Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикалы органические ароматические

    R - углеводород или замещенный углеводород X - металл или группа HN/ 3 r — водород или органический радикал, либо то и другое а = = 1 или 2 /7 < 4 Аг — любой радикал, содержащий ароматическое кольцо V — величина, изменяющаяся от единицы до числа, равного валентному состоянию X. [c.147]

    К основаниям Льюиса относятся галогенид-ионы, вещества, содержащие аминный азот (аммиак, алифатические и ароматические амины, пиридин и т. п.), кислородсодержащие соединения общей формулы КаСО, где К — органический радикал или атом галогена. [c.284]


    Нитрилы, или цианиды,—органические соединения состава К—С = Ы, где К — углеводородный радикал алифатиЧ еский или ароматический). Нитрилы [c.441]

    В зависимости от природы органического радикала карбоновые кислоты R—СООН могут быть алифатическими .ароматическими или принадлежать к гетероциклическому ряду. [c.197]

    Органические соединения ртути алифатического ряда — сильные фунгициды, а соединения ароматического ряда — активные бактерициды. С введением в алифатический радикал функциональных групп фунгицидная активность изменяется. [c.378]

    Соли диазония — органические соединения, содержащие функциональную группу —Ы Ы+Х , где Х = СГ, ЫО , НЗО , СЫ и другой неорганический остаток. Общая формула солей диазония Аг—ЫгХ (Аг — ароматический радикал). Эти соединения образуются в реакциях диазотирования ароматических аминов (см. 38.8). [c.536]

    В тех случаях, когда в органических соединениях связь хлора с углеродом органического радикала непрочная и хлор может перейти в ионную форму, последний легко определяют при помощи растворов нитрата серебра. Но такая связь хлора с органическим радикалом встречается довольно редко. Ароматические соединения сравнительно прочно удерживают хлор в ядре, и для их количественного определения требуется полное разрушение органического соединения. Это достигается окислением или сжиганием навески. В ароматических соединениях, содержащих сульфогруппу или карбоксильную группу в орто-или параположениях по отношению к хлору, подвижность хлора увеличивается, и он легко омыляется щелочным раствором, переходя при этом в ионную форму. Хлор, входящий в боковую цепь жирноароматических соединений, в соединениях жирного ряда и хлор ангидридов также омыляется раствором щелочи  [c.213]

    Из уравнения (74) можно заключить, что чем выше значение Ррд, тем выше величина Рд. Путем соответствующего изменения органического реагента, например путем замещения водородного атома на углеводородный радикал или ароматическое кольцо, можно увеличить константу распределения Р д, а следовательно, и Рд, что позволит легко осуществить более полную экстракцию внутриком- [c.48]

    С помощью анодного окисления в органическую молекулу можно ввести различные функциональные группы — ацетамидо, ацнлокси, циано, гидрокси, галогено и другие. Это замещение происходит в результате окисления органического соединения в полярном растворителе в присутствии электролита и соответствующего нуклеофила. Оно может осуществляться как прямым, так и не прямым путем. В непрямом замещении окислению подвергается нуклеофил, который образует радикал, атакующий ароматический субстрат. При прямом замещении окислению подвергается ароматическая молекула, которая превращается в положительно заряженную систему — катион-радикал или дп-катион, которые затем реагируют с нуклеофилом. В последнем более интересном варианте окисление органического субстрата через стадию образования катион-радикала является путем его активации для нуклеофильной атаки, которая невозможна для нейтральной формы соединения. [c.6]


    Нафтеновые и карбоновые кислоты могут вступать в реакции декарбоксилирования или гидрирования, при котором карбоксильная группа превращается в метильную. Кислород, содержащийся в конденсированных ароматических структурах, обычно гидрируется с образованием воды, а оставшийся радикал вступает в реакции, рассмотренные выше. При одинаковом строении устойчивость соединений относительно гидрирования возрастает в ряду серо-органические <кислородорганические< азоторганические. [c.222]

    Рассмотренные в данной главе модели среднестатистических молекул-относительно грубое приближение к молекулярной структуре нефтяных остатков, карбонизующихся масс, пеков и их групповых компонентов, коксов и углеродных волокон, поскольку реальные системы содержат, кроме углерода и водорода, множество других элементов от микроколичеств до нескольких процентов с соответствующими им химическими внутри- и межмолекулярными связями, структурами молекулярных фрагментов и т.д., состоят не только из нейтральных молекул, ко и из органических и неорганических свободных радикалов, ионов и радикал-ионов. Сотообразные ароматические фрагменты молекул могут быть незавершенными из-за образования внутренних и краевых дырок (см. табл. 1.9), относиться к различным гомологическим рядам и отличаться типом связи меж- [c.59]

    Курс теории строения органических соединений отличается от систематического курса органической химии особым подходом к одному и тому же в своей сущности объекту — органической молекуле. Систематический курс излагается по классам соединений и может быть построен двумя способами первый кладет в основу структуру органического радикала и последовательно рассматривает алифатические, ароматические, гетероциклические ряды с соответствующими функциональными группами второй способ базируется на введении и последующем превращении функциональных групп в молекуле, что приводит к иному расположению материала углеводороды, спирты, альдегиды, кислоты, оксиальдегиды, оксикислоты и т. д. В обоих случаях в систематическом курсе отдается предпочтение описанию химических явлений, многообразию свойств конкретных соединений. Теоретический курс должен подходить к объекту с иной стороны, рассматривать предмет исторически, дeлfгь упор на сущность внутренней природы описываемых явлений. Для теоретического курса наиболее важным является выяснение основных понятий науки, которые, как известно, не неизменны, а текучи, подвижны, исторически обусловлены достигнутым уровнем знаний. [c.3]

    Вещества, являющиеся донорами электронных пар, называют основаниями Льюиса, а акцепторы электронных hap - кислотами Льюиса. К основаниям Льюиса относятся галогенид-ионы, вещества, содержащие аминный азот (аммиак, алифатические и ароматические амины, пиридин и т. п.), кислородсодержащие соединения общей формулы Rj O (где R - органический радикал или атом галогена). Кислотами Льюиса являются галогениды бора, алюминия, кремния, олова, фосфора, мышьяка, сурьмы и многих других элементов, ионы-комплексообразователи Ag, Со , Сг , Pt и др. [c.302]

    Для понижения адсорбционной способности металлических порошков по отношению к влаге А. И. Левин и А. В. Помосов исследовали возможность создания на поверхности частиц металла тончайших адсорбционных слоев (пленок), образованных высокомолекулярными органическими соединениями жирного и ароматического рядов. П )и этом было установлено, что полярный конец гетерополярной молекулы образует типичную химическую связь с атомами металла, что приводит к необратимости таких процессов, в то время как углеводородный радикал высокомолекулярных соединений придает явно выраженные гидрофобные свойства наружной поверхности пленки, образующейся на частицах металла. Чем длиннее углеводородная цепь стабилизатора, тем более гидрофобной должна быть адсорбционная пленка на поверхности частиц. [c.349]

    Природа органического радикала следующим образом сказывается на реакшюниоспособности галогена наиболее активен галоген в соединениях аллильного СНа СН—СНаС и бензильного СвНа—СН.2С1 типов, наименее подвижен галоген при двойной связи СН =СНС1 или в ароматическом ядре СоНг,С1  [c.145]

    Н II т р О С О е д II н е н II Я м И называются органические вещества, в молекулах которых нитрогруппа —N02 соединена с углеводородным радикалом. Общую формулу ннтросоедпненпн можно записать в виде К—ЫОг, где К —углеводородный радикал (предельный, непредельный, ароматический). Ннтросоединення могут содержать несколько ннтрогрупп. [c.432]

    Поверхностно-активными веществами называются химические соединения, способные изменять фазовые и энергетические взаимодействия на различных поверхностях раздела фаз жидкость — воздук , жидкость — твердое тело масло — вода и т. д. Как правило ПАВ — это органическое соединение с асимметричной молекулярной структурой,, содержащее в молекуле углеводородный радикал и одну пли несколько активных групп. Углеводородная часть (гидрофобная) молекулы обычно состоит из парафиновых, ароматических, алкилароматических, алкилнафтеновых, нафтеноароматических, алкилнафтеноароматических углеводородов, различных по строению, разветвленности иепочек молекулярной массе и др. Активные (гидрофильные) группы являются наиболее часто кислородсодержащими (эфирные, карбоксильные, карбонильные, гидроксильные), а также азот-, серо-, фосфор-, серофосфорсодержащими (нитро- амино-, амидо-, имидо-группы и т. п.). Следовательно,, поверхностная активность многих органических соединении в первую очередь зависит от их химического строения (в частности их полярности и поляризуемости). Такая структура, называемая дифильной, обусловливает поверхностную, адсорбционную активность ПАВ, т. е. их способность концентрироваться на межфазовых поверхностях раздела (адсорбироваться), изменяя их свойства. Кроме того, адсорбционная активность ПАВ зависит также от внешних условий температуры, характера среды, концентрации, вида фаз на границе раздела и т. д. (12). [c.9]


    Описываемый метод ацилирования ортоэфирами предложен Чичибабиным [3, 6]. Синтез проводят кипячением компонентов (1 1) в эфире или более высококипящих растворителях. Иногда для успешного протекания реакции после добавления ортоэфира к раствору металлоорганического соединения необходимо отогнать легкокипящий растворитель. Часто выделяют не сами ацетали, а соответствующие альдегиды или кетоны после гидролиза реакционной смеси. Реакция может не останавливаться на стадии образования ацеталей, так как последние в определенных условиях также способны обменивать алкоксигруппу на органический радикал металлоорганического соединения. Труднее всего реагируют метнленацетали и ацетали алифатических альдегидов, легче — ацетали ароматических альдегидов и наиболее легко — кетали [4]. В некоторых случаях замене могут подвергаться все алкоксигруппы ортоэфира, в результате чего образуется углеводород [5]. [c.120]

    Однако некоторые органические соединения подвергаются окислительно-восстановительным превращениям с явным переносом электронов. Классическим примером таких реакций можно назвать восстановление ароматического углеводорода щелочным металлом в безводном простом эфире до аниои-радикала этого углеводорода [2]. Подобным же образом различные замещенные феногиазииы (1) можно успешно окислить до катиои-радикалов (2) и дикатионов (3) если правильно выбрать среду, то можно избежать реакций, протекающих с расщеплением или [c.30]

    Необходимо отметить, что существование подобных соотношений означает, что E l характеризует простую окислнтельно-восстановнтельцуго систему (реакции в которой протекают быстро и обратимо) и что это выполняется в ряду соединений, у которых не изменяются энергии сольватации АДОр. Эти ограничения очень жестки, однако число опубликованных вполне удовлетворительных соотношений удивительно велико. Например, крайне редко можно найти ароматический углеводород, который окисляется в одноэлектронной стадии до катион-радикала, совершенно стабильного в исследованных органических средах. Гораздо чаш е встречаются системы, полностью необратимые из-за протекания ряда химических реакций, следуюш их за стадией переноса электрона. Выполнение соотношений между Еч н энергией орбитали должно быть обусловлено тем, что природа последующих реакций в каждом ряду изученных соединений одинакова, а также компенсацией ошибок. [c.81]

    Одновременное изучение характеристик молекулярных орбиталей органических соединений и их электрохимических свойств дает информацию, которую можно использовать не только для получения описанных пыше соотношений. Примером может служить одноэлектронное окисление н восстановление нитробензола (6) в органической среде на платиновом электроде [87]. Образовавшиеся соответственно катион-радикал и анион-радикал достаточно стабильны для получения их спектров ЭПР (см гл. 3). По этим спектрам было установлено, что для атома азота константы взаимодействия Сд равны 37,0 и 7,97 Гс для катион-радикала и аннон-радикала соответственно. Такую большую разницу можно объяснить, лншь предположив, что в Катион-радикале неспаренный электрон локализован иа группе N0 (0-радикал), тогда как в анион-радикале он делока-лизован по всей системе л-орбиталей молекулы (зх-радикал). Эти результаты проясняются при рассмотрении электронной структуры группы N0 (рис 2.29). Неспаренный электрон катион-радикала должен находиться на ла-орбитали эта орбиталь из-за нелинейности группы СНО, колланарной с бензольным ядром, не может быть сопряжена с л-системой бензольного кольца. Наоборот, песпаренный электрон аннон-радикала находится на л -орбиталн, которая сопряжена <- л-системой ароматического Кольца. [c.81]

    Специфические реагенты (реактивы) — органические или неорганические реагенты, которые позволяют при определенных условиях обнаруживать (определять) одно вещество (нон элемента). Напр., крахмал представляет С. р. на свободный ио,7,. Спирты (алкоголи) -—органические соединения, содержащие гидроксогрупну ОН, соединенную с каким-либо углеводородным радикалом. По числу гидроксогрупп различают одноатомные спирты (СНзОН — метиловый, СвНбСНаОН — бензило-вый), двухатомные (СНгОН—СНгОН — этиленгликоль), многоатомные (глицерин СНзОН-СН(ОН) —СНгОН) если радикал ароматический, то С. называют фенолами. Низшие предельные С.— легко подвижные, растворимые в воде жидкости с характерным запахом и жгучим вкусом более сложные (от С4 до Си) — маслянистые жидкости, не смешивающиеся с водой выше i2—твердые вещества без запаха и вкуса. С. образуют алкоголяты с активными металлами (напр., HsONa), первичные С. окисляются до альдегидов, вторичные —до кетонов, дегидратируются  [c.125]

    Фенильные производные. Частоты фенильной группы, связанной с различными элементами периодической системы, мало отличаются от частот фенильной группы в чисто органических соединениях. Однако нужно отметить, что характерные частоты ароматического кольца около 1500 и 1600 см часто не проявляются в фенильных производных металлов, по-видимому, из-за слабой интенсивности. При введении заместителя в фенильный радикал эти полосы обычно появляются в спектре. [c.52]

    Аминокислоты всп упают в те же реакции, что и амины и органические кислоты. Кроме того, для них характерны реакции, обусловленные одновременным присутствием двух диаметрально противоположных функциональных групп, находящихся в смежном положении. Введение и аминокислоту дополнительных функциональных групп, ароматического радикала, гетероциклических остатков и т. д. сильно расширяет диапазон реакций, в которые вступают аминокислоты. [c.460]

    Многие реакции дслокалнзопаннных анион-радикалов протекают неоднозначно и не имеют широкого применения в органическом синтезе [66], Гидролиз этих соединений приводит к продуктам восстановления ароматических систем. Например, из анпон-радикала нафталина образуются нафталин и 1,4-дигидронафталин (схема 47). Аналогия этого процесса с восстановлением по Берчу (см. разд. 2.5.9.1) очевидна. [c.35]

    Генерирование радикала с помощью одноэлектронного переноса имеет место в некоторых реакциях ароматических диазосоединений, идущих с выделением азота, нашедших широкое применение в препаративной органической химии. [c.153]

    Важно отметить, что в этом случае попытки разрушить соли диазония простым нагреванием их водных растворов приводят, как правило, не к образованию соответствующих замещенных аренов, а к образованию фенолов, поскольку вода будет превосходить по нуклеофильности хлорид-, бромид- и цианид-анионы Арильный радикал, образующийся при распаде соли диазония в присутствии катализатора, не является электрофилом, как катион, возникающий при ее гетеролизе, и реагирует не с водой, а с находящимся по соседству галогенидом или цианидом меди (II) Получающиеся при этом арилгалогениды и арилцианиды широко используют в препаративных целях Выходы их обычно составляют от 60 до 90% Прямое фторирование ароматических соединений, как и алифатических (см разд 1 1 3), обычно сопряжено с большими трудностями, поскольку фтор благодаря своей чрезвычайной активности вызывает полифторирование и деструкцию органических молекул [c.255]

    Кроме того, на значения 1/3 может оказывать влияние адсорбция самого деполяризатора или продуктов электрохимической реакции. Интересные результаты были получены при исследоваиии влияния поверхностноактивных веществ на восстановление органических нитросоединений [52—55, 115—117]. По-видимому, при восстановлении ароматических нитросоединений в щелочной среде первая стадия электродного процесса, соответствующая переносу первого электрона, не тормозится поверхностноактивными веществами. В ирисутствии поверхностноактивных веществ (например, камфоры) замедляется только последующая стадия электродного процесса, в течение которой происходит перенос трех или пяти электронов (последнее в случае нитроанилина) с образованием соответствующих замещенных гидроксиламина или амина. Торможение второй стадии процесса в присутствии иоверхностноактивных веществ вызывает расщепление первоначальной простой волны на две. Первая волна появляется при обычных потенциалах, в то время как вторая сдвинута к отрицательным потенциалам. Сдвиг ее зависит от вида и концентрации поверхностноактивных веществ [116]. Интересно, что этот эффект, вызываемый некоторыми поверхностноактивными веществами (например, дифенилсульфоксидом, три-фенилфосфииом), можно наблюдать даже в безводном метиловом спирте 115]. Следует отметить, что в кислой среде, в которой нитрогруппа про-тонирована, поверхностноактивные вещества препятствуют переносу даже первого электрона, так что, например, в случае нитроанилина волна его целиком сдвинута к отрицательным потенциалам. В первой стадии одноэлектронного восстановления ненротонированной молекулы нитросоединения возникает анион-радикал [c.312]

    Образование Н—00—Н возможно лишь при реакции взаимодействия с кислородом, реагирующим в условиях, при которых возможно образование радикала К, например при комнатной температуре лишь при диссоциации углеводорода. Однако при высоких температурах диссоциация на радикалы и присоединение радикалов по приводимой выше схеме является проблемой почти для всех органических веществ. Риче подчеркивает, что внедрение кислорода между углеродом и водородом при умеренных температурах можно предвидеть для всех веществ, у которых имеет место активация >тлерод—водородной связи по причине особой молекулярной структуры. Риче отмечает, что большей частью действие кислорода сильно отличается от действия озона кислород во многих случаях не действует на органические вещества по двойной связи очень часто вместо двойной связи он входит по связи углерода с водородом в соседстве с кислородом. Двойная связь может присоединять кислород, несмотря на то, что она активирует связь углерода с водородом. Алкильные группы обычно трудно окисляются соседство ароматической группы (толуол) или кислородных атомов (спирты, эфиры) может активировать реакцию (присутствие этиленовой группы оказывает аналогичное действие). Тетралин и циклогексен окис-ля отся, как известно, в перекиси (I) и (И). [c.580]

    Интересно отметить, что структура углеводородного радикала существенно влияет на образование нерастворимых осадков. В алифатических углеводородах меркаптаны с алифатическим радикалом образуют осадков меньше, чем меркаптаны с ароматР1ческим радикалом. Наоборот, в ароматических углеводородах в присутствии ароматических меркаптанов образуется меньше осадков, чем в присутствии алифатических меркаптанов. Аналогичные явления происходили и при окислении углеводородов с другими сера-органическими соединениями [13, 14]. [c.188]

    Из литературных данных о спектрах оптического потлощения ароматических анион-радикалов в органических растворителях следует, что положение максимума полосы мало зависит от природы растворителя. Исключение составляет анион-радикал бензофенона. Для этого анион-радикала наблюдается синий сдвиг в спектре при переходе от 2-метилтетрагидрофурана к метанолу. Сдвиг обусловлен поляризационным взаимодействием гидроксильных групп спиртов с группой СО в анион-радикале. В работе [175] методом импульсного радиолиза было изучено образование анион-радикалов бензофенона, ацетофенона и их ОН-замещенных в этаноле при 100 К. Было обнаружено, что при этих условиях Ямакс анион-радикала бензофенона сразу после импульса находится при той же длине волны, что в тетрагидрофуране и его 2-метилпроиз-водном (а именно, при 780 нм). Затем после импульса в течение [c.138]


Смотреть страницы где упоминается термин Радикалы органические ароматические: [c.154]    [c.341]    [c.234]    [c.282]    [c.225]    [c.228]    [c.323]    [c.766]    [c.475]    [c.5]    [c.46]    [c.188]    [c.172]    [c.5]    [c.426]    [c.12]    [c.33]    [c.352]   
Органическая химия Издание 2 (1976) -- [ c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Радикал ароматические



© 2025 chem21.info Реклама на сайте