Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катионы, валентность водорода

    В какую группу Периодической системы надо поместить водород Может быть, в 1А-группу — ведь у него, как и у щелочных элементов, один валентный электрон, который он теряет, переходя в катион Но водород не металл Или в УПА-группу — водород, как и элементы-галогены, существует в виде двухатомного газа, склонен принимать один электрон и образовывать анион с зарядом -1, входя в состав гидридов Однако электроотрицательность водорода отнюдь не выше электроотрицательности фтора, над которым он мог бы располагаться в таблице водород скорее типичный восстановитель, чем типичный окислитель. Где же место водорода в Периодической системе  [c.193]


    Здесь Н изображает положительно заряженный гидратированный ион (катион) водорода. Одна точка указывает, что водородный ион имеет, сообразно с валентностью водорода, один элементарный положительный заряд. СНзСОО изображает отрицательно заряженный гидратированный ион (анион) кислотного остатка. Между молекулами и образовавшимися из них ионами устанавливается равновесие. [c.22]

    К первой группе относятся окислы металлов переходной валентности, у которых катионы решетки сохраняют свои индивидуальные свойства. В этом случае можно ожидать аналогию в механизме реакций гетерогенно-каталитического окисления на окислах и гомогенного химического окисления в растворах. Для данной группы катализаторов обоснован механизм с первичным взаимодействием за счет водорода органической молекулы и кислорода окисла металла [18], например  [c.155]

    Образование о-комплексов. В отличие от л-комплексов 0-комплексы — это катионы, при образовании которых реагент Х+ образует ковалентную связь с одним из атомов углерода бензольного кольца за счет его двух я-электронов. При этом один из атомов углерода переходит из состояния в состояние 5р -гибридизации, в котором все четыре валентности его находятся под углами, близкими к тетраэдрическому тем самым нарушается симметрия бензольного кольца. Группа X и атом водорода при этом оказываются в плоскости, перпендикулярной плоскости кольца  [c.318]

    Способность химических реагентов эффективно воздействовать lia структурно-механические свойства шламов основана на явлении ионного обмена. Частицы минералов благодаря наличию на их поверхности электрических зарядов сорбируют из окружающей среды катионы и анионы, которые недостаточно прочно удерживаются на поверхности частиц и при определенных условиях обмениваются на другие ионы. Наибольшая склонность к ионному обмену характерна для минералов глин. Причиной катионного обмена могут быть разорванные химические связи по краям кремнезем-глиноземистых слоев, несбалансированные заряды в результате замещения ионов кремния и алюминия ионами более низкой валентности, а также замещение водорода гидроксильных групп катионом, который может вступать в обменные реакции замещения. [c.280]

    Приведем еще один важный для химии случай координативной. связи. Так, вводных растворах кислот катион Н+ (протон) не может существовать отдельно. Он образует с молекулой воды катион оксония Н+-Ь НзО = НзО" . При этом обобществляется электронный дублет атома кислорода. Следовательно, в данном случае-кислород — донор, а водород — акцептор электронного дублета (рис. 1У-15). Отметим, что электронные пары атомов кислорода, азота, галогенов и др. могут служить основой для возникновения координативной связи только в том случае, если эти атомы находятся в валентном, но не в свободном состоянии. [c.91]


    Из правила Шульце — Гарди имеются исключения, когда происходят специфическая адсорбция ионов, пептизация осадка (переход коагеля в коллоидный раствор) или, наконец, химическое взаимодействие с ионами двойного электрического слоя мицеллы, например в тех случаях, когда появляется несколько значений порогов коагуляции и зон устойчивости (стр. 97). Ионы водорода и некоторых тяжелых металлов, многие органические катионы (алкалоиды, красители) проявляют коагулирующее действие, несовместимое с их валентностью [c.114]

    Растворы являются проводниками электрического тока тогда, когда они содержат ионы. Чем больше растворенных частиц распадается на ионы, тем лучше они проводят электрический ток, т.е. тем лучше их электрическая проводимость. По мере распада электролитов на ионы растет общее число частиц, находящихся в растворе, так как при этом из одной частицы получается две и более. Следовательно, законы Рауля и Вант-Гоффа верны и для растворов электролитов, если учитывать как недиссоциированные частицы, так и образующиеся при их распаде ионы. Ионы, заряженные положительно, получили название катионов, а отрицательно заряженные — анионов. Катионами являются положительные ионы металлов, ион водорода, а анионами — водные и кислотные остатки. Значение заряда иона совпадает с валентностью атома или кислотного остатка, а число положительных зарядов равно числу отрицательных зарядов. Поэтому в целом раствор электронейтрален. [c.211]

    Уникальное положение водорода в Периодической системе. Водород — первый элемент и один из двух представителей первого периода системы. По электронной формуле 1.5 он формально относится к 5-элементам и является аналогом типически элементов I группы (лития и натрия) и собственно щелочных металлов (подгруппа калия). Это обусловливает сходство оптических спектров водорода и щелочных металлов. Водород и металлы 1А-группы проявляют степень окисления +1 и являются типичными восстановителями. Однако в состоянии однозарядного катиона И (протона) водород не имеет аналогов. В металлах 1А-группы валентный электрон экранирован электронами внутренних орбита-лей. У атома водорода отсутствует эффект экранирования, чем и объясняется уникальность его свойств. Кроме того, единственный электрон атома водорода является кайносимметричным, а потому исключительно прочно связан с ядром (Д = 13,6 В или 1312 кДж/моль). [c.292]

    Растворимость простых эфиров в протонных кислотах обусловлена основными свойствами эфирного кислорода. Как и в случае азота в аммиаке кислород проявляет основные свойства вследствие наличия в его свите двух свободных электронных пар (у азота одна свободная пара электронов). Эти электронные пары пе могут быть использованы для проявления обычной валентности, поскольку в молекуле эфира вокруг кислорода уже имеется восемь электронов (октет). Кислород не может поэтому принять электроны, по может односторонне предоставить одну пару электронов в совместное обладание для осуществления связи, например, с катионом водорода. После присоединения катиона система становится уже заряженной положительно [c.121]

    В подгруппу входят шесть элементов 1Л, Na, К, КЬ, Се и Рг. Франций в природе практически отсутствует, а один из его изотопов является продуктом а-распада актиния. Иногда в эту подгруппу включают и водород, который так же, как и остальные элементы группы, содержит один валентный электрон 1з. Однако специфика водорода заключается в том, что он с одинаковой легкостью может и отдавать электрон, превращаясь в катион Н , и принимать его от менее электроотрицательных элементов до гелиевой структуры 1з . В шкале электроотрицательностей Л. Полинга он занимает среднее положение с ЭО = 2,1. По некоторым свойствам (сходный характер спектра, образование иона Н , восстановительная способность в молекулярной и особенно [c.127]

    Химическое поведение водорода определяется тем, что в его атоме имеется только одна валентная атомная орбиталь и только один валентный электрон. В своих соединениях водород находится в одном из трех состояний гидратированного катиона в растворах, аниона Н в кристаллах ионных гидридов или, чаще всего, ковалентно-связанного атома, причем, в соответствии со своей электроотрицательностью, водород может быть как в степени окисления -Ы, так и-1. [c.241]

    Гетероциклические катионы с катионным центром на гетероатоме, который имеет на одну связь больше, чем в нейтральном гетероцикле называют, добавляя суффикс илий к названию нейтрального гетероцикла, в котором данный гетероатом связан, по крайней мере, с одним атомом водорода. При этом для описания нестандартного валентного состояния гетероатома используется Я,-обозначение. [c.230]


    Величина перенапряжения водорода сильно зависит от добавок нейтральных солей [75]. При добавлении к раствору нейтральной соли перенапряжение увеличивается, т. е. потенциал выделения становится более отрицательным. При избытке нейтральной соли потенциал выделения достигает постоянного значения, которое зависит только от концентрации ионов водорода. Особенно сильно влияет на перенапряжение водорода валентность катионов, входящих в состав добавляемой соли (табл. 12). [c.209]

    Влияние валентности добавляемых катионов на изменение потенциала выделения водорода из 0,01 н. раствора НС1 на ртутном капельном электроде [c.209]

    Цеолиты представляют собой алюмосиликаты, в которых для компенсации отрицательного заряда, возникающего при замещении 81 + на АР+ вводятся щелочные катионы или водород. Это регулярные пористые структуры, заполненные в обычных условиях водой. При нагревании вода выделяется, цеолиты кипят , что и дало им греческое название от слов цео (кипение) и литое (камень). Общая химическая формула цеолитов дается в виде Ме2/ 0-А120з гЗЮг 4НгО, где Ме — щелочной металл или водород, п — валентность. [c.121]

    Химические свойства водорода в значительной степени определяются способностью его атомов отдавать единственный имеющийся у них электрон и превращаться в положительно заряженные ионы. При этом проявляется особенность атома водорода, отличающая его от атомов всех других элементов отсутствие про ме 4<уточиых электронов между валентным электроном и ядром. Иои водорода, образующийся в результате потери атомом водо рода электрона, предбтавляет собой протон, размефы которого на несколько порядков меньше размера катионов в(зсх других эле ментов. Поэтому поляризующее действие протона очень велико, вследствие чего водород ие способен образовывать ионных соеди нений, в которых он выступал бы в качестве катиона. Его соединения даже с наиболее активными неметаллами, например, е фтором, представляют собой вещества с полярной ковалентной связью. [c.344]

    Таким образом, зависимость термодинамических величин q и Ст от л и рассмотренные ИК спектры указывают на начальную фиксацию кислорода молекулы воды на катионах и связывание с ионами кислорода решетки цеолита одного водорода этой молекулы (высокая теплота адсорбции, низкая теплоемкость и узкая полоса валентных колебаний другой свободной группы ОН молекулы воды). Затем идет фиксация молекул воды между катионами К" , что обуславливается располол<ением, концентрацией и гидрофобным характером этих больш-их катионов (см. рис. 2.9). Когда эти возможности исчерпаны, теплота адсорбции падает, а теплоемкость возрастает в соответствии с разрывом при нагревании водородных связей в некоторой части образованных при адсорбции воды ассоциатов. Дальнейший рост q и падение Ст обусловлены, в основном, образованием водородно-связанной сетки ассоциатов воды, фиксированной на поверхностях полостей этого цеолита. Когда образование этих ассоциатов завершено, q снова падает, а Ст растет. Наконец, перестройка сетки ассоциатов при заполнении центральных частей полостей цеолита ведет снова к росту q (уже небольшому) и падению Ст до величины, довольно близкой к теплоемкости жидкой воды. Изменения в инфракрасном спектре при адсорбции воды цеолитом KNaX подтверждают, что с ростом происходит поочередное усиление и ослабление водородной связи. Для цеолита NaX этого не наблюдается. [c.44]

    Такая теория, объединяющая адсорбционные и электростатические точки зрения, была развита А. И. Рабиновичем с учениками и сотрудниками. Методом измерения электропроводности и потенциометрического титрования Рабинович на примере золя AS2S3 (наружная обкладка двойного слоя которого образована ионами водорода) показал, что при введении в раствор КС1, ВаСЬ или AI I3 сначала происходит обменная адсорбция с вытеснением в эквивалентных количествах из диффузного слоя ионов Н" " ионами К" ", Ва" или А1 +. Коагуляция наступает только при введении избытка электролита тем более значительного, чем ниже валентность катиона. Аналогичная закономерность наблюдалась и на других золях. На основании опытов был сделан вывод, что коагуляция про- [c.340]

    Азот и фосфор являются элементами УА группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится пять электронов из них три р-электрона. Поэтому в нормальном состоянии они проявляют валентность, равную трем. Наибольшее изменение в химических свойствах элементов УА группы наблюдается при переходе от азота к фосфору. В атомах азота внешним энергетическим уровнем является второй, содержащий только 5- и р-поду ровни, а подуровень с1 отсутствует. Атомы азота при переходе в возбужденное состояние могут увеличить число непарныхэлектронов максимум до четырех и при этомза счет потери одного электрона. В этом случае образуется электронная конфигурация а азот становится четырехвалентным, как в ионе [ЫН4] . Поэтому азот не проявляет валентности, равной пяти. В атомах фосфора наружным энергетическим уровнем является третий, состоящий из трех подуровней з, р и й. При возбуждении атомов фосфора увеличение числа непарных электронов происходит за счет использования -подуровня с образованием электронной конфигурации поэтому фосфор в отличие от азота может проявлять валентность, равную пяти. Размеры атомов азота и фосфора меньше, а энергия ионизации этих элементов соответственно больше, чем углерода и кремния. В связи с этим азот и фосфор при химических реакциях не теряют электронов и не превращаются в элементарные катионы. Сродство к электрону этих элементов незначительно и поэтому они, как правило, не превращаются и в элементарные анионы. Азот и фосфор образуют соединения как с кислородом, так и с водородом, только с ковалентными связями. Таким образом, азот и фосфор являются неметаллами. Причем свойства неметаллов у них выражены сильнее, чем у углерода и кремния. [c.213]

    Такого глубокого сходства у водорода со щелочными металлами нет и быть не может ионных соединений, где в качестве катиона выступал бы водород, он в отличие от щелочных металлов не образует (ср. Na I и НС1), поскольку его единственный валентный электрон более прочно удерживается ядром и на образование иона Н" требуется затратить в 2,5 раза больше энергии, чем для образования иона натрия Na+, и она не компенсируется энергией образования соединения ионного типа  [c.38]

    Анализ орбитальных взаимодействий становится особенно важным при установлении причин устойчивости так иазьшаемых неклассических органических соединений. К последним относят соединения, спруктуры которых нельзя описать при помощи стандартных представлений валентности. Простейпшм примером может служить ион метония — протонированный метан Hj , зафиксированный впервые В. Л. Тальрозе (1952). В газовой фазе этот катион, в котором атом углерода окружен пятью ( ) атомами водорода, весьма устойчив для отрыва протона необходимо затратить 558 кДж/моль, а для отрыва молекулы водорода 184 кДж/мол >. [c.346]

    Особенности азота. У атома азота на один электрон больше, чем у атома углерода согласно правилу Гунда этот электрон занимает последнюю вакантную 2р-орбиталь. Атом азота в невозбужденном состоянии характеризуется тремя вырожденными 2 -элект-ронами при наличии двух спаренных электронов 25-орбитали. Три неспаренных электрона на 2/7-орбитали ответственны прежде всего за трехковалентность азота. Именно поэтому характеристическим летучим водородным соединением азота является аммиак, в котором атом азота образует три ковалентные связи по обменному механизму с тремя атомами водорода. У азота нет возможности промотирования электронов с переходом в возбужденное состояние, так как ближайшие орбитали при п=3 (3s-, Зр- и Sii-оболочки) слишком высоки по энергии. Затраты энергии на промотирование с изменением главного квантового числа значительно больше, чем выигрыш в энергии за счет образования дополнительных связей. Поэтому максимальная валентность азота равна четырем. При этом три ковалентные связи могут быть образованы по обменному механизму, а одна — по донорно-акцепторному. Однако азот в состоянии однозарядного катиона N+ может образовать все четыре связи по обменному механизму. Азот проявляет разнообразие степеней окисления —3, —2, —1, О, +1, - -2, -ЬЗ, - -4 и +5. Наиболее часто встречаются производные от степеней окисления —3, +5 и +3. [c.246]

    Общая характеристика. Все атомы указанных элементов имеют по одному валентному электрону во внешнем уровне, а в предпоследнем уровне два электрона у лития п — 1)5 , у всех остальных по восемь электронов п — Первые элементы периодов — щелочные металлы — имеют наибольший атомный объем и наибольший радиус атома и наименьший потенциал ионизации по сравнению с остальными элементами соответствующего периода. Водород, будучи первым элементом первого периода, имеет кое-что общее со щелочными металлами. Это общее выражается в сходстве спектров, в равной валентности по кислороду (единице), в окислительном числе +1. Но ион Н не имеет аналогов, так как он очень мал по сравнению с катионами щелочных металлов и существует только в водных растворах в виде иона НдО . Потенциал ионизации атома Н значительно больше потенциалов ионизации щелочных металлов, а восстановительная способность водорода намного меньше. Водород имеет больше сходства с галогенами, являющимися так же, как и водород, предпбследнимн элементами периодов, и потому он будет рассмотрен вместе с галогенами в 7. [c.270]

    Анализ табл. 71 показывает, что длины водородных связей типа О—Н...0 изменяются в широких пределах — от 3,4 до 2,4 А, причем наиболее прочные связи имеются у кислот и кислых солей, наименее прочные — у гидроокисей. Это обстоятельство легко понять с точки зрения элементарной теории водородной связи. Поскольку последняя образуется между атомами, уже израсходовавшими свои нормальные валентности в пределах собственных молекул и радикалов, взаимодействие между атомом водорода и кислорода происходит только за счет известного положительного заряда на атоме водорода и отрицательного — на атоме кислорода. В гидроокисях атом водорода входит в состав отрицательно заряженного гидроксил-иона и поэтому электростатическое (точнее сказать, донорно-акцепториое) взаимодействие Н и О здесь будет ослаблено. В кристаллогидратах атом водорода входит уже в состав электронейтральной молекулы воды, и соответственно взаимодействие усиливается. В кислотах водород играет роль катиона и там мы встречаемся с наиболее сильными водородными связями. [c.168]

    В нач. 20 в. появились представления, согласно к-рым X. с. обусловлена образованием у каждого атома стабильной электронной оболочки, включающей нек-рое магическое число электронов. Для водорода это число равняется 2, для атомов второго периода периодич. системы - 8, для след, периода -18 и т. д. Возможны два способа образования октета (оболочки из 8 электронов) 1) переход одного или неск. электронов от данного атома к другому, так что у обоих атомов возникает октетная оболочка и образуется пара электростатически взаимодействующих ионов (катион и анион) 2) обобществление от каждого атома, участвующего в образовании X. с., по 0ДН01У1У электрону с образованием электронной пары (чему соответствовал валентный штрих в классич. структурной ф-ле) либо по два, три и т. д. электрона с образованием двух или большего числа электронных пар (чему соответствовали валентные штрихи двойных, тройных и т. п. связей см. Кратные связи). [c.234]

    В 1937 г. Де-Бур так объяснил появление f-nono атомы натрия или калия из паров, проникая в кристаллы соответствующих солей, создают там точечные дефекты в анионной части, в которые попадают электроны для компенсации валентности. Это и есть F-центры. Получившаяся система с точки зрения квантовой механики весьма сходна с атомом водорода. Кроме основного состояния, такой электрон имеет ряд дискретных возбужденных уровней. F-поглощение соответствует переходу электрона из основного состояния в первое возбужденное состояние. Эта гипотеза была впоследствии подтверждена многими исследователями. Кроме F-центров были найдены F-, R -, R2-, М- и N-центры, связанные с различными дефектами кристалла. Так, например, V-центр связан с появлением вакансии в катионной части структуры, которая служит ловушкой дырок . F-центры приводят к появлению соответствующих полос поглощения. [c.264]

    Катионы, компенсирующие заряд каркаса цеолита, можно удалить 1) замещением на способный к разложению катион типа аммония (см. выше) или 2) восстановлением катиона до нуль-валентного состояния химическим восстановителем, оставляющим металл, диспергированный в цеолитной структуре, в виде атомов металла или в виде небольших аг.томератов атомов металла в идеализированном случае. Компенсация заряда при этом должна лроисходить путем одновременного образования гидроксильных групп на атомах кислорода каркаса, если восстановитель — водород. [c.534]

    Все тугоплавкие металлы (за исключением бериллия) являются переходными элементами. Им свойственны образование катионов нескольких валентностей, высокая стойкость в компактном состоянии и высокая химическая активность в тои-кодисперсном состоянии или при повышении температуры. При нагревании большинство из них активно реагируют с кислородом, азотом и водородом. [c.290]

    Другим интересным примером является разряд ионов двухвалентного свинца. Как уже указывалось, на платиновом электроде возможно восстановление ионов этого электроотрицательного металла потому, что, как только начинается восстановление ионов поверхность платины покрывается металлическим свинцом, обладающим высоким перенапряжением для выделения водорода. На полярограмме в этом случае получается хорошо выраженная катодная волна при потенциалах от —0,4 до —0,9 в (рис. 27). С другой стороны, ионы свинца способны окисляться на платиновом электроде до высшей валентности. Поэтому если вольт-амперную кривую катионов свинца снимать от —1,0 в в направлении даеличения положительной поляризации электрода (кривая /), то сперва наблюдается ток восстановления ионов РЬ + (участок /), а затем кривая пересекает ось абсцисс, и в области потенциалов от —0,3 до +0,2 б появляется анодный пик окисления выделившегося на электроде металлического свинца (участок / ) при дальнейшем изменении потенциала в сторону положительных значений при + 1,2 б начинается следующий электродный процесс —окисление ио1юв двухвалентного свинца до двуокиси (участок /"). Электрод в этот момент покрывается коричневым, быстро чернеющим налетом. Если же теперь вольт-амперную кривую снимать слева направо от +1,6 б (кривая //), то сразу же после волны окисления ионов свинца (участок 2") возникает катодный ток — ток восстановления двуокиси свинца до его двухвалентного состояния (участок 2 ). Этот ток быстро возрастает, достигая максимума, и затем резко падает в тот момент, когда на электроде исчезают последние остатки двуокиси свинца. После этого в катодной области при потенциале —0,4 б вновь начинается волна восстановления ионов РЬ2+ (участок 2). [c.84]


Смотреть страницы где упоминается термин Катионы, валентность водорода: [c.12]    [c.42]    [c.482]    [c.78]    [c.180]    [c.472]    [c.207]    [c.203]    [c.416]    [c.108]    [c.223]    [c.465]   
Ионообменные смолы (1952) -- [ c.83 ]




ПОИСК







© 2025 chem21.info Реклама на сайте