Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ качественный силикатов

    Сумма содержания определяемых компонентов при полном анализе должна быть равна 100%. Этот способ проверки правильности часто применяется при полном анализе горных пород, технических силикатов и сплавов. Если сумма не равна 100%, то это указывает либо на ошибку при выполнении анализа, либо на неправильный качественный анализ. Так, например, по содержанию серы (взвешенной в виде сернокислого бария) рассчитывают содержание серного ангидрида в горной породе, между тем как в действительности сера находилась в виде сульфида. В этом случае ошибочно рассчитанная сумма, очевидно, может превышать 100%. К тому же, удовлетворительная близость суммы к 100% не гарантирует еще точности анализа. Например, если при осаждении гидроокиси алюминия в осадок попадут также кальций и магний, то сумма будет равна 100%, несмотря на ошибочность результатов для окислов алюминия, кальция и магния. [c.482]


    Не растворяются в царской водке хлорид, бромид, иодид и цианид серебра, сульфаты стронция, бария и свинца, фторид кальция, сплавленный хромат свинца, окись алюминия, окись хрома, двуокись олова, двуокись кремния, элементные углерод и кремний, карборунд и многие силикаты. Чтобы перевести в раствор, их разлагают. Из числа веществ, встречающихся в качественном анализе, в органических растворителях (например, в диэтиловом эфире, этиловом спирте, хлороформе, бензоле, сероуглероде, четыреххлористом углероде) растворимы элементные бром и иод. Аморфная сера не растворяется в сероуглероде. Моноклинная сера растворяется в сероуглероде, а ромбическая сера — в сероуглероде и толуоле. Желтый фосфор хорошо растворим в сероуглероде и бензоле, а красный фосфор не растворим в растворе аммиака, эфире, спирте и сероуглероде. [c.274]

    Знаменитый шведский химик Я. Берцелиус (1779—1848) продолжал линию И. Рихтера, на основе анализа оксидов он определил атомные веса почти всех известных тогда элементов, ввел символы элементов, химические формулы, активно проводил аналитические расчеты на основе правил стехиометрии. Берцелиус стоял у истоков метрологии анализа. Он оценивал ошибки определений, разработал точные методы взвешивания, ему принадлежит методика определения платиновых металлов. Шведский ученый пытался создать новую схему качественного анализа. При анализе силикатов Берцелиус применил фтористоводородную кислоту — прием, широко используемый и по сей день использовал возгонку хлоридов дпя разделения металлов. [c.16]

    Тяжелая фаза образуется и скапливается в нижней части сосуда в процессе технологического цикла в виде стеклообразной массы переменного состава 5102, КагО и НгО. Степень коррозионного воздействия тяжелой фазы на материал сосуда однозначно не установлена. Имеются отдельные экспериментальные данные, свидетельствующие о возможном каталитическом влиянии силикатов на коррозионный процесс. В любом случае тяжелая фаза содержит повышенный процент щелочи по отношению к номинальной концентрации технологического раствора. Косвенным подтверждением повышения щелочности в нижней части сосуда в цикле может служить анализ отклонения фактической р—V—Т диаграммы цикла от расчетной. При фиксированном коэффициенте заливки сосуда начало гомогенизации и наклон прямолинейного участка диаграммы (см. рис. 63) зависят от состава раствора, в частности, от концентрации щелочи. Сравнивая р—У—Т зависимости для различных концентраций щелочи с фактическими значениями температуры и давления, можно оценить изменение средней концентрации щелочи в цикле. Анализ этот носит качественный характер из-за сложности точного учета неравномерности температурного поля в сосуде, концентрационных расслоений и других факторов. Однако в целом он показывает некоторое уменьшение щелочности в цикле, что может быть легко объяснено образованием тяжелой фазы с повышенной щелочностью в нижней части рабочей камеры и соответствующим обеднением щелочью основной массы раствора. [c.253]


    Имеются указания на то, что при нагревании до 200° С кремнекислота полностью выделяется после однократной обработки, но мы не могли подтвердить этого, хотя количество кремнекислоты, переходящей в раствор после прибавления кислоты, очень мало, и редко превышает 2 или 3 мг. Поэтому при точной работе, если кремнекислота находится в количестве 2—4% и выше, ее следует отфильтровать после переведения в нерастворимое состояние, и раствор выпарить снова. Для этого смачивают сухой остаток 10 мл соляной кислоты, затем прибавляют 100 мл горячей воды, чашку покрывают часовым стеклом и ставят на баню на 10 мин. Затем переносят кремнекислоту на фильтр подходящей величины, тщательно промывают ее разбавленной (1 99) соляной кислотой и йотом дважды водой. Фильтрат выпаривают снова досуха, остаток обрабатывают так же, как и раньше, но половинным количеством соляной кислоты и воды и в течение нескольких минут. Раствор затем фильтруют еще раз через второй, меньший по размерам фильтр, фильтр и осадок промывают сначала холодной разбавленной (1 99) соляной кислотой, а затем горячей водой. Оба фильтра с их содержимым медленно, высушивают, озоляют и прокаливают в платиновом тигле, под конец в течение 10 мин при 1200° С. Чтобы исследовать прокаленный остаток на чистоту, прибавляют 6 мл фтористоводородной кислоты и 1—2 капли разбавленной (1 1) серной кислоты, выпаривают и продолжают работу, как описано на стр. 943. Остаток, который получается после прокаливания, всегда значительно меньше, чем находимый при анализе силикатных пород. После удаления серной кислоты почти всегда достаточно прокалить его 1—2 мин на полном пламени горелки (1000° С). По качественному составу он сходен с остатком, получаемым при анализе силикатов. Он никогда не содержит кальция и магния и состоит главным образом из окиси алюминия и небольшого количества [c.1051]

    Будучи превосходным химиком-аналитиком, Ловиц сделал в течение 17 лет своей научной деятельности и множество анализов минералов, солей и других веществ и разработал ряд важных методов качественного и количественного анализа. Он был одним из первых химиков, применивших титрование для определения крепости кислоты, и предложил метод перевода в раствор силикатов путем кипячения их в растворах едких щелочей, взамен громоздкого способа сплавления силикатов с щелочами в серебряном тигле, предложенного Клапротом. Ловиц принял участие в открытии и исследовании ряда новых элементов. Большие заслуги принадлежат ему, в частности, в открытии и изучении свойств стронция и хрома. [c.411]

    Качественный анализ органических соединений, см. органический анализ Кварц, определение в глинах и илах 3920 в горных породах 2965, 6081 в пегматите 4237 в присутствии силикатов 3689, 6285. 6286 [c.364]

    Качественный анализ солей, сплавов, силикатов и др. осуществляется в две стадии. Сначала производят предварительные испытания, а затем переходят к систематическому анализу катионов и анионов. [c.406]

    Не растворяются в царской водке хлорид, бромид, иодид и цианид серебра, сульфаты стронция, бария и свинца, фторид кальция, сплавленный хромат свинца, окись алюминия, окись хрома, двуокись олова, двуокись кремния, элементарный углерод и кремний, карборунд и многие силикаты. Для переведения в раствор этих соединений их необходимо подвергнуть разложению. Из числа веществ, встречающихся в качественном анализе, в органических растворителях, например диэтиловом эфире, этиловом спирте, хлороформе, бензоле, сероуглероде, четыреххлористом углероде, растворимы элементарные бром и иод. [c.311]

    Мембрана имеет два основных преимущества перед контактной бумагой. Во-первых, для чисто качественных целей прозрачные окрашенные изображения могут быть увеличены почти до любой величины (см. рис. 14), а это дает возможность обнаружить детали химического распределения элементов, которые незаметны на желатиновых пленках контактных бумаг. Во-вторых, легкость, с которой эти изображения могут быть фотометрически сканированы, обеспечивает основу для непосредственного полуколичественного анализа поверхности образца. Кроме того, так как мембрана может быть сохранена между стеклянными пластинками или укреплена на бумаге, подобно цветной фотографии, она позволяет легко обеспечить постоянную регистрацию замеров. На данной стадии развития мембранной колориметрии физико-химические свойства тонких прозрачных пленок известны мало. Пленки, обладающие повышенными ионообменными свойствами, будут совершенствоваться, как и существующие методы, а это, естественно, приведет к созданию материалов для мембран, способных эффективно работать нод давлением. В настоящее время наиболее удобными материалами для производства мембран являются тонкий целлофан или целлюлоза, применяемая для диализа или микрофильтрации. Короче говоря, будущее мембранной колориметрии будет зависеть от развития способов ионизации поверхности образца в контакте с мембраной. В случае образцов с низким сопротивлением можно использовать электрический потенциал, но этот способ уничтожает все следы силикатов, алюмосиликатов и карбонатов в образцах горных пород. Для таких соединений разработаны методы ионной бомбардировки, но они включают применение источников высокой энергии или использование дымящих кислот, которые были использованы в ограниченных масштабах с обнадеживающими результатами. [c.56]


    Для установления качественного состава силиката его тем или иным путем переводят в раствор, из полученного раствора выделяют кремневую кислоту, отделяют ее фильтрованием, а затем фильтрат подвергают систематическому анализу на катионы. [c.607]

    Для качественного анализа силикатов последние переводят в растворимое в воде состояние одним из приводимых ниже способов. [c.607]

    Осаждению мешают многие анионы, которые осаждаются в виде нерастворимых солей катионов, присутствующих в анализируемом растворе. К ним относятся силикаты, фосфаты, бораты, арсенаты и др. (см. Качественный анализ , гл. XII), поэтому осаждению Ре(ОН)з должно предшествовать выделение кремневой кислоты и отделение мешающих анионов. [c.390]

    В лроцессе осаждения кремневой кислоты (см. Качественный анализ , гл. XII, 14) при анализе природных и искусственных силикатов в осадок увлекаются примеси соединений титана, железа, щелочных и щелочноземельных металлов и др. [c.504]

    Общую схему производства цеолитов можно представить в следующем виде (рис. 8). В смесительную емкость загружают в определенных соотношениях, зависящих от типа производимых молекулярных сит, едкий натр, силикат (или золь кремниевой кислоты) и алюминат натрия. Смесь перемешивают до получения гомогенной среды. Полученный гель перекачивают в кристаллизатор, где его выдерживают при температуре около 100° С в течение нескольких часов в зависимости от требуемой кристаллической структуры цеолита. Процесс кристаллизации контролируют качественными испытаниями, включающими и рентгеноструктурный анализ. После завершения кристаллизации кристаллы отфильтровывают, промывают водой и направляют на формование и обжиг. Если требуется провести обмен натрия в кристалле на ионы кальция или другие катионы, то с помощью винтового транспортера кристаллическую массу с фильтра подают в емкость, где ее смешивают с раствором соли соответствующего металла. Ионообменные формы (подобно натриевой форме) подлежат фильтрации и отмывке. Степень ионного обмена регулируется временем контакта и температурой раствора. [c.21]

    За интенсивным внедрением спектрофотометрических методов в анализ силикатных пород последовало внедрение и других инструментальных методов. Эмиссионная спектрография, известная также как оптическая и ранее широко применявшаяся для качественного анализа минералов, стала ценным добавочным средством во многих лабораториях, занятых анализом пород. В некоторых нз них перед химическим анализом практикуют количественную проверку всех силикатных пород спектральным методом. Такой прием служит для идентификации интересующих элементов, которые затем определяют другими методами. Это дает также аналитику представление о порядке величин, с которыми он может встретиться в ходе анализа. Эмиссионная спектрография удовлетворила мечту геолога о большом количестве быстрых, дешевых анализов — по крайней мере для второстепенных и следовых компонентов силикатов. Попытки использовать спектральные данные для получения полных анализов широкого распространения не получили [3]. [c.10]

    В первой части книги изложены теоретические основы и практические методы качественного анализа неорганических соединений. Описаны реакции открытия катионов и анионов, а также общие методы анализа сплавов, руд, силикатов и др. Подробно рассматривается техника выполнения реакций. [c.704]

    Однако для правильного выбора метода анализа боксита необходимо предварительно определить его качественный состав. Если порода разлагается в кислотах, то применяют для анализа сернокислотное разложение пробы. В противном случае сплавляют навеску с пиросульфатом калия (или натрия), как для силиката, или растворяют ее в смеси серной, плавиковой и соляной кислот. [c.84]

    В аналитической химии соединения лития применяют для самых различных целей. Карбонат лития используют при спектральном анализе различных объектов в качестве буфера [904]. Метаборат лития применяют как плавень при анализе силикатов [924]. Алюмогидрид лития используют для определения активного водорода в анализе органических веществ [479]. Хлорид лития находит применение при потенциометрическом титровании в неводных средах [856] и косвенном методе определения фтора [686]. Электроды из литиевого стекла используются для измерения pH в широком интервале (1,0—12,5) [162]. Ферроцианид лития применяют при качественных реакциях для открытия кадмия [201], а кобальтинитрит лития — для определения калия. Легкость обнаружения лития и его количественного определения спектральными методами позволяет его использовать для изучения кинетики передвижения масс воды (инжекционный метод разбавления [638]). [c.25]

    Вещественный химический анализ —один из наиболее сложных и наименее разработанных разделов аналитической химии. Его задачей, как было сказано, является качественное или количественное определение форм нахождения элементов в анализируемых материалах. Под формами нахождения элементов обычно понимают те простые и сложные вещества (отсюда и название вещественный , т. е. раздел аналитической химии, изучающий методы определения простых и сложных веществ), в состав которых входят эти элементы. В агломератах свинцового производства, например, свинец может присутствовать в виде свободного металла (простое вещество) и в виде соединений (окись, силикаты, ферриты, сульфид — сложные вещества). [c.45]

    Разложение фтористоводородной кислотой. В практике качественного анализа пользуются этим способом, если в силикате надо обнаружить щелочные металлы .  [c.364]

    Качественный анализ неорганических компонентов, содержащихся в рецептурах моющих средств, производится обычно после отделения органических веществ. Качественное определение карбонатов, силикатов, боратов и ортофосфатов осуществляется обычными методами [130]. Описано также несколько методов определения конденсированных фосфатов [131]. [c.256]

    Следует иметь в виду, что при растворении солей в кислотах НС1 или H2SO4 некоторые катионы образуют осадки малорастворимых хлоридов или сульфатов. Кроме того, в состав исследуемого вещества могут входить такие анионы, как фосфат, силикат, вольфрамат, молибдат и др., образующие малорастворимые осадки с целым рядом катионов. В подобных случаях кислоты как растворители не годятся, и переведение вещества в растворимое состояние достигается путем сплавления. Разработаны специальные методики качественного анализа подобных сложных смесей. [c.197]

    XVIII век дал много классических образцов количественного и качественного ана.лиза. Например, А. С. Маргграф посвятил свои основные труды развитию аналитической химии. Ему принадлежат многие анализы минералов и солей. Он предложил применять раствор желтой кровяной соли для обнаружения железа. По окрашиванию пламени он различал соли калпя и натрия. А. Маргграф установил различие между растительной (КОН) и минеральной (NaOH) щелочами и впервые использовал их для изучения силикатов. Оп одним из первых применил микроскоп в химических исследованиях. [c.60]

    В России ценные нсследования по аналитической химии выполнил Т. Е. Ловиц Он предложил метод качественного кристаллохимического определения вещества с помощью микроскопа (1798). Т. Е. Ловиц установил, что соляные налеты, получаемые путем выпаривания на стекле капель растворов различных солей, дают картины, характерные и строго индивидуальные для различных видов солей. Он разработал также метод разделения бария, стронция, кальция и нашел, что в абсолютном этиловом спирте ВаСЬ нерастворим, Sr b очень мало растворим, а СаСЬ хорошо растворим. Им был предложен метод растворения силикатов в щелочах В 1800 г. Т. Е. Ловиц указал на различие между карбонатом и гидрокарбонатом калия (К2СО3 и КНСОз), провел многочисленные анализы различных руд и минералов. [c.63]

    Определение. Качественно Р. обнаруживают в виде HgjNH2 l, HgS, а также атомно-абсорбционным, эмиссионным спектральным, фотометрич. и др. методами. Гравиметрически Р. определяют в виде металла, HgS, Hg2 l2, перйодата Hg5(IOg)2. Пробу руды разлагают при нагр., Р. отгоняется в присут. восстановителя (порошок Fe илн Си) под шубой из ZnO. Образующуюся Р. собирают на холодной золотой пластинке, к-рую по окончании анализа промывают и взвешивают. При низком содержании Р. в рудах используют кислотное разложение руд с добавлением фторида для растворения кварца и силикатов, содержащих Р. в высокодисперсном состоянии затем проводят концентрирование путем отделения примесей др. элементов экстракцией разл. комплексных соединений Р. (галогенидов, роданидов, дитиокарбаматов и др.). При прокаливании и сплав-ле.нии рудных концентратов и соединений Р. с содой Р. полностью удаляется в виде металла. Для подготовки аналит. пробы используют сочетание экстракции с термич. восстановлением и отгонкой Р. подготовленную пробу можно анализировать любым из перечисленных выше методов. Термич. восстановление используют также для качеств, обнаружения Р. даже при низких ее концентрациях. При фотометрич. определении Р. в качестве реактива используют 1-(2-пиридилазо)-2-нафтол, позволяющий определять микрограммовые кол-ва. Следы Р. также м. б. определены при помощи дитизона, используемого как гри фотометрич., так и при титриметрич. определении. [c.279]

    Весьма полезным может быть также определение средней мо- екулярной массы по Si02 нефелометрическим или криометриче-ским методом. Использование методик ИК-спектроскопии основано на том, что максимум поглощения, приходящийся на 950 см Для мономеров, смещается до 1120 см для высокополимерных Разновидностей кремнезема. В общем случае при анализе реаль-промышленных растворов силикатов метод ИК-спектроскопии Следует отнести к качественным методам. Также качественную °Ценку состояния кремнезема в растворе дает разделение на так [c.51]

    В полуколичественном спектральном анализе (в металлометрии) пробы многих руд и горных пород, таких, как силикаты, граниты и т. д., могут сжигаться, так же как и в случае качественного анализа, в натуральном состоянии. [c.77]

    Микрокристаллоскопическое обнаружение алюминия 195 бария 118 бихромат-иона 202 висмута 266 кадмия 264 калия 65 кальция 121 кобальта 217 магния 75 марганца 210 меди 262 мышьяка(Ш) 288 натрия 69 никеля 218 нитрат-иона 345 ннтрит-иона 345, 347 олова 294, 295 ртути(П) 260 свинца 257 силикат-иона 332 стронция 119 сульфат-иона 318 сурьмы 291 фторид-иона 330 цинка 214 Микрометод качественного анализа 10 [c.418]

    Несмотря на то, что возможности качественного анализа достаточно велики, в некоторых случаях заключение о природе исследуемого вещества может быть дано только на основании совокупности данных качественного, количественного, микрохимического, рентгеноструктурного анализов и других методов исследования. Например, разнообразие силикатных пород в природе очень велико. Однако элементарный состав их во многих случаях одинаков, но они отличаются друг от друга количественными соотношениями компонентов, а также кристаллической структурой. Подвергать силикаты качественному исследованию будет недостаточно вопрос о природе силиката сможет быть разрешен на основании данных количественного химического анализа, а также кристаллографического и рентгеноструктурного исследований. В некоторой степени это относится к анализу металлов и сплавов. Применяя методы классического качественного анализа, можно рассортировать чистый алюминий, алюминиевый сплав и магниевый сплав. Но бывает затруднит1 11ьно решить вопрос о марках алюминиевого сплава, которые связаны с различным количественным содержанием одного и того же компонента (Си, Мд, 51 и др.). В этом случае детальная сортировка сплавов [c.583]

    Ряд реактивов, первоначально описанных для качественного открытия алюминия, затем был предложен и для его количественного определения (в их числе и З-окси-2-нафтойная кислота, позволяющая путем капельной реакции открывать 0,0002 мкг А1) [158]. Такие реактивы сведены в табл. IV-2. Морин применен для определения алюминия в воде [367]. При использовании 8-оксихинальдина для анализа окиси тория влияние мешающих элементов устраняют путем экстракции теноилтрифтора-цетоном и введения соответствующих комплексообразователей [228]. Известная флуоресцентная реакция алюминия с 8-оксихи-нолином применена для его прямого определения в воде [288], в бронзе [229], в вольфраме и его окислах [204], в металлических магнии [151] и уране [152], в солях висмута (после удаления последнего электролизом на ртутном катоде) [153] и в реактивных кислотах [320]. Реакция с понтахром сине-черным Р (эриохром сине-черным В) [360] использована при анализе сталей, бронз и минералов [355], морской воды [337], сульфида цинка (то же, после отделения мешающих примесей электролизом на ртутном катоде) [204], металлических магния [257, 259], германия [119] и сурьмы [123]. Отмечено применение для тех же целей понтахром фиолетового SW [327]. Салицилал-2-аминофенол, предложенный ранее для качественных целей [242], был использован для анализа реактивов высокой степени чистоты [35, 36, 76]. Указанная в табл. IV-2 чувствительность достигнута при условии тщательной очистки используемых буферных растворов. Для устранения помех со стороны больших количеств железа при анализе сталей предложено осаждать его избытком едкого натра в присутствии пергидроля [295], а при анализе силикатов — восстанавливать до двухвалентного состояния с последующей маскировкой 2,2 -дипиридилом [354] в обоих случаях определение алюминия производят путем его фотометри-рования в виде 8-оксихинолината. [c.143]

    Все основные реакции качественного анализа, за исключением реакций, предусматривающих применение органических реагентов, были разработаны до 1800 г., часто специально для анализа воды. Анализ минералов (а в то время это была область прикладной аналитической химии) начинался с предварительных испытаний с использованием наяльнох трубки, после чего сразу следовали количественные определения. Часто о содержании того или иного элемента судили по форме кристаллов. Исследуя силикаты, обычно определяли кремневую кпслотз/, железо, алюминий, кальцпй и магний. Проверку на присутствие других элементов проводили только в том с.лу-чае, если результаты анализов пе давали в сумме 100%. Аномальное поведение образца в процессе анализа позволяло предположить, что в нем содержится новый, пока неизвестный элемент. Так были открыты хром, бериллий и тантал. Однако даже самые прославленные химики иногда допускали ошибки. Например, Клапрот не обнаружил фосфата в минерале вавеллите из-за того, что неправильно идентифицнровал осажденный фосфат алюминия как гидроокись алюминпя. Эту ошибку впоследствии исправил Й. Н. Фукс [203]. [c.111]

    Многие исследования Ловиц начал как обычные анализы минералов, но эти анализы привати его к крупным открытиям. К числу таких исследований относятся прежде всего анализы тяжелого шпата, в результате которых Ловиц самостоятельно и независимо от за-падноевропейсних ученых открыл стронциановую землю. Анализы хромовых руд привели Ловица также к независимому от других ис-следоват тей открытию хрома. Он изучил титановую руду, карбонаты и сульфаты калия и натрия и др. Ловиц ввел также многие серьезные улучшения и в самую методику анализов. Он открыл новые аналитические качественные реакции, обогатил методы количественного анализа веществ, впервые установил состав ряда веществ, и т. д. Им были предложены метод мокрого растворения кремнезема и силикатов в щелочах, метод испытания и оценки крепости кислот и другие важные методы. [c.462]

    Галогениды большинства металлов хорошо растворимы в воде и могут быть извлечены ею из проб. Силикаты и сульфиды тяжелых металлов в воде практически нерастворимы. Качественный анализ водных вытяжек показал присутствие во всех пробах С1- и S04 -, в части проб —S - и 50з - и отсутствие F-, Вг , J-. При общем малом содержании галогенидов нетруд-, но допустить ошибочное заключение об отсутствии F-, Вг , J-. Не вызывает сомнения, что только 1 присутствует в заметных количествах..  [c.16]

    Следует указать еще на одну особенность фазового анализа продуктов металлургического процесса. Если при анализе природных материалов для качественного определения фаз, отбора моно-минеральных фракций, выбора правильной методики существенную помощь оказывает минералого-петрографический анализ, то, к сожалению, при анализе продуктов металлургической переработки применение этого метода чрезвычайно затруднено. Природные минералы при металлургических процессах, подвергаясь воздействию высоких температур и давлений, агрессивных сред, претерпевают существенные изменения и их физические и оптические свойства сильно меняются. Иногда даже в результате металлургических процессов образуются такие соединения, химический состав которых хотя и идентичен природным минералам, но их физические и оптические свойства совершенно иные. Поэтому диагностические свойства, известные для природных минералов, в данном случае не могут быть использованы. Кроме того, часто образуются твердые растворы, непрерывные их ряды, из-за чего весьма трудно бывает определить наличие того или иного индивидуального соединения, К тому же минералы, содержащие ценные компоненты, редко выделяются в отдельные фазы, а в шлаках настолько тесно обволакиваются основой шлака — силикатами и стеклом, что установить их присутствие оптическим методом почти невозможно. Что же касается минералого-петрографического изучения. различного рода пылей и возгонов, то чрезвычайно малый размер частиц — порядка нескольких микрон — исключает использование оптической микроскопии. [c.32]

    В настоящее время имеются труды по отдельным группам минералов, В работе Е. Я. Роде [У-146, 149] подробно разработан термоанализ марганцевых руд, а также железных [У-147, 111-163, 164], свинцовых [111-165, 166] и других В. П. Ивановой собран достаточно полный материал по хлоритам [У-ЗО] Цветковым А. И. [111-216 218, У-199 201] составлены сводки термограмм по ряду различных минералов. Много работ посвящено термической характеристике силикатов и глин. Однако термоаналитические данные отдельных классов веществ являются только одной из возможных областей применения термографии и по существу представляют собою лишь качественный фазовый анализ различных смесей. Между тем, возможности применения термографии значительно шире. Этот объективный и чувствительный метод физико-химических исследований несомненно позволит глубоко проникнуть в сущность ряда явлений которые иными методами не могут быть изучены. [c.8]

    При подготовке третьего издания учебника автор столкнулся с рядом трудностей. Наиболее сложно было ответить на просьбы читателей, высказавших пожелания ввести в учебник дополнения. Стремясь не выходить за рамки учебной программы, автор сделал все от него зависящее и подверг учебник существенной переработке. Первая книга Качественный анализ сокращена. Вместе с тем в нее наряду с сероводородным методом анализа катионов введен бессероводородный метод, разработанный и апробированный на кафедре аналитической химии МХТИ им. Д. И. Менделеева. Вторая J нигa Количественный анализ несколько расширена, в нее внесено много новых материалов. Приведено описание некоторых новых методов анализа расширены вопросы теории переработан раздел, посвященный анализу силикатов дано представление об автоматических методах титрования описаны способы статистической математической обработки результатов анализа рассмотрены некоторые вопросы теории строения вещества и теории химической связи в их химико-аналитическом аспекте ос обое внимание уделено уточнению формулировок, определений и отдельных положений. [c.16]


Смотреть страницы где упоминается термин Анализ качественный силикатов: [c.483]    [c.1042]    [c.119]    [c.267]    [c.23]    [c.237]    [c.962]    [c.550]   
Качественный химический полумикроанализ (1949) -- [ c.348 , c.362 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Силикаты



© 2025 chem21.info Реклама на сайте