Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ классификация процессов

    С точки зрения химика фермент — это прежде всего катализатор. Поэтому многие закономерности, которые наблюдаются в ферментативных процессах, почти наверняка найдут себе аналогии в гомогенном химическом катализе и наоборот. По существу нет резких границ между всеми известными нам видами химического и биологического катализа, и противопоставление их друг другу требует скорее классификация, чем сущность явления катализа. [c.3]


    Классификация химических процессов. Катализ [c.271]

    Лекция 25, Классификация каталитических процессов нефтепереработки по типу катализа. Сущность катализа. Требования к катализаторам. [c.363]

    Известен ряд принципов подхода к классификации процессов гетерогенного катализа в газовой фазе и аппаратуры, предназначенной для проведения этих процессов [25—27]. [c.395]

    Практическая апробация этой классификации проведена Институтом катализа СО АН СССР. Ее применяли для классификации выпускаемых промышленностью катализаторов, она может быть применена также для систематизации информации об этом виде промышленной продукции. Подобная классификация полезна для применения в качестве основы для справочников о промышленных катализаторах. Это подтверждено опытом составления подобных справочников в Институте катализа СО АН СССР. С по.мощью таких справочников можно облегчить выбор катализатора из числа известных промышленных контактов для того или иного химического процесса. Однако обработанная таким образом информация мало способствует решению проблемы создания новых катализаторов для конкретного промышленного процесса. [c.4]

    Подразумевается, что классификация катализаторов по способам их приготовления должна применяться в пределах одной большой группы катализаторов, предназначенных для данного процесса. Распределение катализатора по таким группам производится согласно классификации катализатора по процессам (Институт катализа СО АН СССР). [c.8]

    Цикл включает передачи Производство серной кислоты , Катализ , РастворЬ , Горение и взрывы , Общие свойства металлов , Ряд напряжений металлов , Коррозия металлов , Электролиз , Производство алюминия , Промышленные способы получения металлов , Производство стали , Окислитель-но-восстановительные реакции , Классификация химических реакций , Закономерности протекания химических реакций . Построение и содержание телепередач цикла направлено не только на правильное усвоение учащимися основных понятий, но также на совершенствование методической работы учителя. Принимая передачи, учитель привыкает при демонстрации опытов и объяснении учебного материала обязательно указывать учащимся конкретные свойства вещества, раскрывать взаимосвязь свойств со строением, фиксировать условия протекания химических реакций, определять возможное направление процесса в других условиях. [c.92]


    Наименование катализатора дается предпочтительно в наиболее кратком варианте с максимально возможным использованием терминов классификации катализаторов по процессам, предложенной Институтом катализа СО АН СССР. Например, никелевый катализатор конверсии природного газа с водяным паром с целью получения газа для синтеза метанола . [c.12]

    Различные классификации типоразмеров пор совместно с протекающими в них процессами насчитывают до 15 разновидностей типоразмеров [52]. Для каталитических процессов наиболее распространена трехступенчатая классификация, по которой поры размером меньше 100 А относятся к микропорам, размером от 100 до 1000 А — к мезопорам, размером свыше 1000 А — к макро-порам. Последние выполняют в основном роль транспортных пор. В мезопорах и частично в микропорах идет собственно процесс катализа. Фактически соотношение размеров каталитической поры и молекулы катализируемого вещества должно быть менее одного порядка, чтобы обеспечить ненулевую вероятность попадания молекулы в пору [53]. [c.140]

    Классификация каталитических процессов и реакций производится по ряду признаков. По фазовому состоянию реагентов и катализатора каталитические процессы разделяют на две основные группы — гомогенные и гетерогенные. При гомогенном катализе катализаторы и реагенты находятся в одной фазе — газе или растворе, а при гетерогенном — в разных фазах. В особую-группу следует выделить микрогетерогенный, в частности ферментативный катализ, происходящий в жидкой фазе с участием коллоидных частиц в качестве катализаторов. [c.106]

    Наиболее широкое применение в промышленности нашли гетерогенные процессы на твердых катализаторах. Разновидностью гетерогенного катализа является гетерогенно-гомогенный, где роль твердого катализатора заключается в образовании активных частиц (атомов или радикалов) из молекул реагентов. Радикалы, переходят с поверхности катализатора в объем и возбуждают цепную реакцию. Существенным недостатком рассмотренной классификации является отсутствие учета взаимодействия катализатора с реагирующими веществами. [c.26]

    Номенклатура, рекомендованная Институтом катализа СО АН СССР, основана на классификации катализаторов по процессам и конечным продуктам. Все катализаторы разделены на восемь групп. Отдельную группу составляют носители катализаторов и сорбенты. [c.383]

    Многочисленность и разнообразие гетерогенно-каталитичес-ких процессов, разнохарактерность их стадий в условиях сложности и многообразия механизма реакций требуют четкой классификации имеющегося огромного материала. Рассмотрим основные материалы кинетики гетерогенного катализа на основе его общей стадийной схемы, т. е. в зависимости от того, какая стадия процесса является определяющей (лимитирующей), т. е. узким местом процесса, предопределяющим его кинетические закономерности. [c.307]

    Рассмотрен подход к решению обратной структурной задачи, основанный на физической конформационной теории природных пептидов и белков, прежде всего оценке особой роли ближних взаимодействий в их структурной организации и использовании классификации пептидных структур на шейпы, формы и конформации. Показано, что можно добиться целенаправленного и контролируемого изменения структуры пептида за счет ближних взаимодействий простыми средствами, выработанными в процессе эволюции органического мира. Изложенный в книге подход к решению обратной задачи позволяет заранее, еще до синтеза и биологических испытаний целенаправленно конструировать модели искусственных аналогов, пространственные структуры которых отвечают низкоэнергетическим и физиологически активным конформационным состояниям природного пептида. Возможности теоретического моделирования искусственных аналогов продемонстрированы на конкретных примерах. Полученные результаты подтверждают необходимость его использования в изучении молекулярных механизмов функционирования пептидных гормонов, катализа ферментов, взаимодействий антител с антигенами и т.п. (см. гл. 17). [c.590]

    Твердые катализаторы применяют в жидкой среде гораздо реже, чем в газовой. Однако в органической технологии имеется ряд крупномасштабных процессов гидрирования тяжелых углеводородов и жиров в жидкой фазе на металлических или сульфидных катализаторах, а также процессы дегидрирования, окисления, полимеризации и т. п. [2, 7—9, 18, 36]. Рассмотренные выше классификация и закономерности процессов в газовой фазе на твердых катализаторах в основном относятся и к жидкофазным процессам с учетом их специфики, однако гетерогенный катализ в жидкостях изучен в меньшей степени, чем в газах. [c.48]

    Благодаря наличию силикагелей разной пористой структуры уточнена и расширена существующая классификация адсорбентов по структурным типам [255], сделаны некоторые заключения о роли пористости в процессе хроматографического разделения смесей [129, 324—327] и в катализе [17, 18, 11, 328—330], уточнены условия термической дезактивации силикагелей 1330, 264] и др. [c.148]


    Успехи неорганической химии вносят свой вклад в катализ по двум направлениям. Во-первых, открытие и идентификация новых соединений резко расширяет круг разнообразных веществ, пригодных для использования в каталитических процессах. Во-вторых, появляются возможности решения проблемы обеспечения стабильности катализаторов при воздействии высоких температур и реакционной среды. Среди огромного числа соединений существуют группы веществ, проявляющие общие свойства, что обеспечивает основу для их классификации. [c.111]

    Наиболее важна для технологической организации процесса и прежде всего для выбора типа реактора классификация катализаторов по их агрегатному состоянию. Подобно тому как химические реакции подразделяют в зависимости от агрегатного состояния реагентов и продуктов реакций на гомогенные и гетерогенные, так и катализ подразделяется на гомогенный и гетерогенный. При этом определяющим является агрегатное состояние прежде всего катализатора, т. е. в зависимости от агрегатного состояния катализатора и реагентов процессы, протекающие в реакторе, подразделяются на гомогенные и гетерогенные. [c.104]

    Классификация химических процессов и место гетерогенного катализа в ней [c.61]

    Казалось бы, при разработке теории еще более сложных — каталитических процессов, естественно было бы пойти тем н е путем. Мелоду тем до сих пор вопросам систематизации и классификации каталитических реакций и катализаторов уделялось очень мало внимания. Огромный фактический материал в области каталитических реакций в должной мере пе систематизирован и подробно не описан. Нет сколько-нибудь удовлетворительных справочников. Практически отсутствуют попытки обработки всего имеющегося материала с целью выявления основ рациональной классификации в катализе. [c.56]

    Рогинский [77], рассматривая механизм адсорбционного катализа, дает схему течения процесса катализа, основанную на деформации молекул поверхностью, являющейся первичным и основным процессом катализа. Если эта хема применима, то возможна классификация каталитических реакций по типу деформации. [c.112]

    Справочник был задуман В. А. Ройтером как первая ступень в создании научной теории предвидения каталитического действия и решении задачи рационального подбора катализаторов. В литературе кроме обширнейшего фактического материала о свойствах катализаторов и протекающих реакций имеется большое число обзоров, обобщений по отдельным типам реакций, например по процессам гидрирования, дегидрирования, дегидратации, окисления, алкилирования, крекинга и др. В этих обзорах основное внимание обращено на механизм протекания реакций, кинетику, влияние различных факторов на свойства наиболее распространенных катализаторов, приготовление промышленных контактов и т. п. Однако до сих пор не предпринималась даже попытка систематизировать и тщательно проанализировать весь имеющийся материал с единой точки зрения, чтобы таким путем попытаться выяснить наиболее общие закономерности катализа и создать рациональную систему классификации в катализе. [c.5]

    По фазовому признаку катализ обычно делят на гетерогенный и гомогенный отдельно рассматривают ферментативный катализ. Подобная классификация не является чисто формальной и отражает некоторые различия в механизмах элементарных актов этих процессов. Наибольшее техническое значение имеют твердые катализаторы. По оценке А. А. Баландина [1] 80% продукции тяжелой химической промышленности получают с их участием. [c.5]

    Тема 2 Закономерность протекания химических реакций (4 час). Лекция 9. Скорость химических реакций. Классификация реакций. Молеку-лярность и порядок реакции. Зависимость скорости реакции от температуры энергия активации. Понятие о гомогенном и гетерогенном катализе. Примеры каталитических процессов, в нефтеперерабатывающей промышленност Лекция 10. Обратимые и необратимые процессы. Химическое равновесие [c.179]

    В нашу задачу не входит изложение в этой статье полной и подробной классификации контактных пропессов по механизму их взаимодействия с твердым телом. Этот вопрос заслуживает рассмотрения в отдельной работе. Но для нас было существенно показать необходимость дифференцированного подхода к подбору катализаторов, так как не может быть законов подбора, не связанных с природой действующих сил и внутреннего механизма. А в контактных процессах встречается несколько различных механизмов. Здесь обязательна дифференциация, и всякие попытки необоснованной универсализации при нынешнем уровне наших знаний о катализе, к сожалению, приносят больше вреда, чем пользы. [c.21]

    Приведенных примеров достаточно для иллюстрации положения о многообразии механизмов катализа и о необходимости дифференцированного подхода к проблеме подбора, которая теснейшим образом связана с проблемой рациональной классификации каталитических процессов, по природе сил, действующих на реагирующие молекулы, и по их глубокому механизму. [c.26]

    Институтом катализа СО АН СССР разработана классификация промышлен-ых катализаторов по их назначению (по виду процесса, для которого предназначен анный катализатор). Согласно этой классификации катализаторы подразделяют на руппы 1) катализаторы синтеза на основе неорганических веществ 2) катализато-ы синтеза (превращений) органических соединений 3) катализаторы гидрирования, дегидрирования 4) катализаторы производства мономеров синтетического каучу-а 5) катализаторы полимеризации и конденсации 6) катализаторы окисления  [c.3]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    В соответствии с такой классификацией каталитических процессов катализаторы также разделялись на две большие группы 1) катализаторы-проводники электрического тока, т. е. металлы и полупроводники, электроны которых принимают активное участие в окислительно-восстановительных реакциях 2) ка-тализаторы-непроводники, т. е. ионные кристаллы, ионные аморфные тела (гели) без свободных носителей тока в -объеме. Электропроводность этих тел может быть ионной, но она заметно проявляется лишь при высоких температурах, которые не достигаются в катализе. Катализаторы -второго рода пригодны для тех же реакций, которые катализируются кислотами в случае гомогенного катализа. [c.213]

    Положив в основу классификации каталитических процессов это деление, Рогинский и получил свои два класса реакций. Атомные и ионные окислительно-восстановительные реакции у него оказались только потому в одной группе, что они катализируются посредством А и Б-катализаторов. Поскольку Б и В-катализаторы обладают еще кислотными или основными свойствами, они катализируют частично (в меру величины своей кислотности или основности) также и реакции, которые относятся к кислотно-основному катализу. [c.219]

    Современная электронная теория катализа начала создаваться относительно недавно, с конца 40-х годов, на основе достижений физики твердого тела, с одной стороны, и успехов в области самого гетерогенного катализа — с другой. Очень важным условием, позволившим найти наиболее существенные направления исследований в процессе разработки теории, явились те обобщения экспериментального материала, которые были сделаны в связи с созданием охарактеризованной выше общей классификации каталитических процессов (см. разделы 5 и 6 настоящей главы). [c.240]

    Процесс проникновения в глубь катализа для раскрытия его сущности начат давно и происходит вполне успешно по линии изучения механизма каталитических реакций. В этом изучении— длительном, многостороннем, требующем усилий множества научных коллективов, — заключается основа достижения истины, так как исследования в этом направлении (и экспериментальные, и теоретические) тесно связаны с практикой использования катализа з производстве. По тем не менее — это только один путь к познанию сущности катализа путь, развитие которого главным образом и составляло предмет настоящей книги. Наряду с ним существует и второй путь, который характеризуется изучением общих проблем катализа установлением места катализа в природе, исследованием общих функций и критериев катализа , классификацией каталитических процессов сюда же относятся попытки дать общее определение катализа. Но второй путь использовался исследователями неизмеримо меньше, чем первый. Обобщения Берцелиуса, объединившие в одно целое разрозненные каталитические явления (гл. П1), работы Оствальда, впервые связавшие катализ с жинетикой (гл. V), классификация Рогинского, явившаяся одной из фундаментальных характеристик катализа в целом (гл. X), ряд широких обобщений Лэнгмюра, Баландина, Семенова, Поляни, Эйринга (гл. XI) и Хиншельвуда (наст, гл.) —вот то наиболее значительное, что сделано на этом пути. Все остальное, что вы- [c.381]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    По Г. К. Борескову реакции гидрирования ненасыщенных соединений (олефинов, бензола, фенола, анилина) и гидрогенолиз связей углерод—гетероатом (обычно С—8) относят к группе гомо-литических каталитических реакций, в то время как реакции изомеризации и расщепления — к группе гетеролитических. Это не строгая классификация и есть группа процессов, в том числе и промышленно важных, в которых наблюдаются и гомолитический, и гетеролитический катализ К ним, в частности, относятся процессы каталитического риформинга и гидрокрекинга, осуществляемые на нолифункциональных катализаторах. [c.114]

    По существу, целью всех многочисленных теорий катализа, которые начали появляться еще в прошлом столетии, было предвидение каталитического действия. Но, пожалуй, началом решения этой задачи следует считать рекомендации по подбору катализаторов, которые содержались в мультиплетной теории А. А. Баландина, теории активных центров X. С. Тэйлора и 3. К. Ридила, в классификации каталитических процессов С. 3. Рогинского, а затем в ряде электронных теорий. В результате появились более или менее общие и проверенные выводы о специфическом характере каталитического действия определенных, правда, довольно обширных групп катализаторов, например, для реакций гидро- и дегидрогенизации, окисления, галогенироваиия — металлы и оксиды металлов— полупроводники для реакций гидратации — дегидратации, гидрогалогенирования, алкилирования алкилгалогенидами — бренстедовские и льюисовские кислоты и основания. Но подбор [c.248]

    Влияние диффузии при адсорбционном катализе в газах, как и в растворах, учитывалось Фрейндлихом [31] в классификации, которую он предложил для адсорбции, соединенной с химическими процессами, происходящими на поверхности раздела твердое тело — газ и твердое тело — жидкость. Он различает замедленный и незамедленный адсорбционный катализ по косвенному влиянию адсорбции на время течения химических реакций. Фрейндлих считает, что в незамедленном адсорбционном катализе время течения настоящей химической реакции не увеличивается за счет диффузии, тогда как в замедленном адсорбционном катализе время течения процесса не соответствует времени химической реакции и включает диффузионный процесс, происходящий в адсорбционном слое. В последнем случае замедление может иметь и другое происхождение. Может быть замедленный адсорбционный катализ, в котором одно из исходных реагирующих веществ участвует в образовании диффузионного слоя и поэтому в замедлении диффузии, а конечные продукты не участвуют в этом. Кроме того, конечные продукты реакции могут влиять на диффузионный слой и поэтому замедлять диффузию, тогда как первоначальные компоненты неэффективны. Если процесс состоит из ряда последовательных стадий, скорость всего процесса является большей частью функцией самой медленной стадии.. Поскольку диффузия происходит медленно, она определяет скорость всего процесса адсорбции. [c.136]

    Эта классификация показала главный путь развития теории катализа, основными проблемами которой являлись подбор катализаторов и механизм процесса. В результате был выделен тот вид каталитических процессов, который поставил в центре внимания катализаторы-полупроводники наряду с ним был охарактеризован и другой вид катализа, а именно катализ посредством кислотно-основных агентов. Такой дифференцированный подход к реакциям и катализаторам позволил создать что-то вроде двух надежных платформ, на каждой из которых оказалось возможным решать вместе, комплексно, обе названные проблемы. При этом в кислотно-основном катализе главными агентами оказались ионы (чаще всего протоны), вызывавшие гетеролиз связей в молекуле реагента. А в окислительновосстановительном катализе агентами явились электроны или электронные дырки катализатора-полупроводника, вызывавшие Г01М0ЛИЗ связей. [c.241]


Смотреть страницы где упоминается термин Катализ классификация процессов: [c.177]    [c.7]    [c.23]    [c.248]    [c.248]    [c.69]    [c.434]    [c.146]    [c.211]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.458 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ процесса

Катализ. Особенности и классификация каталитических процессов

Классификация химических процессов. Катализ



© 2025 chem21.info Реклама на сайте