Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты высшие выделение и синтез

    В производстве спиртов — метилового и изобутилового — из окиси углерода и водорода применяются цинкхромовые катализаторы, которые обладают сравнительно высокой активностью и стабильностью при эксплуатации. Хотя подбору и методам приготовления этих катализаторов посвящено большое количество исследований, однако процессы, протекающие при приготовлении промышленных контактов, почти не были изучены. Формирование же активного контакта является одним из наиболее узких мест при осуществлении промышленного синтеза спиртов. Дело в том, что контакт, приготовленный из окиси цинка и хромового ангидрида, подвергается затем восстановлению. Процесс восстановления газом-восстановителем производится в промышленных колоннах синтеза под давлением 100—300 ат. Этот процесс длится 6—8 суток, т. е. занимает значительное время в общем пробеге агрегатов восстановление идет в основном в очень узком интервале температур 190—210° и сопровождается большим выделением тепла, вслед- [c.160]


    Было найдено, что наилучшим растворителем для конденсации является ледяная уксусная кислота. В то время как в уксусной кислоте при 20—25 °С реакция проходит полностью за 2 суток, в бензоле, ацетоне, спирте, дихлорэтане или четыреххлористом углероде она практически не идет и требует, по-видимому, высокой температуры . Это можно объяснить каталитическим влиянием уксусной кислоты, обнаруженным и в ряде других случаев диенового синтеза . Проведение конденсации в уксусной кислоте позволяет осуществлять изомеризацию аддуктов без выделения их из реакционной массы после конденсации (ср. ). [c.108]

    В тройнике небольшое количество фосфорной кислоты, унесенное из контактного аппарата вместе с продуктами реакции, нейтрализуется щелочью, подаваемой из сборника // с помощью насоса 12. Далее продукты синтеза для отделения солей, образовавшихся при нейтрализации, поступают в солеотделитель 8, затем для охлаждения в теплообменник 3, а оттуда в конденсатор 4, в котором происходит конденсация паров спирта и воды. Из конденсатора 4 жидкость для отделения от непрореагировавшего этилена подается в сепаратор высокого давления 7, представляющий собой вертикальный цилиндр с перегородками, которые резко изменяют скорость и направление газового потока и таким образом способствуют отделению газа (этилена) от жидкости. Выделенный в сепараторе 7 этилен поступает с помощью компрессора 5 обратно в систему, а разбавленный спирт подается в сепаратор низкого давления 9 для более полного отделения непрореагировавшего этилена из разбавленного спирта, что достигается путем резкого понижения давления в сепараторе (с помощью дроссельного вентиля). Далее разбавленный спирт поступает на концентрирование, происходящее в отпарной и ректификационной колоннах 14 и 15. Дистиллят ректификационной колонны /I представляет собой концентрированный этиловый спирт далее он поступает через конденсатор 17 в сборники готовой продукции. [c.108]

    Состав карбамидо- и меламиноформальдегидных смол определяется главным образом соотношением исходных компонентов и условиями синтеза — температурой и pH среды. Эти смолы растворяются в воде и в спиртах. Процесс растворения сопровождается этерификацией метилольных групп, что снижает их реакционную способность, поэтому спирты используют для модификации смол и стабилизации их растворов. Увеличение жизнеспособности водных растворов смол также достигается повышением pH среды до 9,0—9,5. Выделение неотвержденных карбамидо- и меламиноформальдегидных смол из водного раствора затруднено вследствие высокой скорости их гелеобразования и гигроскопичности в сухом состоянии. Чаще всего сухие смолы получают сушкой в распыленном состоянии. [c.88]


    Метанол — весьма важный вид сырья в промышленности основного органического синтеза. Направления использования метанола весьма разнообразны. Главной областью его применения является производство формальдегида, идущего в огромных количествах для производства полимерных материалов,— в основном для получения фенол-формальдегидных, карбамидных, меламиновых и других синтетических смол, а в последнее время — и нового пластического материала — полиформальдегида, отличающегося высокой механической прочностью, химической стойкостью и легкостью переработки. Метиловый спирт также широко применяется в качестве растворителя в лакокрасочной промышленности, как селективный (избирательный) растворитель в нефтеперерабатывающей промышленности для очистки бензинов от меркаптанов, а также при выделении толуола путем азеотропной ректификации и для других целей. Метанол идет для производства акрилатов (органического [c.125]

    В поисках практического пути синтеза, позволяющего получать бревикомин, фронталин, мультистриатин в значительных количествах, изучена реакция присоединения а, 3-ненасыщенных альдегидов и кетонов к а, -ненасыщенным спиртам [877-881] (схема 145). Взаимодействие указанных соединений проходит при высокой температуре (200—250°) в автоклавах или запаянных трубках. Реакция идет через замещенные пирены. Общий выход бициклических соединений по данной схеме 35-40%, считая на непредельный спирт. Однако выделение альдегидов и кетонов (437) трудоемко, поэтому сделана попытка зациклизовать стабильный метилвинил-кетоновый димер (438) [880] (схема 146). Алкилирование его приводит [c.159]

    Гомогенные катализаторы приобретают все большее значение, что обусловлено высокими скоростями, исключительной субстратной селективностью и мягкостью условий, достигаемых в системах с использованием таких катализаторов. Кроме того, в случае гомогенных катализаторов упрощается исследование механизма и существует перспектива тонкой настройки активности катализатора путем модификации лигандного окружения. Однако гомогенным катализаторам свойственны и недостатки они относительно неустойчивы, а выделение продуктов и регенерация катализатора существенно сложнее, чем в случае систем с использованием твердых нерастворимых гетерогенных катализаторов. В настоящее время гомогенные катализаторы на основе переходных металлов используются главным образом в синтезе многотоннажных дешевых реагентов химического ширпотреба . В гл. 12 приведены примеры получения спиртов-пластификаторов оксо-синтезом и уксусной кислоты карбо-нилированием метанола. В будущем гомогенные катализаторы [c.10]

    Наконец, из изложенных выше положений о связи между химической природой твердых углеводородов нефти и их физикохимическими свойствами следует, что парафины с равной температурой плавления, но выделенные из сырья различного фракционного состава не являются равноценными по химической природе. Так, технический парафин с температурой плавления 50—52°, полученный из легкого дистиллята, выкипающего в пределах 350— 420°, может представлять в основном смесь н-алканов примерно от С21 до С27 с относительно небольшой примесью циклических и изомерных углеводородов. Но если парафин с той же температурой плавления 50—52° будет выделен тем или иным способом из более тяжелого сырья, например из дистиллята с пределами кипения 420—500° путем дробного осаждения, то такой парафин будет содержать высокий процент углеводородов циклических и изостроения. Точно так же и легкоплавкие парафины, получаемые для синтеза высокомолекулярных жирных спиртов, из концевых фракций дизельных топлив и состоящие в основном из н-алканов, совершенно пе будут идентичны легкош1авким парафинам, которые могут быть выделены из фильтратов парафинового производства при их дополнительной депарафинизации избирательными растворителями. [c.58]

    Нами разработана методика получения 5-(диметиламино) фурфурола из 5-йодфурфурола. Синтез в 2 стадии с выделением и перекристаллизацией йодида 5-(диметиламино)-фурфурилидендиметиламмония, обладающего гораздо меньшей растворимостью в спирте, чем соответствующий бромид, позволяет повысить выход продукта на 5—10%. Аминоаль-дегид, образующийся при разложении йодида, обладает высокой чистотой и не требует дополнительной очистки. [c.78]

    Данный проект направлен на создание оригинальной стратегии полного синтеза выделенного в 1971 г. из коры деревьев Taxus brevifolia терпеноида таксола, обладающего высокой противораковой активностью Определяющим в подходе является использование ключевых бициклических соединений 1, выход к которым планировалось осуществить фрагментацией трицикли-ческих спиртов 2 Базисными исходными для получения 2 выбраны доступные производные камфоры 3, 4 и новые хиральные матрицы 5 и 6. Оригинальный одностадийный синтез Е-ена-ля 6 из d-камфорсульфокислоты описан в [c.383]


    Большая часть меченых соединений, особенно простого строения, была получена синтетически. Из известных синтезов для этих целей выбирают те, которые при простом и безопасном выполнении дают очень чистые или по крайней мере легко изолируемые продукты с высоким выходом. Большое внимание уделяют выбору оптимальных условий реакции, соответствующих методов и реактивов. Тщательно разработана и экспериментальная техника работы с небольшими количествами опасных для здоровья и дорогостоящих веществ. Изотоп вводят в синтез на возможно более поздней стадии в тех случаях, когда это возможно, реакцию проводят без выделения промежуточных продуктов. Маточные растворы и остатки анализируют и перерабатывают повторно. Большую часть вещества, содержащегося в маточном растворе, можно выделить, добавляя в насыщенный при более высокой температуре раствор соответствующее неактивное вещество, которое в маточном растворе будет равномерно перемешано с активным веществом. При пятикратном разбавлении доля неактивного носителя в потерях в маточном растворе при последующей кристаллизации составит Таким образом, из маточного раствора можно извлечь дополнительно 5 первоначально имевшейся в маточном растворе активности однако при этом удельная активность уменьшится в 5 раз. В некоторых случаях реакцию преднамеренно проводят с высокой удельной активностью добавление на определенной стадии очень чистого неактивного носителя позволяет увеличить химический выход и химическую чистоту продукта. Уровень молярных удельных активностей продуктов реакции соответствует удельным активностям исходных веществ и может достигать значительных величин. Большая часть синтезов проводилась с радиоуглеродом и изотопами водорода некоторые типичные случаи будут приведены ниже. Замечательный обзор большинства методов имеется в монографии Меррея и Уильямса [14] и включает синтезы меченых различными изотопами кислот и их производных, аминов, альдегидов, кетонов, простых эфиров, гетероциклических соединений, углеводородов, спиртов, ониевых соединений, сахаров и их производных, стероидов, витаминов и других веществ. Эта книга дает полное представление о синтезах соединений, меченных S Н , и радиогалогенами. Это [c.678]

    Выход ТФК 90—95% от теоретического. Сконденоирован-ную уксусную кислоту используют для выделения ТФК из ее калиевой соли, а ацетат калия возвращают в рецикл. Для выбора метода очистки ТФК во ВНИПИМ был выполнен комплекс научно-исследогвательс-ких и опытных работ в частности, была подробно изучена растворимость терефталата калия в водных растворах спиртов, насыщенных аммиаком [106]. Найдено, что в 80%-ном водном растворе этилового спирта, насыщенного аммиаком, растворимость терефталата калня при 15—20 °С не более 0,001%, фталата калия — 5,5%, бензоата калия более — 10%. Поскольку терефталат калия является основным продуктом реакции, а содержание п римесей в нем не превышает 2%, эффективность предложенного метода очистки оказалйсь достаточно высокой. Очищенный терефталат калия содержал 99,55— 99,98% основного вещества, что позволило получить из него чистую ТФК, при годную для синтеза полиэтилентерефталата. [c.125]

    Удовлетворение потребности в водороде в химической промышленности происходит в основном за счет конверсии газообразного и жидкого углеводородного сырья, а в нефтеперерабатывающей и нефтехи-мячеокой - эа счет использования водорода, получаемого при каталитическом риформинге, пиролизе, выделении его из разбавленных углеводородных газов и специальных методов его производства. Целый ряд современных процессов (изомеризация, деалкилирование, получение спиртов, гидрообессеривание, гидрокрекинг и др.) нефтепереработки и нефтехимического синтеза связан с потреблением водорода. Однако их широкое внедрение в значительной степени сдерживается высокой стоимостью водорода. Поэтому одной из важнейших задач является изыскание путей удешевленйя его стоимости. [c.4]

    Третьим важным источником исходных продуктов для получения смол является синтез под высоким давлением аммиака и метилового спирта из водорода, который в первом случае реагирует с атмосферным азотом, а во втором — с окисью углерода аммиак применяется для получения, путем реакции с двуокисью углерода, мочевины, а метиловый спирт—для окисления его в формальдегид. Еще почти неиспользованными, но многообещающими в этой области материалами являются побочные продукты, получаемые при крекинге нефти. При соответствующем подборе сырья и условий крекинга можно получить хорошие выходы таких важных продуктов, как этилен, изобутилен, бутадиен и даже ацетилен. Хотя эти последние получаются в виде компонентов сложных систем и выделение их из смесей и очистка сопряжены сисп гхьзо-ванием сложной аппаратуры, но то обстоятельство, что эти ценные продукты пиролиза могут сильно удешевить производство смол, делает этот синтез весьма многообещающим. И действительно, уже-достигнуты большие успехи в области пиролиза нефти, при произ-. водстве светильного газа, в направлении получения значительных количеств таких ценных ненасыщенных углеводородов, как стирол. [c.479]

    Характеристика продуктов синол-процесса приведена в табл. 8.7. Видно, что практически весь продукт выкипает до 360°С. На долю спиртов суммарно приходится 38,2% г 10% составляют другие кислородсодержащие соединения. В этом синтезе глубина превращения оксида углерода в конечные продукты достигала 90%. Основная трудность процесса — большое выделение тепла вследствие такой высокой глубины превращения СО. Поэтому даже при 190—225 °С на стационарном катализаторе происходит отложение углерода. [c.294]

    Широкое применение находят также анионные ПАВ на основе этоксилатов ВЖС, содержащих 3—5 моль присоединенного этиленоксида (этоксисульфаты, этоксисульфосукцинаты и др.). Объем произврдства ВЖС —основы для получения неио ногенных и анионных ПАВ в мире неуклонно растет. По химическому строению ВЖС подразделяются на первичные, вторичные и третичные. Первичные ВЖС Сю—С20 производят следующими методами гидрогенолизом эфиров жирных кислот, выделенных из натуральных жиров и масел, или синтетических жирных кислот, полученных окислением парафина алюминий-органическим синтезом из этилена. Первичные ВЖС значительно дороже вторичных из-за более высокой стоимости сырья и сложной технологии получения, связанной с необходимостью применения высокого давления, взрыво- и пожароопасных реагентов, дорогостоящих катализаторов. Вторичные спирты по- [c.199]

    Однако Berthelot был первым исследователем, изучавшим реакцию с точки зрения синтеза спирта из газов, содержащих этилен. Он нашел, что поглощение этилена концентрированной серной кислотой при обыкновенной температуре совершается весьма медленно даже при хорошем встряхивании. Более быстрое поглощение происходит при высоких температурах, хотя при этом имеют место потери кислоты вследствие окисления и обугливания олефина. В другом сообщении Berthelot описал свои опыты по изучению скорости поглощения этилена серной кислотой, а также выделения олефинов из светильного газа посредством иода. Ему удалось показать, что спирт можно получать не только брожением, но и другими способами. Было также рассмотрено поглощение олефинов серной кислотой с последующим превращением в простой эфир [c.362]

    В промышленном катализе не всегда имеет смысл стремиться к предельной селективизации. Нередко это нереально потому, что исходным материалом, подвергающимся воздействию катализаторов, являются не индивидуальные вещества, а сложные смеси. В таких случаях полная селективизация катализа нереальна и для получения продуктов с повышенным содержанием определенных искомых веществ требуются дополнительные операции разделения и очистки. Там, где это необходимо, продукты реакции подвергаются дальнейшей обработке с выделением искомых индивидуальных веществ. Нечто подобное происходит и при осуществлении каталитических синтезов на основе смесей окиси углерода с водородом. На разных катализаторах из этих смесей можно получить преимущественно алканы (или преимущественно спирты и т. д.) в виде смесей большого числа членов определенных гомологических рядов. В одних случаях стремятся увеличить содержание высших алканов, получая твердые парафины с повышенной температурой плавления, в других случаях — жидкие парафины с выделением определенных фракций. Эти фракции иногда используют как целое. Чаще из них выделяют более узкие группы или даже индивидуальные соединения. С высокими выходами в виде индивидуальных первичных продуктов сразу удается получать только первые члены рядов, например метанол или метан  [c.31]

    Ненасыщенные альдегиды. — Ацетиленовые альдегиды также могут быть получены с помощью синтеза, включающего промежуточное образование диэтилацеталя (Хоук , 1958). Например, смесь фенилацетилена, этилортоформиата и каталитического количества иодистого цинка постепенно нагревают до 200 °С, пока не прекратится выделение этилового спирта. Полученный диэтилацеталь при гидролизе с высоким выходом превращается в альдегид  [c.468]

    Основной причиной плохой изученности фосфитов, фосфонитов и фосфинитов полиолов является высокая лабильность этих соединений применявшиеся ранее методы их синтеза часто давали неудовлетворительные результаты из-за жесткости условий ведения реакции и выделения агрессивных побочных продуктов, разрушавших целевые вещества. В связи с этим мы поставили перед собой задачу разработать новые эффективные методы фосфорилирования спиртов, а также подробно изучить и усовершенствовать некоторые ранее известные реакции. [c.323]

    Применяя различные соотношения ацетона и хлорной кислоты, изменяя порядок их прибавления и варьируя pH раствора при подкислении, удалось подобрать условия, обеспе-чиваюшие выделение комплексоната в чистом виде и высокий выход препарата. Синтез осуществлялся взаимодействием эквивалентных количеств трилона Б и свежеприготовленной гидроокиси свинца при 80""С. Для выделения комплексоната к охлажденному раствору прибавляли ацетон в количестве 7з общего объема и хлорную кислоту до pH 1,5. Из подкисленного раствора комплексонат высаживали новой порцией ацетона в количестве, удвоенном по сравнению с первоначальным. Выход при этом составляет 80—85% от теоретического. Замена ацетона спиртом значительно уменьшает выход продукта. Определение содержания свинца в комплексе производилось посредством разрушения комплексоната азотной кислотой и обратного титрования избытка трилона Б сульфатом цинка в присутствии сульфарсазена . Определение зольности показало отсутствие натрия в молекуле комплексоната, что подтвердило кислотный характер этого соединения. [c.101]

    Уретаны получаются в качестве основных продуктов реакции при нагревании раствора азида в присутствии спиртов [553,555]. Описана также побочная реакция образования сложных эфиров путем взаимодействия азида со спиртом, примененным в качестве растворителя [2620] тем не менее реакции конденсации с азидами часто проводят в спиртовых растворах [288, 896, 2616]. Образование изоцианатов также наблюдали Хейнс и сотр. [1002] при синтезе циклических пептидов. Так, при каталитическом гидрировании азида карбобензокситрипептида в условиях высокого разбавления был выделен амид соответствующего карбобензоксидипептида. По-видимому, в этом случае азид претерпевал перегруппировку в изоцианат, который после каталитического восстановления расщеплялся гидролитически. Снижения температуры реакции приблизительно до 0° недостаточно для предотвращения указанных побочных реакций [2322, 2637]. Даже выделенные в кристаллическом состоянии азиды медленно перегруппировываются в изоцианаты при 0° [2019]. Швицеру и Каппелеру [2019] удалось с помощью ИК-спектроскопии проследить процесс образования изоцианатов в то время как азиды имеют характеристическую полосу при 4,75 мк, изоцианаты обладают резким максимумом поглощения при 4,5 мк. Образование N, Ы -диацилгидразинов может происходить до тех пор, пока не закончен процесс образования азида и в реакционной смеси еще имеется непрореагировавший гидразид [2126]. [c.126]

    Обнаруженные на ранних стадиях исследования примеры отравления относятся главным образом к активности платины в реакции окисления п сходных реакциях (превращение двуокиси серы в трехокись, реакция образования воды из гремучего газа, разложение перекиси водорода), но основное применение эта группа металлов находит, пожалуй, в реакциях гидрирования. Действительно, большинство из современных работ по отравлению было проведено в связи с эти.м типом реакци11. Металлы вертикальной группы никель, палладий и платина, особенно важны благодаря их высокой общей активности и вследствие широкого применения их как для гидрирования, так и для дегидрирования. Меньшая активность кобальта и особенно меди сообщает этим элементам особые свойства, которые иногда полезны. Так, наиболее мягкое действие меди как катализатора гидрирования часто допускает выделение промежуточных продуктов, а применение меди вместо никеля для дегидрирования при высоких температурах обычно приводит к меньшему образованию продуктов разложения далее, кобальт (подобно никелю и, в меньшей степени, железу) является эффективным катализатором в специальном случае синтеза жидких углеводородов путем конденсационной гидрогенизации окиси углерода по методу Фишера—Тропша. Основное использование железо находит, однако, в синтезе аммиака, представляющем реакцию, близкую к гидрированию. Все эти процессы очень чувствительны к отравлению. Серебро и золото имеют незначительную активность для обычного гидрирования и поэтому в табл. 1 поставлены в скобки однако они использовались как эффективные катализаторы в особом случае восстановления нитробензола водородом до анилина [1], при окислительном дегидрировании метилового спирта до формальдегида. Вместо серебра можно использовать медь. [c.101]

    Для получения мономерного формальдегида высокой стенени чистоты приходится использовать многостадийные схемы, поскольку получение концентрированного мономера непосредственно при синтезе формальдегида практически невозможно (см. гл. I). Первая стадия заключается в поглощении мономерного формальдегида из синтез-газа. В технике это обычно достигается путем растворения формальдегида в воде (формалин). На следующей стадии из формалина получают низкомолекулярные твердые полиоксиметилены (параформальдегид, а-полиоксиметилен, триоксан). Кроме этого известны способы извлечения формальдегида из реакционной смеси в виде нараформальдегида [2, 3]. Исследования, связанные с разработкой производства полиформальдегида, привели к открытию еще двух принципиально возможных способов выделения концентрированного мономерного формальдегида путем образования гемиформаля (реак-цие11 со спиртами) и путем парциальной конденсации парогазовой смеси формальдегида с последующим получением концентрированного газообразного формальдегида. [c.186]


Смотреть страницы где упоминается термин Спирты высшие выделение и синтез: [c.431]    [c.232]    [c.232]    [c.95]    [c.169]    [c.33]    [c.613]    [c.157]    [c.562]    [c.162]    [c.157]    [c.397]    [c.24]    [c.108]    [c.426]    [c.108]    [c.165]    [c.33]    [c.613]    [c.123]    [c.27]    [c.89]    [c.177]    [c.991]    [c.991]    [c.58]   
Газовая хроматография в биохимии (1964) -- [ c.462 ]




ПОИСК





Смотрите так же термины и статьи:

Спирты высшие



© 2024 chem21.info Реклама на сайте