Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация спиртов непредельных

    Ниже предпринята попытка рассмотреть пленкообразование масел и алкидов на основе критического анализа имеющихся сведений о формировании полимерных пленок из этих соединений с привлечением данных о реакциях окисления и полимеризации модельных веществ — эфиров одноатомных спиртов непредельных высших жирных кислот — с учетом закономерностей [c.144]


    Полимеризацией этого непредельного спирта получают универсальный карби-нольный клей (клей Назарова), которым можно склеивать самые различные материалы металл с металлом, металл с деревом, металл со стеклом, дерево со стеклом и многое другое. [c.167]

    Изучена реакция присоединения алкилхлорсиланов к сложным и простым эфирам [50, 77, 83—85], хлорангидридам кислот, ацеталям [85] и спиртам [86]. Особенно легко получаются эти соединения при проведении реакции в присутствии платиновых катализаторов. Одной из трудностей, имеющих место при этом, является легкая полимеризация ряда непредельных кислородсодержащих соединений, в частности содержащих сопряженную систему связей С=С—С=0. Очевидно, именно по этой причине перекиси не дают в данном случае нужного эффекта. [c.119]

    Если создать условия, при которых этот разрыв связей С—С будет минимальным, то в этом случае, возможно, удастся осуществить в электрических разрядах дегидрирование спиртов без заметного разложения всей молекулы. Такой электросинтез непредельных спиртов, а также альдегидов, несомненно может представить интерес и в практическом отношении. Некоторые данные о полимеризации спиртов в электрических разрядах приводятся на стр. 219. [c.258]

    Полимеризованные эфиры (или поливиниловые эфиры) могут конденсироваться с непредельными альдегидами (акролеин, кротоновый альдегид) в мягкую, способную вулканизироваться массу. Они могут подвергаться совместной полимеризации также и с предельными альдегидами. Поливинилхлорид и поливиниловые сложные эфиры могут быть методом омыления переведены в поливиниловые спирты  [c.466]

    Наращивание углеродной цепи основано на взаимодействии органических веществ, сопровождающемся образованием новой углерод-углеродной связи. К этому типу реакций относят присоединение металлорганических соединений по кратным связям С=0, С -С, С - N и др., взаимодействие металлорганических соединений с галогенопроизводными углеводородов, полимеризация непредельных соединений, реакции конденсации. Решая вопрос о том, в какой последовательности наращивать в молекуле исходного соединения углеродную цепь, следует пользоваться методом схематической разбивки молекул целевого продукта на фрагменты. Этот прием можно рассмотреть на примере составления схемы превращения этилового спирта в бутиловый. Одна из схем предполагает присоединение сразу фрагмента, содержащего два атома углерода (способ [c.86]

    При полимеризации в присутствии кислот Льюиса, так же как и при катионной полимеризации непредельных соединений, обычно требуются сокатализаторы. В качестве сокатализаторов используются вода, галогенводородные кислоты, спирты, галогеналкилы, ангидриды и хлорангидриды кислот. При этом образуется более активный комплекс, например [c.121]


    Непредельные углеводороды этих фракций, так же как и непредельные углеводороды газойля, могут быть использованы для получения спиртов или высококачественных смазочных масел путем селективной полимеризации. Масла имеют низкую температуру застывания и пологую кривую вязкости. [c.569]

    Непредельные углеводороды фракции 180—320° могут быть использованы для получения вторичных алкилсульфатов, натриевые соли которых отличаются хорошими моющими свойствами [153]. Последние получают непосредственной обработкой серной кислотой фракций, перегоняющихся в пределах 180—320°, содержащих в зависимости от состава катализатора и условий процесса от 35 до 60% ненредельных углеводородов. Низкомолекулярные олефины могут быть использованы для получения моющих средств только после предварительной полимеризации с преимущественным получением полимеров, или как источник получения качественных присадок к смазочным маслам, или, наконец, для получения спиртов. [c.571]

    В присутствии сернистого молибдена и сернистого вольфрама при 325—500° и давлении до 20 ати гидроксильная группа фенолов восстанавливается и кольцо в большей или меньшей степени гидрируется с образованием промежуточных продуктов (непредельных углеводородов,, спиртов) и затем нафтенов. Имеются также отрыв боковых цепей и в незначительной степени образование сложных продуктов полимеризации и конденсации  [c.837]

    Бутилен нерастворим в воде, хорошо растворяется в этиловом спирте и эфире. Для р-бутилена, как и для других непредельных углеводородов, характерна большая способность к реакциям присоединения, изомеризации и полимеризации. [c.349]

    Др. области применения С. и. с.-анализ и концентрирование микроэлементов из р-ров. Комплексы С. и. с. с металлами-катализаторы гидрирования непредельных соед., кетонов и спиртов, изомеризации, полимеризации, гидроформилирования и др. [c.311]

    Когда неочищенные Р-лактоны сначала подвергают гидролизу а затем дегидратации путем перегонки промежуточно образующихся Р-оксикислот, предотвращение полимеризации не является обязательным. Гидролиз полиэфира приводит, очевидно, к образованию мономерной р-оксикислоты и тем самым к получению того же конечного продукта реакции. Подобным же образом можно этерифицировать и дегидратировать мономерный Р-лактон, причем в качестве конечного продукта реакции получается а, р-непредельный сложный эфир. Так, если продукт конденсации кетена с кротоновым альдегидом обработать абсолютным этиловым спиртом в присутствии сильно кислого [c.407]

    Гетерогенные каталитические реакции в жидкой фазе применяются в различных областях промышленности. Они протекают при более низкой температуре, чем газофазные процессы, и более избирательно. Применение растворителей, адсорбирующихся на поверхности катализатора, и добавок, а также изменение pH позволяют значительно изменять активность и селективность катализаторов. Достигнуты зна-чительные успехи в изучении и практическом использовании многочисленных процессов гидрирования олефиновых и ацетиленовых углеводородов, ароматических соединений, жиров, непредельных спиртов и карбонильных соединений, а также некоторых процессов полимеризации и гидратации в жидкой фазе. [c.85]

    Гетерогенные каталитические процессы в жидкой фазе широко используются при гидрировании непредельных углеводородов, жиров, карбонильных соединений, спиртов, а также в ряде случаев при полимеризации и гидратации. Что же касается жидкофазного окисления па твердых контактах, то оно используется чрезвычайно мало. Между тем эти процессы протекают при значительно более низких температурах, чем при осуществлении их в паровой фазе, и позволяют получать соединения, неустойчивые при температурах газофазного катализа, т. е. осуществлять процесс с более высокой избирательностью. [c.201]

    Поскольку для каталитической системы, состоящей из алкила алюм иния и треххлористого титана, полимеризацию требуется вести при полном отсутствии кислорода, спирта и воды, вен аппаратура установки сообщается со специальной системой азотного дыхания. Процесс ведут при 65—70 °С и давлении 10— 12 ат. В реакцию вступает 98% пропилена остальное количество сдувают для эвакуации инертных газов на газоразделительную установку. Полимеризации может подвергаться чистый (99%-ный) пропилен и пропан-пропиленовая фракция (с содержанием пропилена 30%), тщательно очищенная от примесей воды и влаги. Давление в полимеризаторе развивается за счет упругости паров пропан-пропиленовой фракции. Растворитель (бензин или гептан) не должен содержать непредельных углеводородов. Содержание серы в нем должно быть не более 0,001%, воды — не более 0,006%. [c.104]

    К реакциям кислотно-основного типа относятся такие важные процессы как крекинг углеводородов, изомеризация олефинов и алкилбензолов, алкилирование ароматических и ациклических углеводородов, полимеризация непредельных углеводородов, дегидратация спиртов и многие другие превращения органических веществ. Для всех этих реакций кислотный механизм действия цеолитных катализаторов считается общепринятым [11]. В связи с этим проблема исследоваиия кислотных свойств является одной из центральных в физикохимии цеолитного катализа. [c.43]


    Реакции полимеризации, будучи инициированы перекисями, могут продолжаться и без участия кислорода. Предполагалось даже, что при окислении непредельных углеводородов сначала происходит полимеризация, а затем окисление полимеров, однако и с энергетической, и с химической точек зрения окислительная полимеризация — главное и наиболее вероятное направление реакций. Протекающий параллельно распад гидроперекисей приводит [20, 21] к образованию карбонильных соединений, которые частично конденсируются с неизменившимися гидроперекисями, давая оксиалкильные перекиси и далее спирты, кислоты и оксикислоты. [c.69]

    Реакции непредельных углеводородов сложнее это образование сернокислых эфиров, сульфокислот, спиртов, полимеров, а также продуктов совместно протекающих реакций гидро- и дегидрополимеризации [1, 2, 6, 7]. Основная часть продуктов реакции сульфирования топлив растворима в серной кислоте, но полимеры (и некоторые сульфокислоты) переходят в топливный слой. Такие продукты можно отделить от топлива его вторичной перегонкой, однако это удлиняет анализ и приводит к дополнительным ошибкам. Поэтому для сокращения вторичных реакций, приводящих к полимеризации, кроме применения кислоты высокой концентрации строго соблюдают температуру сульфирования, не допуская разогрева смеси, для чего сульфаторы охлаждают водой или льдом. [c.200]

    Для разрушения кристаллогидратов углеводородов, образующихся в верхней секции колонны 14, предусмотрена ее промывка метиловым спиртом. Для предотвращения же полимеризации тяжелых непредельных углеводородов колонна 15 снабжена подогрезателями 8, работающими поочередно (теплоносителем в подогревателях могут служить пары воды, ацетона или их смеси). [c.88]

    Применительно к растительным маслам и алкидам отсутствуют систематические исследования окислительной полимеризации, выполненные на современном уровне, как для олигоэфиракрилатов, так и аллиловых эфиров, которые позволили бы, составить представление о кинетике и механизме процесса формирования полимеров в пленках. Поэтому приходится опираться на весьма органиченные данные, рассматривая окислительную полимеризацию эфиров непредельных высших жирных кислот сравнительно подробно изучено лишь взаимодействие с Ог эфиров одноатомных спиртов этих кислот, которые выступают как модели растительных масел. Известно, что существенное влияние на процесс пленкообразования оказывают также химические превращения эфиров при их оксидации и термообработке. [c.133]

    Автоокисление алкилароматических углеводородов в гидроперекиси [36] все более становится самостоятельным разделом органической химии, который находится в стадии широкого и интенсивного развития. Это объясняется прежде всего тем, что гидроперекиси алкилбензолов уже на данном этапе получили важное промышленное значение как таковые, или в качестве промежуточных продуктов, например, в синтезе фенолов, жирных и жирноароматических кетонов и спиртов. Гидроперекиси моно- и диизопропил-бензолов используются в качестве гербицидов [37] добавок к растворитедя М при очистке аппаратуры от полимеров при производстве холодного каучука [38] добавок, улучшающих воспламеняемость моторных топлив [39—42] окислителей при -отбелке тканей эффективных инициаторов низкотемпературной сополимеризации дивинила со стиролом и других непредельных соединений [43—51]. Особый интерес в качестве инициаторов полимеризации представляют гидроперекиси циклогексилбензола, п-изопропилциклогексил-бензола, несимметричного дифенилэтана, ге-трет.бутилизопропилбензола и 1,3,5-триизопропилбензола. Нам представляется, что в будущем масшта производства гидроперекисей будут обусловливаться только потребностями тех продуктов, которые будут производиться на их основе, так как технология их получения сравнительно простая, а сырьевая база неограниченная. Синтез алкилбензолов, необходимых для производства гидроперекисей, как [c.245]

    Та-К нм же путем могут быть за1Полнмеризованы и другие виниловые эфиры высших жирных спиртов, а та.кже простые виниловые эфиры многоатомных спиртов, фенолов и жир]ю-ароматических спиртов, тио- и аминоспиртов, различных вп-нильных соединений и других непредельных, полимеризация которых при нормальном,. давлении сопровождается деструкцией высокомолекулярных соединений. [c.95]

    Напишите структурную формулу простейшей непредельной однооснов ной карбоновой кислоты и уравнение реакции взаимодействия этой кислоты с метиловым спиртом. Составьте схему полимеризации образовавшегося при этом продукта. [c.408]

    А. М. Бутлеров исследовал условия полимеризации непредельных соединений и установил возможность полимеризации бутиленов в присутствии серной кислоты. В 1900 г. И. Л. Кондаков осуществил полимеризацию диизопропенила (диметилбу-тадиена) и получил каучукоподобное вещество. С. В. Лебедев в 1909 г. получил каучук путем полимеризации бутадиена. И. И. Остромысленский в 1911 —1913 гг. разработал способ получения бутадиена из смеси спирта и уксусного альдегида и из спирта в две стадии. В 1916 г. Б. В. Бызов предложил получать бутадиен пирогенетическим разложением нефтепродуктов. [c.17]

    В результате дегидрирования предельных углеводородов получаются химически активные непредельные углеводороды, например этилен, пропилен и т. д. При окислении образуются кислородсодержащие продукты спирты, альдегиды, кетоны и другие при гало-. идировании или нитровании — соответственно галоидо- или нитропроизводные. Гидратацией углеводородов можно получить спирты. При процессах полимеризации образуются ценные высокомолекулярные соединения. Алкилирование дает такие важные продукты, как изонронилбензол, алкилат и другие. Упомянутые реакции протекают при разных температурах, давлениях и катализаторах. Органический синтез имеет непсчерпаелгые возможности для получения самых разноо )ра <ных продуктов. [c.210]

    При получении ацеталей из а-непредельных альдегидов с реакционноспособными двойными связями принимают меры против катионной полимеризации, для чего используют соответствующие стабилизаторы [45]. В остальном условия обычные. Катализаторами служат азотнокислый аммоний, хлористый аммоний, НС1, Н3РО4, п-толуолсульфокислота. За исключением некоторых случаев [46], присоединение спирта по двойной связи не происходит. [c.54]

    Наибольшее распространение среди карбоцепных получили полимеры непредельных углеводородов (полиэтилен, полипропилен, полистирол и др.) и галогенпроизводных непредельных углеводородов (поливинилхлорид, фторпроизводные полимеры), а также производных ненасыщенных спирюв, кислот и их эфиров (поливиниловый спирт, поливинилацетат, полиакрилонитрил и др.) и диеновых углеводородов (полибутадиен, полиизопрен, полихлоропрен и др.). Полимеры непредельных углеводородов в промышленности получают по радикальной, ионной и ионнокоординационной полимеризации соответствующих мономеров. [c.52]

    Эфиры ортотитановой кислоты используются и в качестве катализаторов полимеризации непредельных соединений — как компоненты каталитической системы Циглера — Натта и непосредственно — для полимеризации а-олефинов, бутадиена, изопрена,, стирола и т. д. Эфиры ортотитановой кислоты являются хорошими катализаторами и для реакций переэтерификации. Так, при проведении реакций переэтерификации эфиров карбоновых кислот спиртами или другими эфирами может быть использован в качестве катализатора тетраизопропоксититан. Различные тетраалкоксититаны можно также использовать в реакциях переэтерификации эфиров ортокремневой кислоты спиртами, фенолами или эфирами карбоновых кислот. [c.380]

    Таким образом, окислению подвергается соседний с двойной связью аллильный атом углерода. Однако это вовсе не исключает возможности протекания реакции полимеризации олефинов иод действием молекулярного кислорода. Так что при автоокислении непредельных углеводородов помимо продуктов окисления (спиртов, альдегидов, кислот и т. д.) в оксидате всегда присутствуют значительные количества полимерных и смолоподобных веществ. Повышение иепредельности соединения резко снижает его окислительную стабильность. Появление в молекуле сопряженных двойных связей изменяет механизм реакции окисления. Взато-действие сопряженных диеновых углеводородов с молекулярным Кислородом протекает по типу реакций диенового синтеза (реакции Дильса-Альдера). Наиример, при окислении циклогексадиеиа Кислородом в течение 100 час. при 25° из продуктов окисления путем [c.69]

    Для ряда потребителей необходимы инден-кумароно-вые смолы, способные растворяться в спиртах, совмещаться с маслами, а масляно-смоляные сплавы их должны растворяться в е1фтяных растворителях. Одним из способов получения таких смол является их модификация фенолами [2]. Однако недостатком этого способа является то, что по мере увеличения доли фенола при совместной полимеризации его с тяжелым бензолом уменьшается выход целевого продукта. Стремясь увеличить выход смол и сохранить при этом Все свойства, присущие моди-фицированным фенолом инден-кумароновым смолам, вместо фенола использовали продукт его конденсации с толуольным формолитом — феноформолит. Предполагалось, что при сополимеризации непредельных соединений тяжелого бензола с феноформолитом, как и в случае с фенолом, в реакцию будут вступать преимущественно во-дороды фенильного кольца, расположенные в орто- илп пара-положениях к гидроксильной лруппе [2]. [c.50]

    ТРИ М ЕТИЛ ГАЛЛ И Й (СНз)зОа, Гпл —15,7 °С, Гкип 55—56 °С воспламеняется на воздухе разлаг. водой, спиртами, к-тами смешивается с орг. р-рителями. Получ. вэаимод. метилмагнийбромида с ОаВгз в зф. (образующийся эфират — жидк., воспламеняющаяся на воздухе Гпл —76 С, Гкип 99 С) р-ция (СНз)2Нд с Ga. Компонент кат. полимеризации непредельных соединений использ. в синтезе галлийорг. соединений. [c.592]

    Из отбираемых при полимеризации непредельных углеводородов Сз и С4 узких фракций углеводородов С , С и С12 получают оксосинтезом первичные спирты Се, С и 131 потребляемые в производстве пластмасс и моющих веществ. Кроме того, на заводе имеются установки для получения дициклопентадиена (сырья для производства инсектицидов и лаковых смол), для выде-лен] я ароматических дистиллятов и для производства рулонных материалов и покрытий. [c.221]


Смотреть страницы где упоминается термин Полимеризация спиртов непредельных: [c.442]    [c.370]    [c.349]    [c.230]    [c.626]    [c.381]    [c.230]    [c.360]    [c.88]    [c.41]    [c.496]    [c.210]    [c.81]    [c.158]    [c.141]   
Химия искусственных смол (1951) -- [ c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Спирты непредельные



© 2025 chem21.info Реклама на сайте