Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочных металлов ковалентность связи

    По природе связей между атомами твердые тела делят тоже на две группы ионные, к которым относятся полупроводники и изоляторы, и ковалентные, включающие металлы. К ионным твердым телам относят вещества с большой долей ионной связи—типа галогенидов щелочных металлов, а также некоторые тела, у которых ионность невелика и преобладают ковалентные связи. Общим для них является изменение электрических свойств — от свойств, типичных для изоляторов, до свойств, проявляющихся у полупроводников. Такие вещества связывают адсорбат посредством электронной пары либо за счет проявления полярности. К ковалентным твердым телам помимо металлов относят элементарные полупроводники и отдельные полупроводниковые соединения. Объединяет их способность связывать адсорбат за счет свободных связей. [c.180]


    Если связующая пара электронов окажется на равном расстоянии от обоих ядер, ковалентная связь считается неполярной. При смещении электронной пары в сторону атома, более склонного к их присоединению (более электроотрицательного), связь становится полярной, и если это смещение выражено весьма резко, связь считается ионной. Примеры строго неполярных связей (С—С, Н — Н, С1—С1), полярных (С —С1, Н—С1, Н —Вг), ионных (Ыа—С1, К — Вг) показывают, что чем больше различие в природе соединяющихся атомов, тем более их связь является полярной и, наконец, ионной. Однако целиком ионных связей нет, так как атом, отдавая электрон, получает способность притягивать его обратно и, следовательно, отрицательный заряд в молекуле не строго локализован около другого, более электроотрицательного атома. Это ограничение ионного характера связи имеет существенное значение для оценки различных свойств соединений. Огромному большинству соединений свойственны связи различной степени полярности — слабополярные (8 — С1, С — О), более полярные Н — С1, Н — Р. Ионные связи встречаются сравнительно редко (в галидах и оксидах щелочных и щелочноземельных металлов), но и в этих случаях с вышеуказанным ограничением. В молекулах, составленных из одинаковых атомов На, Ог, За ИТ. П., связи неполярные. [c.67]

    Все это обусловливает большую склонность меди и ее аналогов ь образованию ковалентной связи, чем у щелочных металлов. [c.620]

    Помимо рассмотренных типов связи, особо выделяют металлическую связь, которая проявляется при взаимодействии атомов элементов, имеющих избыток свободных валентных орбиталей по отношению к числу валентных электронов. При сближении таких атомов, например в результате конденсации пара, электроны приобретают способность свободно перемеш,аться между ядрами в пространстве именно благодаря относительно высокой концентрации свободных орбиталей. В результате этого в решетке металлов возникают свободные электроны (электронный газ), которые непрерывно перемещаются между положительными ионами, электростатически их притягивают и обеспечивают стабильность решетки металлов. Таков механизм образования металлической связи у непереходных металлов. У переходных металлов механизм ее образования несколько усложняется часть валентных электронов оказывается локализованной, осуществляя направленные ковалентные связи между соседними атомами. Поскольку ковалентная связь более прочная, чем металлическая, у переходных металлов температуры плавления и кипения выше, чем у щелочных и щелочноземельных металлов, а также у переходных металлов с электронными оболочками, близкими к завершению. Это наглядно видно при сопоставлении температур плавления и кипения металлов 6-го периода (табл. 10). [c.37]


    В этом же направлении усиливается ковалентность связи Э — О в оксидах и ионность связи О — Н в гидроксидах. Типично основные свойства проявляют оксиды и гидроксиды щелочных, щелочноземельных металлов и большинства переходных металлов в низших степенях окисления. Они растворяются в кислотах, образуя соли, например, по уравнению [c.240]

    Металл может выполнять роль галоидного атома не только нри адсорбции ионов щелочных металлов, как было показано в предыдущем разделе, но и в некоторых других случаях, когда он ведет себя подобно атому хлора в НС1, образуя ковалентную связь. В качестве примера может служить адсорбция атомов водорода на поверхности платины. Образующиеся при этом диполи ориентированы своими положительными концами в сторону от металла и могут рассматриваться как резонансные гибриды [c.47]

    Такой порядок объясняется тем, что здесь господствующим фактором является энергия кристаллической решетки, которая возрастает с уменьшением ионного радиуса галогена. Этот порядок соблюдается для галидов щелочных и щелочноземельных металлов и лантаноидов. В последних двух случаях фториды практически нерастворимы. Для кристаллов галидов, у которых в достаточной мере проявляется ковалентная связь, растворимость фторида может оказаться большой, а растворимость иодида малой, как, например, в случае Ag (I) и Hg(II). [c.317]

    Октаэдрические шестикоординационные комплексы. Такие комплексы образуют щелочные и щелочноземельные металлы (комплексы с ионной связью) и металлы 4, 5 и 6-го периодов с ионно-ковалентной связью. Образованию октаэдрических комплексов способствует низкоспиновая -конфигурация [металлы  [c.130]

    По типу химической связи N—Э нитриды подразделяют на ионные (солеобразные), ковалентные и металлоподобные. Многие нитриды получают непосредственным взаимодействием металла с азотом, например ионные нитриды щелочных и щелочно-земельных металлов. Нитриды подгрупп Си и Zn имеют преимущественно ионно-ковалентную связь. С увеличением доли ковалентной связи возрастает устойчивость нитридов. [c.308]

    Разница между теоретическими значениями 1] и величинами Ид, вычисленными из цикла Борна—Габера, для галидов щелочных металлов составляет несколько процентов, для солей многовалентных металлов она больше. Это можно объяснить наличием определенной доли ковалентной связи в этих соединениях. [c.269]

    Нитриды — соединения азота с металлами и более электроположительными неметаллами. Нитриды неметаллов — вещества с ковалентной связью. Они являются диэлектриками или полупроводниками. Нитриды щелочных и щелочноземельных металлов — солеобразные вещества, реагирующие с кислотами и подвергающиеся гидролизу  [c.258]

    По сочетанию химических свойств водород занимает несколько особое место среди других элементов периодической системы. Атом водорода содержит всего один электрон. При взаимодействии с атомами, способными присоединять и достаточно прочно связывать электроны, атом водорода сравнительно легко отдает свой электрон на образование связи, т. е. выступает в роли восстановителя. При этом возникают ковалентные полярные связи в особенности с атомами фтора, кислорода или хлора HF, Н2О, НС1 положительным зарядом таких диполей становится ядро водородного атома. В этих соединениях водород находится в степени окисления +1 и проявляет в той или другой мере аналогию со щелочными металлами. [c.46]

    Полинг показал, что предположение об аддитивности нормальных ковалентных связей соблюдается для большого числа простых свя зей, и использовал величины А, полученные из уравнения (4-7), для составления обширной таблицы электроотрицательности эле ментов. Несоблюдение аддитивности в некоторых случаях, в част ности для гидридов щелочных металлов, заставило Полинга заменить в уравнении (4-7) среднее арифметическое средним гео метрическим i [c.123]

    С математической точки зрения, простейшим типом химической связи будет тот, который можно считать чисто электростатическим. Хотя при этом связь можно считать частично ковалентной и частично ионной, степень ионности связи зависит от различия электроотрицательности соединившихся атомов. В общем, связь можно считать чисто ионной, если она отвечает электростатической модели. Такой подход оказался удачным для галогенидов щелочных металлов, у которых связь образуется между катионом сильно электроположительного атома и анионом электроотрицательного атома. Для них можно с достоверностью считать связи почти исключительно ионными. Однако проверка этого предположения будет зависеть от того, насколько успешно удастся количественно оценить различные свойства соответствующих соединений. [c.135]

    ИК-излучение получают от штифта, нагретого до температуры ниже температуры свечения, при которой штифт испускает разнообразный набор квантов с волновыми числами порядка 10 — 10 см". Для изготовления призм и кювет пользуются материалами, не содержащими ковалентных связей, так как все ковалентные связи поглощают инфракрасное излучение в указанном диапазоне волновых чисел и, следовательно, непрозрачны для ИК-излучения. Материалом для призм могут служить кристаллы галогенидов щелочных металлов, построенные за счет ионных связей. Простейшим, хотя не лучшим материалом, может служить хлористый натрий. Используют также призмы из ЫР. Кюветы изготовляют из тех же солей, а также из металлического германия. [c.155]


    Как видно из рис. IX. 1, температура плавления простых веществ с начала периода увеличивается до максимальных значений, затем уменьшается до минимальных значений у благородных газов. Стандартная энтропия простых веществ 5г98 (рис. IX.2), наоборот, вначале уменьшается, достигая минимума, а затем возрастает до максимума у благородных газов. Это связано с переходом от мягкого щелочного металла к твердым ковалентным веществам (например, алмазу или кремнию), а затем — от твердых ковалентных полимеров к одноатомным благородным газам. [c.245]

    Бориды. Бор взаимодействует при высоких температурах (1300— 2000° С) в атмосфере аргона с большинством металлов (кроме щелочных, которые при этих температурах возгоняются), образуя бориды состава Ме В . В них сложным образом переплетаются металлическая и ковалентная связи. Один и тот же металл может образовать с бором ряд соединений. При относительном недостатке атомов бора они изолированы друг от друга, при избытке — образуют цепочки, сетки и каркасы. Бориды могут иметь строго определенный состав и быть фазами внедрения, подобно карбидам, нитридам и т. д. [c.174]

    Если щелочные и щелочноземельные металлы образуют хлориды, имеющие ионную связь, то алюминий образует ковалентные связи [c.141]

    Большинство металлоорганических связей полярно-кова-лентные. Только у щелочных металлов электроотрицательность достаточно низка, чтобы возможно было образование ионных связей с углеродом, но даже алкиллитиевые соединения по своим свойствам напоминают скорее ковалентные, а не ионные соединения. Простые алкильные и арильные производные натрия, калия, рубидия и цезия представляют собой нелетучие твердые вещества [93], нерастворимые в бензоле и других органических растворителях, в то же время алкильные производные лития — растворимые, хотя, как правило, тоже нелетучие твердые вещества. В таких растворителях, как эфир и углеводороды, алкиллитиевые соединения не существуют в виде мономерных частиц [94]. Наблюдения за понижением точки за- [c.234]

    Ионные связи типичны для соединений этих элементов. Ковалентная связь существует только в димерных молекулах лития, натрия и цезия, которые возникают при испарении металлов. Большое различие между 1-м и 2-м потенциалами ионизации (2-й потенциал равен 75,7 эВ у лития и 23,4 эВ у цезия) соответствует тому, что степень окисления -Ь 1—единственная возможная для щелочных металлов. [c.151]

    Размеры иона лития наименьшие в подгруппе щелочных металлов. Следствием этого является сильная гидратация этого иона в водных растворах. Несомненно, что хорошая растворимость некоторых солей лития (например, перхлората) в воде, спиртах, эфирах связана с энергичной сольватацией этого иона. Литий склонен к образованию ковалентных связей. В парах при высоких температурах около 1 % атомов лития существуют в виде двухатомных молекул, причем для связи в Ыг используются 25-электроны. По некоторым данным функции 5-типа не являются в таких молекулах чистыми и содержат примесь р-функций. [c.152]

    В решетке ионных кристаллов — чисто ионная связь, т. е. связь, для которой полный перенос электронов от катиона к аниону скорее исключение, чем правило. Лишь для кристаллов типа хлорида натрия можно говорить о полном переносе заряда. Интеграл перекрывания одноэлектронных орбиталей ионов натрия и хлора оценивается значением —0,06. Можно сказать, что это чисто ионная связь. По отношению к этому же соединению сопоставление энергии электростатического взаимодействия с энергией ковалентного взаимодействия (непосредственно связанной с тем,-что называют поляризацией электронной оболочки) показывает, что вклад электростатического взаимодействия значительно больше и составляет (по Коулсону) для хлорида натрия 8,92 эВ, в то время как соответствующее значение для ковалентного взаимодействия 0,13 энергия отталкивания в этом случае равна —1,03 эВ (энергия, называемая нулевой , т. е. нулевая колебательная энергия, равна всего —0,08 эВ и ее часто вообще не принимают в расчет). К ионным кристаллам относятся кроме соединений типичных галогенов со щелочными металлами также и некоторые оксиды, в частности оксиды кальция и магния, в которых по экспериментальным данным имеются отрицательные двухзарядные ионы кислорода. В большинстве случаев ковалентный вклад больше. Кристаллы алмаза, кремния, германия, карборунда, серого олова содержат прочные ковалентные связи, так что любую часть этих веществ вполне и без всяких оговорок можно рассматривать кан молекулу макроскопических размеров. [c.281]

    Наиболее примечательными свойствами цинка, Zn, кадмия, Сс1, и ртути, Hg, является их слабое сходство с остальными металлами. Все эти металлы мягкие и имеют низкие температуры плавления и кипения. Ртуть-единственный металл, представляющий собой при комнатной температуре жидкость. Цинк и кадмий напоминают по химическим свойствам щелочно-земе льные металлы. Ртуть более инертна и похожа. на Си, А и Аи. Ддя всех трех элементов, 2п, Сс1 и Н , характерно состояние окисления -Ь 2. Ртуть также имеет состояние окисления + 1 в таких соединениях, как Н 2С12. Но ртуть(1) всегда обнаруживается в виде димерного иона причем рентгеноструктурные и магнитные исследования показывают, что два атома Hg связаны друг с другом ковалентной связью. Таким образом, ртуть имеет в Hg2 l2 степень окисления -I- 1 лищь в том же формальном смысле, в каком кислород имеет степень окисления — 1 в пероксиде водорода Н—О О—Н. [c.449]

    Доля ковалентной связи в соединениях элементов подгруппы ПА значительно больше, чем в соединениях щелочных металлов. Наиболее значительна она в галогенидах бериллия, которые по свойствам являются промежуточными мел<ду соединениями металлов и неметаллов. Галогениды бериллия (за исключением наиболее ионного ВеРг) испаряются при 400—500 °С ив расплавленном состоянии мало ионизированы (электропроводность жидкого ВеСЬ в 1000 раз меньше, чем жидкого Na l). [c.312]

    С галогенами водород связывает гораздо большее число признаков газообразное состояние (при обычных условиях), двух-атомность, ковалентность связи в молекуле Нг, наличие в большинстве соединений полярных связей, например в НС1 в отличие от Na l, неэлектропроводность (как в газообразном, так и в жидком и твердом состояниях), близость энергий ионизации /н и /г. в то время как /м С/н. К перечисленным признакам можно прибавить и другие, в частности сходство гидридов с галогенидами, закономерное изменение свойств в ряду Н — At (рис. 3.77). Можно привести много других примеров линейной взаимосвязи свойств в ряду Нг —Гг, аналогичной показанной на рис. 3.77. В ряду водород — щелочные металлы подобные зависимости обычно не наблюдаются. [c.463]

    В экзоэдральных соединениях Сбо Ь1 и 6o Na, расположение атома металла напротив центров пяти- или шестичленного кольца более благоприятно, чем над атомами углерода. Эффективный заряд на атоме лития в 6o Li близок к нулю, заселенности его 2s и 2р атомных орбиталей (АО) приближаются к 0,25. Следовательно, распределение эффективных зарядов в молекуле определяется не только передачей 2s электрона от лития к фуллерену как акцептору, но и обратной подачей электронной плотности с 2p АО углеродов С ) на вакантные 2р АО металла. В результате связь литий - фуллерен должна иметь существенный вклад ковалентной составляющей, что характерно для литийорганических соединений в отличие от органических комплексов других щелочных металлов. [c.86]

    Таким образом, определяя аннигиляционные количественные характеристики, можно находить величину эффективного заряда атомов кислорода. Оказалось, что величина эффективного заряда атомов кислорода для кристаллического кремнезема — кварца и кристобалита примерно вдвое выше, чем для аморфного — кварцевого стекла <7кварца 1е, <7стекла 0,5е, что указывает на повышение ковалентности связи 51 — О при переходе от кварца к кремнеземному стеклу. Введение в состав стекла примесей щелочных и щелочноземельных металлов повышает эффективный заряд атомов кислорода, который для обычных стекол приближается к эффективному заряду, характерному для кристаллического кремнезема. Аморфизация кварца наблюдается при облучении нейтронами. При этом величина эффективного заряда атомов кислорода понижается тем в большей мере, чем выше плотность потока нейтронов. [c.139]

    Замечательно, что различные структурообразующие факторы не только сосуществуют, но и дополняют друг друга. При их разных сочетаниях осуществляется либо кристаллизация с различной плотностью укладки структурных единиц, либо более сложный процесс, который можно называть в отличие от кристаллизации структурообразованием, приводящий к образованию невообразимого множества однотипных, но все же различных индивидуальных структур, о которых говорилось выше. Таким примером снижения плотности укладки малых нульмерных структурных единиц в результате вмещательства ковалентной составляющей связи является образование сравнительно неплотных кристаллических структур щелочных металлов и металлов IV В — VI В групп, а также железа, для которых координационное число равно всего восьми. [c.160]

    Измерение поверхностного дипольного момента р, позволяет судить о доле ионной составляющей межатомных связей, возникающих в процессе хемосорбции. В некоторых случаях, как, например, при сорбции на вольфраме паров натрия, калия и цезпя ди-польиые моменты достигают заметной величины, что указывает на высокую степень ионности связей. Для сравнения укажем, что дипольный момент монослоя тория на вольфраме имеет в 4—5 раз меньшее значение, чем дипольные моменты монослоев щелочных металлов. В данном случае связь преимущественно ковалентная. Поверхностные межатомные связи, образующиеся при сорбции на металлах и угле водорода, окиси углерода, азота, углеводородов, галогенидов отличаются высокой долей ковалентности. Были пблу-чены многочисленные доказательства того, что сорбция вышеуказанных газов на переходных металлах и близких им металлах группы 1В Периодической системы Д. И- Менделеева происходит благодаря образованию ковалентных связей с использованием не полностью занятых -орбиталей этих металлов (табл. 5). [c.197]

    Следует отметить, что химические связи в подавляющем большинстве молекул носят в значительной степени промежуточный (между двумя рассмотренными случаями) характер. Поэтому для описания характера химической связи весьма удобно использовать понятие степени ионности связи. Под степенью ионности связи подразумевают следующее насколько интенсивно валентные электроны одного из взаимодействующих атомов оттягиваются к другому при образовании молекулы. В гомо-нуклеарных молекулах, в которых связь предельно ковалентна, степень ионности равна нулю. Степень ионности связи возрастает с увеличением различий в химической природе взаимодействующих атомов и достигает максимального значечия в молекулах галогенидов щелочных металлов. [c.22]

    Наименьшим электрическим сопротивлением обладают метаалы, атомы которых имеют в качестве валентных только внешние 5-электроны. (Атомы серебра, меди и золота вследствие проскока з-электронов имеют электронные конфигурации валентных оболочек атомов щелочных элементов пз ). В этих случаях в компактных металлах реализуется, как правило, металлическая связь. Появление неспаренных р- и -электронов приводит к увеличению доли направленных ковалентных связей, электропроводность у.меньшается. Атом железа на предвнешней электронной оболочке имеет неспаренные Зс/-электроны, которые также образуют ковалентные связи. Кроме этого, в кристалле металла, когда энергетические уровни атомов объединяются в энергетические зоны, Зс(-и 45-зоны пересекаются. Поэтому при определенном возбуждении -электроны могут перейти на молек лярные орбитали -зоны н, таким образом, количество носителей заряда может уменьшиться. Поэтому металлы -элементов с частично заполненной электронной -подоболочкой у атомов имеют несколько более высокое электрическое сопротивление, чем металлы непереходных элементов. [c.323]

    Дола ковалентной связи в соединениях элементов подгруппы I1A значительно больше, чем- в соединениях щелочных металлов. Наи лее значительна она а галогенидах бериллия, которые по свойствам являются промежуточными между соединениями металлов и неметаллов. Т. кип. галогенидов бериллия (за исключением наиболее ионного BeFj) лежит в пределах 400-500 С, в расплавленном состоянии они мало ионизированы (электропроводность жидкого Be Ii а я 1000 раз меньше, чем жидкого Na I). [c.330]

    Наиболее непосредственно полярность связи в двухатомных молекулах характеризуется электрическим дипольным моментом. У чисто ковалентных молекул с одинаковыми ядрами > ц = 0, у молекул галогенидов щелочных металлов ( ионных молекул ) дипольные моменты достигают 30—40 10 ° Кл м (10—12 Д ), дипольные моменты 1,5— —3,010 ° Кл м (0,5—1 Д) указьгаают на умеренную полярность связи. Однако сама по себе величина ц еще не говорит о величине зарядов, возникающих на атомах, и, следовательно, о степени ионности связи, так как ц зависит и от заряда связи, и от межъядерного расстояния. Более удобной мерой полярности связи может служить так называемый критерий Полинга  [c.133]

    Ионная решетка. Если в узлах кристаллической решетки расположены ионы противоположных знаков, то такая решетка называется ионной. Ионные решетки характерны для соединений элементов, сильно оФличающихся по электроотрицательности и образующих молекулы с ионными (или сильно полярными ковалентными) связями. Типичные ионные вещества — фториды и хлориды щелочных металлов — образуют прозрачные бесцветные кристаллы правильной формы с четкими гранями. Так как связи между ионами прочны, большинство ионных кристаллов обладает высокими температурами плавления, твердостью и хрупкостью, но в отличие от металлов не проводят электричество. Расплавы их, правда, проводят электричество, но их проводимость на несколько порядков ниже, чем у металлов. В отличие от ионных кристаллов молекулярные кристаллы, плавясь, образуют молекулярные жидкости, практически не проводящие электричество. [c.36]

    Галлогениды — соединения галогенов с менее электроотрицательными элементами, в которых степень окисления галогена равна —1. Общая формула галогенидов ЭНа1 , где п — степень окисления элемента Э. С уменьшением разности электроотрицательности между элементом и галогеном связь в соединениях изменяется от ионной (у галогенидов щелочных металлов) к ионно-ковалентной (у переходных металлов) и к ковалентной [c.257]

    Электронная конфигурация атома фосфора выражается формулой [Ме]35 3р Первый потенциал ионизации равен 10,48зВ, электроотрицательность 2,06, ковалентный радиус 0,11 нм. Фосфор образует преимущественно ковалентные связи. Ионные встречаются редко (фосфиды щелочных металлов, по-видимому, содержат отрицательно заряженный ион фосфора), так как для перевода фос- [c.180]


Смотреть страницы где упоминается термин Щелочных металлов ковалентность связи: [c.663]    [c.160]    [c.114]    [c.301]    [c.372]    [c.145]    [c.99]    [c.78]    [c.241]    [c.232]    [c.55]    [c.69]   
Неорганическая химия Том 1 (1970) -- [ c.229 , c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Связи в металлах

Связи ковалентные Связи

Связь ковалентная



© 2024 chem21.info Реклама на сайте