влиянием бактерий органическое вещество почвы разлагается с образованием в конечном счете Oj, Н2О и минеральных солей ( минерализация органических веществ). При этом азотистые вещества почвы первоначально выделяются в форме аммиака (процесс а м м о н и з а ц и и). Аммиак с кислотами почвы образует соли аммония, в форме каковых азот уже может использоваться растениями. Однако значительная часть аммиака почвы окисляется бактериями сначала до азотистой кислоты  [c.474]


    В фармацевтическом анализе ионообменная хроматография широко используется для количественного определения солей органических и минеральных кислот, солей алкалоидов и азотистых оснований и других групп лекарственных веществ. [c.58]

    Большую опасность представляют собой твердые осадки (например, продукты полимеризации, осмоления), самовоспламеняющиеся на воздухе или разлагающиеся со взрывом в определенных условиях в закрытой аппаратуре. Отмечены случаи взрывов в аппаратуре производства дихлорамина, вызванные термическим разложением осадка и воспламенением при контакте с кислородом воздуха, в производстве этиленпропиленового каучука и в других производствах. Опасность взрывчатого разложения осадков и твердых отложений органических продуктов значительно увеличивается, если в их составе содержатся нестабильные кислородсодержащие веществ , такие, как соли азотной и азотистой кислот, перекисные соединения, хлораты и перхлораты и другие активные-окислители, усиливающие взрывчатое разложение в аппаратуре. [c.294]

    Фосфатиды (фосфолипиды) —органические вещества из группы липоидов. Ф.— сложные эфиры глицерина и высших жирных кислот, в состав которых входят фосфорная кислота и азотистые основания (холин). Ф. содержатся в мозгу, печени, мышцах, тканях (особенно нервных) человека и животных они принимают участие в [c.143]

    Среди пестицидов имеются органические вещества многих классов хлорпроизводные, азотистые и сернистые соединения, производные кислот фосфора и др. Номенклатура и масштабы производства пестицидов непрерывно увеличиваются. Это объясняется открытием новых, более эффективных и избирательных или менее токсичных препаратов, а также необходимостью постоянной борьбы с природой, которая способна вырабатывать иммунитет по отношению к длительно применяемым средствам. Однако к выбору и применению пестицидов следует относиться очень осторожно, [c.16]

    Нитрит дициклогексиламина (НДА) представляет собой органическое вещество, является солью дициклогексиламина и азотистой кислоты. Чистый НДА - это белый кристаллический порошок без запаха, плавящийся при температуре 175-176 С. Технический продукт имеет слабый характерный запах и желтоватый оттенок. Упругость паров НДА зависит от температуры. Растворимость его в воде очень низкая, даже при повышенной температуре нельзя получить концентрированных растворов НДА. Ингибитор хорошо растворим в спиртоводных растворах. Водные растворы НДА практически нейтральны (pH = 7,2), они проявляют свойства сильных электролитов. При обычной температуре растворы отличаются хорошей стабильностью. [c.192]

    Цианистоводородная к/слота и ее соли очень ядовиты. Попадая в организм/ H N вызывает нарушение тканевого дыхания, блокируя дыхательные ферменты. Предельно допустимая концентрация в воздухе 0,3 мг/м . В начальной стадии отравления ощущается царапанье в горле, жгуче-горький вкус во рту, слюнотечение. При высоких концентрациях человек почти мгновенно теряет сознание, наступает паралич дыхания, а затем и паралич сердца. Смертельная доза цианидов около 0,1 г. Указателем на присутствие H N в воздухе может служить табачный дым, который становится очень горьким. При отравлении цианидами следует вызвать рвоту и вдыхать пары аммиака. H N может накапливаться в воздухе рабочих помещений при горении целлулоида, при неполном сгорании и сухой перегонке азотистых органических веществ, при действии на белки концентрированной азотной кислоты, в забродивших дубильных соках. В табачном дыме от одной сигареты содержится около 0,2 мг H N. [c.277]

    Озон легко отдает один атом кислорода и является поэтому очень сильным окислителем. Так, действием озона почти все металлы (кроме Аи, и 1г) переводятся в их оксиды, сернистые соединения окисляются им в сернокислые, аммиак — в азотистую и азотную кислоты и т. д. Каучук очень быстро разрушается озоном, а многие другие органические вещества (например, спирт) при соприкосновении с ним воспламеняются. Эта исключи тельно высокая окислительная активность озона и является его наиболее характерным химическим свойством.  [c.43]

    Изменение свойств коррозионной среды пригодно для случаев, когда защищаемое изделие эксплуатируется в ограниченном объеме жидкости. Метод состоит в удалении из раствора, в котором эксплуатируется защищаемая деталь, растворенного кислорода (деаэрация) или в добавлении к этому раствору веществ, замедляющих коррозию, — ингибиторов. В зависимости от вида коррозии, природы металла и раствора применяются различные ингибиторы. При атмосферной коррозии применяют хорошо адсорбирующиеся на металле вещества мо-ноэтаноламин, карбонат аммония, уротропин, нитрит натрия. Для нейтральной коррозионной среды и растворов солей в качестве ингибиторов используют неорганические соли хромовых кислот, фосфорной, кремниевой, азотной и азотистой кислот. В кислых средах используют органические ингибиторы, содержащие атомы азота, серы, фосфора, кислорода и группировки атомов с ненасыщенными связями. Защитное действие ингибиторов обусловлено тем, что их молекулы или ионы адсорбируются на поверхности металла и каталитически снижают скорость коррозии, а некоторые из них (например, хроматы и дихроматы) переводят металл в пассивное состояние. [c.693]


    Напишите структурные формулы и назовите главные органические продукты, образующиеся при реакции (если она происходит) азотистой кислоты со следующими веществами  [c.726]

    Перспективным источником повышения чувствительности АРП является превращение определяемых веществ в более летучие и хуже растворимые производные. Такой способ применяется для определения реакционноспособных соединений, характеризующихся большими (> 10 ) значениями коэффициентов распределения,— органических кислот или спиртов в водных растворах, предел обнаружения которых прямым парофазным анализом ограничивается концентрациями 10 — 10-" %. Органические кислоты реакцией с диметилсульфатом превращают в метиловые эфиры, и предел обнаружения, например, трихлоруксусной кислоты снижается до 10 % [31]. Для определения спиртов используются галоформ-ная реакция (для трихлорэтанола [31]) или превращение их в эфиры азотистой кислоты [32,33]. Предел обнаружения и в этом случае не превышает 10 %. [c.70]

    Нахождение в природе. Азотистая кислота встречается только в виде своих солей, нитритов. В виде нитрита аммония ее находят в воздухе, а также во многих почвах и водах, особенно в такн х, которые загрязнены аммиаК/ом и гниющими органическими вещества.ии. [c.381]

    У. Укажите новые функциональные группы, образующиеся в органическом продукте взаимодействия лецитина с азотистой кислотой. 1 а. ОН-группа б. Нитрозоаминогруппа в. Вещество не взаимодействует [c.161]

    До последнего времени у нас в Советском Союзе для производства кормовых дрожжей использовалась в основном барда гидролизных и сульфитно-спиртовых заводов, где питательными веществами для дрожжей являются из углеводов пентозы — ксилоза (0,35—0,8%) и арабиноза (0,12—0,16%) из органических кислот в основном уксусная (0,22—0,45%) и частично левулиновая, а также минеральные вещества азотистых и фосфорсодержащих соединений (около 0,001%)), соединений магния (0,007—0,016%) и калия (0,015—0,03%). [c.563]

    Реакция Лассеня иногда оказывается непригодной это бывает в тех случаях, когда азот в органическом соединении связан настолько слабо, что при нагревании улетучивается еще до сплавления вещества и поэтому не вступает в реакцию с натрием и углеродом. Недавно Файгль описал очень чувствительный и надежный метод обнаружения азота. При нагревании любого сухого азотсодержащего вещества с пиролюзитом (а также с МпгОз, РЬз04, С02О3) образуются пары азотистой кислоты, окрашивающие фильтровальную бумагу, смоченную реактивом Грисса (смесь 1 %-ного раствора сульфаниловой кислоты в 30%-ной уксусной кислоте с 0,1 %-ным раствором а-нафтиламина в 30%-ной уксусной кислоте), в красный цвет. Методами капельного анализа можно обнаружить 0,2 цг органически связанного азота [c.5]

    Органические вещества, воспламеняющиеся при контакте с окислителями (кислородом, галогенами, азотистой и азотной кислотами, перекисью, окислами хрома и свинца, селитрами, хлоратами, перманганатом калия, перхлоратами). [c.166]

    Органические остатки подвергаются разлагающему действию анаэробных бактерий. В первую очередь разрушаются белковые вещества с образованием сероводорода и аммиака и других продуктов глубокого распада белковой частицы и распада каких-то устойчивых азотистых соединений. Получается, по словам акад. В. Л. Омеляпского, как бы выгнпвший , или, как его неудачно называет Г. Потонье, минерализованный сапропель, который не изменяется очень долго даже при свободном доступе воздуха. Во вторую очередь подвергается распадению клетчатка, или целлюлоза, и лигнин и другие органические соединения с высоким содержанием кислорода. Роль анаэробных бактерий состоит в извлечении кислорода и в образовании устойчивых соединений. Первая стадия бактериального разложения заканчивается образованием жиров и других устойчивых соединений. Этим вообще заканчивается стадия биохимических процессов, и органическое вещество обращается в тот кероген, о котором мы уже говорили. По мнению других исследователей, роль анаэробных бактерий на этом не заканчивается. Мэррэй Ст-юарт и другие английские геологи считают, что бактериальное разложение совершается до конца, до превращения органического вещества в нефть. Жиры, разложенные в жирные кислоты, а эти [c.338]

    Нефтью называется природная смесь углеводородов различных классов с различными сернистыми, азотистыми и кислородными соединениями. По внешнему виду нефть представляет собой маслянистую жидкость, обыкновенно бурого цвета, хотя встречаются нефти, имеющие более светлые оттенки коричневого цвета. Вязкость нефти различна и зависит от состава. Представляя собой смесь органических веществ, нефть способна гореть, выделяя при этом до 10 ООО калорий на килограмм. В минералогическом отношении нефть относится к числу горючих ископаемых или каустобиолитов. Нефть практически ие содержит химически активных веществ вроде кетонов, спиртов и т. п. соединений, хотя в некоторых случаях имеет кислотный характер вследствие незначительного содержания кислот. Все химические свойства нефти показывают, что нефть никогда не подвергалась действию высоких температур и поэтому для нее нехарактерны обычные компоненты, свойственные различным продуктам перегонки углей, торфа и других естественных горючих материалов. Нефть часто сопровождается в природе различными окаменелостями, позволяющими определить геологический возраст нефти в ее современном залегании. Обыкновенно нефть сонровояодается газом и водой, представляющей собой раствор галоидных и углекислых растворимых солей, иногда в воде содержатся сероводород и растворимые сульфиды. [c.5]

    Н и т [) о 3 И р о в а н И е м называют процесс замещения атома водорода в ядре ароматических соединений группой NO (нитрозогруппа . Этот процесс протекает при непосредственной обработке исходных веществ нитрозирующим агентом. Нитрози-рованию подвергают преимущественно замещенные ароматические амины, фенолы и нафтолы. В качестве нитрозирующего агента в большинстве случаев применяется нитрит натрия, который в кисло11 среде легко выделяет азотистую кислоту, реагирующую с органическими соединениями в момент выделения. [c.298]

    Частые и мощные электрические разряды (грозы) в теплой и очень влажной атмосфере отдаленных геологических эпох обусловливали частичную диссоциацию водяного пара и N2 на атомы элементов и связывание атмосферного азота в N0, а затем в N02 и ННОз, которая вместе с дождем попадала на землю и нейтрализовалась солями более слабых кислот (например углекислыми). С развитием органической жизни нитраты послужили материалом для выработки белковых веществ (2). Под влиянием процессов гниения связанный азот переходит в аммиак и соли аммония (5). Конечные продукты гниения частично вновь усваиваются растениями (4), частично подвергаются в почве дальнейшей переработке в нитраты (5). Этот природный процесс, названный нитрификацией, обусловлен влиянием двух типов микроорганизмов яитрозобактерий и нитробактерий. Первые из них проводят окисление аммиака только до азотистой кислоты [c.601]

    Соли азотистой кислоты — нитриты — более прочны и при обычных температурах не разлагаются. Из них наибольшее значение имеет нитрит натрия NaNOa, используемый в органическом синтезе, в производстве красителей и лекарственных веществ. [c.349]

    Азотистая кислота HNO2— слабая одноосновная кислота, существует только в разбавленных водных растворах. При нагревании раствора А. к. распадается с выделением N0 и NOj. Окисляет ряд веществ (напр,, —), но при действии более сильных окислителей (Н2О2, КМиО ) окисляется в HNO,. Соли А. к. (нитриты) при-(шняются в органическом синтезе. [c.8]

    Перхлорат нитрозила — N0- IO4 можно рассматривать как ацилнерхлорат азотистой кислоты. Перхлорат нитрозила образует бесцветные кристаллы орторомбической формы, аналогичные кристаллам перхлората оксония. Он гигроскопичен, под действием воды разлагается с образованием хлорной кислоты и выделением окислов лзота, со многими органическими веществами энергично реагирует с самовоспламенением и взрывом. Перхлорат нитрозила термически менее стоек, чем перхлорат нитрония. [c.459]

    Бремнер [7] изучил реакцию взаимодействия лигнина с азотистой кислотой, чтобы установить, сколько азота в почвенных гуминовых кислотах встречается в виде свободных аминогрупп. Многие считают, что лигнин входит в гуминовую фракцию органического вещества почвы (см. Флэг [13]). Кроме того, он исследовал поведение азота в лигнинных продуктах реакции при определении аминогрупп по Ван-Слайку. [c.355]

    Для повышения степени обогащения в методе АРПФ стараются снизить коэффициент К путем повышения температуры, снижения растворимости или перевода анализируемых веществ в более летучие производные [51]. Термический фактор позволяет увеличить степень обогащения приблизительно на порядок, его применение ограничивается как чисто техническими трудностями, так и увеличением содержания растворителя в паровой фазе. Более эффективным оказывается применение различных добавок, снижающих растворимость примесей. Так, при анализе растворов органических веществ в органических растворителях можно в десятки раз увеличить содержание примесей в газовой фазе, добавляя в растворитель воду. Особенно эффективен этот прием для веществ, плохо растворяющихся в воде. В случае водных растворов снижения растворимости примесей часто достигают добавлением в анализируемый объект солей (эффект высаливания). Значительного повышения обогащения достигают также переводом примесей в более летучие производные. Так, органические кислоты переводят в метиловые эфиры, а спирты в эфиры азотистой кислоты. [c.212]

    Среднее содержание сахарозы 17,5 %. Оно колеблется от 15 t до 22,5 % и зависит от сорта, условий выращивания, способо] уборки, хранения. В состав нерастворимых органических вещест) (5 %) входят гемицеллюлозы 1,3 %, пектиновые вещества 2,4 % в состав азотистых органических веществ (1,2 %) — бело 0,7 % беатин — 0,2, аминокислоты — 0,2 % безазотисты( органические вещества включают инвертный сахар — 0,12, орга нические кислоты — 0,50 % минеральный состав, пересчитанньн на оксиды КгО — 0,20 % СаО — 0,07 ЫагО — 0,04 Р2О5 [c.112]

    Итак, беглое рассмотрение классов органических соединений позволяет выделить те из них, которые являются наиболее интересными для химии отравляющих веществ. Таковыми будут галоидопроизводные ароматических углеводородов и простых эфиров, вещества, содержащие двухвалентный углерод, альдегиды, кетоны, гало-идоангидриды и эфиры некоторых кислот, сернистые соединения, производные азотной и азотистой кислоты, цианистые соединения и, наконец, разнообразные мышьяковистые соединения. [c.30]

    Если рассматривать удаление воды как чисто физический процесс, то ему должно способствовать повышение температуры, и, действительно, вся вода удаляется при 365 °С, т. е. при достижении критической температуры воды [238]. Однако для большинства органических веществ повышение температуры сопровождается выделением других летучих соединений. На рис. 3-4 показаны кривые зависимости давления паров воды от температуры для некоторых органических веществ. (Кривые построены в полулогарифмическом масштабе по табличным данным, опубликованным Стуллом [333 ].) Даже при относительно низких температурах давление паров воды над растворителями обычно превышает соответствующее парциальное давление паров воды в окружающей среде, что обеспечивает испарение значительных количеств воды в процессе относительно длительного высушивания. На ранних стадиях высушивания вместе с удаляемой водой могут также удаляться жиры, свободные кислоты, азотистые основания и т. д. [270]. При повышенных температурах заниженные результаты могут быть обусловлены гидролизом таких веществ,, как соли, дисахариды или крахмал [270]. После того как свободная вода будет в основном удалена, дальнейшее высушивание может сопровождаться выделением дополнительных количеств воды за счет протекания реакций окисления и конденсации, например самоокисление жиров [270], кислотная конденсация сахаров [129, 159, 229], конденсация восстанавливающихся соединений с производными аминокислот [58, 192, 310]. Таким образом, при определении воды по потере массы получаются заниженные результаты, если высушивание сопровождается гидролизом или окислением, или же завышенные результаты, если при высушивании происходят реакции конденсации. [c.73]

    В очистке промышленных сточных вод принимает участие большинство микроорганизмов, способных к гетеротрофному биосинтезу, ибо только они могут разрушать органические вещества. Известно, что гетеротрофы в процессе эволюции приспособились к использованию в природе тех естественных органических веществ, с которыми они встречаются в нормальных экологических условиях. Это вещества растительного и животного происхождения разной сложности углеводы от гексоз и пентоз до целлюлозы, пентозанов, лигнина и хитина азотистые вещества от аминокислот до полипептидов и прочных фибриллярных белков — кератина и коллагена, нуклеиновые кислоты и нуклеопротеиды липиды и их компоненты от глицерина и жирных кислот до сложных растительных и животных масел, жиров и жироподобных веществ — фосфолипидов, липопротеи-дов и т. д. У значительно меньшего числа микроорганизмов существует приспособленность к потреблению углеводородов нефти, озокерита, битуминозных сланцев, сапропелитов и фенолов. Они в течение длительного периода времени, охватывающего жизнь многочисленных поколений микробов, в нормальных экологических условиях вступали в контакт с этими веществами, совершенно непригодными для всего органического мира ни в [c.100]

    Антропогенные источники поступления в окружающую среду. Выделяется в воздух при производстве бензола, толуола и ксилола, на коксохимических заводах, при гидрогенизации угля, при гальванопластических процессах, при горении целлулоида и нагревании полимерных композиций (найлона, полиакрилонитрила, полиуретана, карбамидных и меламнновых пластмасс), при сгорании шерсти, при неполном сгорании или сухой перегонке азотистых органических веществ и при получении из них цианидов при цианировании стали при изготовлении гексаци-аноферрата(П1) калия (красной кровяной соли) и его применении для крашения и протравливания тканей (сточные воды этих производств также содержат H N) в производстве тио-цианатов при изготовлении щавелевой кислоты при действии на белки концентрированной азотной и серной кислотой при закаливании и жидкой цементации металлов в металлургии (например, при флотации сульфидной свинцово-цинковой руды), при брикетировании ферросилиция и ферромарганца). В доменном газе находили 0,03—0,3 г цианистых соединений иа 100 м , в сточных промывных водах газоочистки — 2,7—9 мг в [c.332]

    Научные исследования охватывают многие области органической химии. Первые работы были посвящены исследованию азокрасителей, сернистых и ализариновых красителей и полупродуктов для них. Изучал алкилирование органических соединений с целью получения удобным и дешевым способом алкалоидов, красителей, душистых веществ и фармацевтических препаратов. Г]редложенный им (1923) синтез солей диазония действием на фенолы азотистой кислоты нашел широкое про.мыш-ленное применение. Открыл (1926) общий метод синтеза р-аминокис-лот конденсацией альдегидов с малоновой кислотой и аммиаком в спиртовом растворе (реакция Родионова) и нашел пути превращения Р-аминокислот в гетероциклические соединения. Исследовал механизм и модернизировал реакцию Гофмана (образование третичных аминов), что открыло возможность синтеза соединений, близких по строению биологически активным аналогам витамина Н — а-биотина. [c.435]

    В процессе питания микроорганизмы получают материал для своего строения, вследствие этого происходит прирост массы бактерий активного ила, а в процессе дыхания они используют кислород воздуха. Содержащиеся в сточных водах органические вещества в результате окислительных процессов минерализуются, и конечными продуктами окисления являются диоксид углерода и вода. Некоторые органические соединения окисляются не полностью, образуются промежуточные продукты. В процессе биохимической очистки сточных вод происходит также окисление сероводорода до серы и серной кислоты, а а1.шиака - до азотистой и азотной кислот (нитрификация). [c.56]


Смотреть страницы где упоминается термин Органические вещества в азотистой кислоте: [c.163]    [c.108]    [c.68]    [c.371]    [c.254]    [c.119]    [c.119]    [c.5]    [c.8]    [c.220]    [c.113]    [c.10]   
Справочник по основной химической промышленности Издание 2 Часть1 (0) -- [ c.367 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота азотистая

Кислота органическая



© 2025 chem21.info Реклама на сайте