Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Введение наполнителей в смолу

    Приготовление эпоксидного заливочного компаунда начинается с введения в смолу заданного количества предварительно подогретого наполнителя (пылевидный кварц, около 200 масс. %). При нормальной температуре эпоксидная смола имеет консистенцию густого меда, но при 80° С ее вязкость уменьшается в 10 раз, что облегчает смешивание. Затем вводят пластификатор, например полиэфир. Введение небольшого количества термопластичного полимера снижает межмолекулярное взаимодействие, что уменьшает усадку, увеличивает эластичность, повышает морозостойкость, но несколько снижает теплостойкость. [c.175]


    Если в смеси присутствуют неорганические наполнители, эффективность введения фенольных смол уменьшается (рис. 51). Поэтому при высоком наполнении неорганическими наполнителями наиболее целесообразно применение 1—5 вес.ч. термореактивных смол на 100 вес. ч. каучука, которые повышают прочность, модули, [c.109]

    Отверждение полиэфирных клеев можно проводить как при низких (от —10°С), так и умеренных (80°С) температурах. Время отверждения составляет от нескольких минут до суток. Разрушающее напряжение при сдвиге для клея на основе полиэфирной смолы ПН-1 (МРТУ 6-05-1082—67) для стали составляет 5,6 МПа (56 кгс/см2), д при равномерном отрыве— 11,7 МПа (117 кгс/см ). При отверждении этой смолы возникает большая усадка и, как следствие, значительные внутренние напряжения, которые могут быть частично уменьшены введением наполнителей. Так, при наполнении композиции полу-водным гипсом в количестве 100—150 ч. (масс.) разрушающее напрял<ение возрастает до 27,6 /МПа (276 кгс/см ) при сдвиге и до 21 МПа (210 кгс/см ) при равномерном отрыве. [c.19]

    Окисленные нефтяные масла, сосновая смола или стеариновая кислота добавлялись к каучуку перед введением наполнителей и вулканизирующих вешеств для получения резины с повышенным сопротивлением к трению зь. [c.1078]

    Крашение кожи проводят в водных р-рах красителей. Для придания коже мягкости и эластичности ее после крашения подвергают т. наз. жированию (обработке животными, растительными, минеральными или синтетич. жирами) и наполнению. Введение наполнителей снижает гидрофильные свойства кожи, повышает ее износостойкость и выравнивает толщину по всей площади. В качестве наполнителей применяют полиакрилаты, сополимеры акрилатов с бутадиеном или хлоропреном, мочевино-формальдегидные смолы, кремнийорганические полимеры и продукты переработки белков. Полимеры-наполнители вводят в кожу в виде водных дисперсий или водных р-ров иногда используют р-ры в органич. растворителях. Для сушки кожи применяют в основном конвективные методы. [c.523]

    Наполнителями служат древесная или кварцевая мука, молотая слюда, асбест коротковолокнистый, тонкоизмельченные плавиковый шпат, каолин, стекло и стекловолокно, графит (см. Графитопласты), отвержденные термореактивные смолы и материалы на их основе, металлы, окислы металлов и др. С введением наполнителей уменьшается усадка при прессовании П., повышается жесткость и твердость готовых изделий, а в отдельных случаях изделия приобретают специфич. свойства, напр, дугостойкость, электрич. [c.89]


    В состав пресспорошков на основе фенольных омол вводят до 50% наполнителя (древесная мука, асбест, текстильные обрезки, -целлюлоза, слюда, стеклянный порошок, графит, уголь, кизельгур и др.). В качестве наполнителя для формованных изделий из мочевинных и меламиновых смол применяют главным образом вискозную пульпу иногда для производства дешевых материалов используют также и древесную муку. В случае введения вискозной пульпы получаются полупрозрачные изделия, способные окрашиваться в любой цвет. В последние годы в США усиливается тенденция к введению наполнителей в термопластичные смолы. Выработка усиленных термопластов в 1970 г. увеличилась в 6,1 раз по сравнению с 1966 г. Производство различных видов усиленных термопластичных смол приведено ниже (тыс. т) 4, 6, 24]  [c.289]

    Смешивание смолы с инициаторами и с ускорителями, введение наполнителей. Отверждение на холоду и при нагревании. Механическая обработка [c.301]

    Введение наполнителей, которые значительно дешевле синтетических смол, снижает также и стоимость массы. [c.422]

    Введение наполнителей в состав олигомеров или полимеров на начальных стадиях формирования адсорбционных слоев часто сопровождается разрыхлением их структуры. Фиксация структуры пограничного слоя на этой стадии его образования в результате быстрого застеклования или отверждения связующего приводит к тому, ЧТО матрица становится менее плотной, чем отвержденная ненаполненная смола. [c.53]

    Для повышения работоспособности покрытий дисперсные полиамиды модифицируют введением различных добавок (низко- и высокомолекулярные органические соединения, минеральные вещества, металлы и их оксиды). Улучшение фрикционных характеристик покрытий связано с упрочняющим действием некоторых наполнителей и улучшением термических условий работы узла трения (металлы и оксиды), а также фрикционным свойствами самих наполнителей (графит, дисульфид молибдена, тальк, политетрафторэтилен). Обычно введение наполнителей не приводит к изменению характера зависимости коэффициента трения от удельного давления, но значительно расширяет интервал допустимых нагрузок (табл. Х.6) [47]. В тех случаях, когда введение наполнителей приводит к заметному ухудшению адгезионной прочности металлополимерного соединения, целесообразно применять двухслойные покрытия, вводя модификатор лишь в верхний рабочий слой. Устойчивость адгезионного соединения полиамида со сталью при эксплуатации во влажной среде может быть существенно повышена модификацией первого слоя эпоксидными смолами. Так, применение для поликапроамидных покрытий подслоя, наносимого из дисперсной композиции смолы 3-49 и поликапроамида, позволяет в 10 раз повысить их долговечность при работе в воде [c.291]

    Частицы наполнителя перемешиваются со связующими веществами и остальными компонентами пластмассы и связываются (склеиваются) смолой в твердую и плотную массу. С увеличением содержания наполнителя твердость пластмассы повышается. Как правило, введение наполнителя повышает механическую прочность смолы и понижает величину усадки пластмассы в процессе формования изделия. Особенно улучшаются механические свойства и, в частности, повышается ударная вязкость при введении в пластмассу волокнистых наполнителей, устраняющих хрупкость ненаполненных пластмасс. Однако применение органических наполнителей повышает водопоглощение изделий из пластмасс и тем ухудшает их электроизоляционные свойства. Для устранения этого могут применяться наполнители в виде минеральных волокон (асбест, стекловолокно). Введение наполнителей повышает также теплостойкость и огнестойкость пластмасс, облегчает их переработку и снижает стоимость. [c.123]

    Экспериментальные значения проницаемости лежат существенно ниже значений, рассчитанных по уравнению (12.35) с учетом объемной доли и фактора искривления. Такие результаты могут означать существование иммобилизации сегментов полимера, возникающей, возможно, в результате разной контракции полимера и наполнителя при охлаждении образцов после отверждения при высоких температурах. Для сшитых матриц, которые усаживаются во время полимеризации (таких, как эпоксидные смолы), последние стадии полимеризации приводят к образованию напряженных областей в полимере на больших расстояниях от частиц наполнителя. (Практически одной из причин введения наполнителя в полимер во многих случаях является стремление [c.349]

    По своим механическим свойствам разветвленные и сшитые полимеры, схематически показанные на рис. 1.2, — стеклообразны и неизменно хрупки. Это, однако, не мешает использовать их для многих практических целей. Они обладают значительным преимуществом перед кристаллическими полимерами, а именно они мало чувствительны к нагреванию. Имея высокую степень сшивания и будучи некристаллическими, эти полимеры не размягчаются и не плавятся при нагревании, как это происходит с кристаллическими полимерами. Кроме того, они устойчивы к химическому воздействию. Присущая им хрупкость может быть существенно снижена введением наполнителей или армированием бумагой, волокнами или другими материалами. Бакелитом часто пропитывают древесностружечные плиты, что одновременно удешевляет материал и улучшает его свойства. В смолы можно также вводить красители и пигменты, от чего материалы приобретают яркую окраску и привлекательный внешний вид. Например, широко распространены. окрашенные изделия из мочевиноформальдегидных и меламиноформальдегидных смол эти смолы используются для производства игрушек, посуды и других предметов домашнего обихода. [c.26]


    Мягчители в отличие от пластификаторов действуют как инертные разбавители. В качестве мягчителей применяют масла, смолы, мазуты, битумы, различные другие полимеры и низкомолекулярные фракции того же самого полимера. Введение таких добавок повышает мягкость, гибкость, эластичность полимеров, облегчает введение наполнителя и т. д. Одновременно мягчители могут оказывать и смазывающее действие. [c.65]

    Однако получать термостойкие покрытия на основе полиорганосилоксанов с применением только пигментов не представляется возможным. Это связано с тем, что в таких композициях наблюдаются высокие термические внутренние напряжения, особенно при минусовых температурах (см. рис. 50, стр. 194), которые при определенных условиях могут превзойти силы адгезии или прочность пленки и привести к отслаиванию либо к разрушению покрытия. Для снижения внутренних напряжений в термостойкие покрытия вводят наполнители. Такие наполнители, как слюда, тальк, асбест, имеют пластинчатую или волокнистую структуру и значительно влияют на реологические и седиментационные свойства эмалей, а также на физико-механические свойства и теплостойкость покрытий. При введении небольшого количества наполнителей (около 0,2—0,5 вес. ч. на 1 вес. ч. сухой смолы в связующем) термостойкость полиорганосилоксанов значительно повышается. Например, при введении слюды в лак КО-08 (0 5 вес. ч. на 1 вес. ч. сухой слюлы) его термостойкость при 400 °С возрастает в 10 раз. При этом количестве наполнителя внутренние напряжения как в пигментированном покрытии, так и в лаке без пиг-иента снижаются (рис. 51). Снижение внутренних напряжений в покрытии за счет введения наполнителя приводит к уменьшению рас- [c.196]

    В системах, содержащих сшитые полимеры, контакт с твердой фазой может приводить к таким же изменениям плотности, как и в случае линейных полимеров. Введение наполнителя, например в эпоксидные смолы, приводит к образованию областей повышенной рыхлости [74, с. 23]. Напротив, в соответствии с [83, 84], на поверхности стекла при отверждении эпоксидной смолы формируется слой повышенной плотности толщиной 4 мкм, что приводит к снижению водопроницаемости. [c.22]

    Необходимо помнить, что при введении наполнителей в клей может значительно увеличиться время гелеобразования. На примере эпоксидной композиции, отверждаемой низкомолекулярным полиамидом (ЭД-20+Л-19), было показано, что введение в ее состав волокнистого наполнителя значительно увеличивает время гелеобразования. При этом чем больше содержание наполнителя, тем сильнее замедляется скорость отверждения. Такое действие наполнителя особенно проявляется в том случае, когда на его поверхности имеются ОН-группы, что, вероятно, связано с образованием водородных связей между эпоксидными группами смолы и ОН-группами наполнителя [135]. [c.101]

    Большую роль в повышении прочности может играть и то обстоятельство, что зерна или нити наполнителя являются естественным препятствием развитию трещин, образующихся в материале. Важным является также то, что введением наполнителей может быть повышена ударная вязкость материала, а также и существенно уменьшена ползучесть полимера. Особенно благоприятное действие оказывают слоистые и волокнистые наполнители (конечно, неодинаково в различных направлениях). Так, феноло-формальдегидная смола при применении в качестве наполнителя текстильного полотна может обладать ударной вязкостью 25 кГ Mj M . Для многих случаев особенно благоприятно в качестве наполнителя использовать стекловолокно или стеклоткань. [c.598]

    Видно, что содержание свободного фенола и свободного формальдегида чрезвычайно мало и практически трудно измеримо. Для регулирования смачиваемости, а также для получения слоя связующего равномерной толщины в клеевые композиции почти всегда вводят разбавители и наполнители. Если при изготовлении фанеры для внутренней облицовки используют ржаную и ншенич-цую муку в смеси с карбамидо- или меламиноформальдегидными смолами, то в фанере для внешней облицовки можно ирнмеиять только инертные (мел) или ненабухающие наполнители (типа муки нз скорлупы кокосового ореха). Применение таких добавок ведет не только к снижению стоимости продукции, но и уменьшает хрупкость клеевого слоя. Однако введение наполнителей в больших количествах может привести к снижению прочности материала. В табл. 9.4 приведены примеры некоторых рецептур клеев на основе ФС, применяемых при изготовлении фанеры. [c.134]

    Шлифовальные круги с фибровой основой применяют в основном ири обработке корпусов машин и кузовов автомобилей. Обычно круги имеют диаметр 180—230 мм и работают прн окружной скорости 40—50 м/с. Листы фнбры должны обладать высокой прочностью прн растяжении и отслаивании и иметь достаточную эластичность. В качестве связующих применяют жидкие фенольные смолы с различной реакционной способностью. Смолы с высокой реакционной способностью используют в производствах, оснангеи-ных оборудованием для ускоренной сушки. Однако такие смолы п такое оборудование обладают очень высокой чувствительностью к малейшим изменениям химических и технологических параметров процесса. Важными факторами получения качественной продукции являются равномерное смачивание листовой фибры [10] и хорошая текучесть связующего. Для предотвращения излишней текучести к смоле добавляют тонкоизмельченный мел (в отношении 1 1). Введение наполнителей в аппретуры способствует улучшению эксплуатационных свойств абразива. [c.240]

    Предел прочности при растяжении пластических масс зависит от их состава. Наиболее прочными из чистых смол являются лавсан, полиформальдегид и поликарбонат. Введение порошкообразного наполнителя не сказывается на прочности смолы при растяжении. Значительное усиление получается при введении наполнителя в виде полотнищ или непрерывного стекловолокна, т. е. слоистых пластмасс. Наиболее прочными из них на разрыв являются ДСП и стеклотекстолиты (2500—3000 кГ1см ), а также материалы на основе непрерывного стеклянного волокна (8000—9000 кГ1см вдоль волокна). Предел прочности при растяжении определяют в соответствии с ГОСТом 11262—68 и ГОСТом 8698—58 (для ДСП). [c.283]

    Перерабатывают П. на обьином оборудовании резиновой пром-сти (напр., вальцы, каландры, экструдеры, прессы) при 140-200 °С при этом его мол. масса почти ие изменяется. Длительная мех. обработка при т-рах ниже 100 С приводит к деструкции. П. совмещается с НК и СК, пластиками, синтетич. смолами, парафином, битумом, минер. напол1ш-телями и пигментами. Наполнители снижают хладотекучесть, повышают прочность и твердость П. Его технол. св-Еа значительно улучшаются при введении наполнителей и повышении т-ры переработки. Для ненаполненного П. [c.626]

    Стеклоуглерод - твердый продукт карбонизации отвержденных термореактивных смол (напр., феноло-фор-мальд.), целлюлозы, ароматич. углеводородов и др. в-в, к-рые, минуя жидкую фазу, превращаются в карбонизованные продукты. Процесс осуществляют медленным нафевом в-в в восстановит, или инертной среде, иногда с введением наполнителей (напр., сажи). При т-ре выше т-ры фафитации стеклоуглерод сохраняет мелкокристаллич. изотропную структуру, устойчив к диффузии неуглеродных примесей (напр., металлов). Изделия из него получают прессованием или литьем. Как особо чистый материал стеклоуглерод используют гл. обр. при изготовлении электродов для электрохим. произ-в, термостойкой хим. посуды для вакуумного испарения металлов, тиглей для выращивания монокристаллов полупроводников. [c.24]

    Было установлено, что исследованные полимерные композиции под воздействием термообработки могут подвергаться как уплотнению, так и разрыхлению. Для ненаполненных эпоксидных смол средние значения плотности отличались в пределах от 0,5 до 2% в зависимости от применяемого пластификатора для наполненных отвержденных — не изменялись или изменялись незначительно (приблизительно на 0,5%). При введении молекул-зондов в уже термообработанные образцы в них можно наблюдать разрыхленные области, плотность которых примерно на 5—6% ниже, чем плотность исходных наполненных образцов. Следовательно, введение наполнителя приводит к структурным изменениям при практически одних и тех же средних значениях плотности образцы становятся неоднородными. Дальнейший отжиг образцов при 80 °С приводит к повышению плотности разрыхленных областей на [c.23]

    Представлялось целесообразным провести дальнейшие исследования, исключив влияние одного из факторов. Удобным оказалось исключение изменений условий деформирования полимерной матрицы путем выбора наполнителя, близкого по механическим свойствам к связующему. В качестве такого наполнителя был использован порошок той же отвержденной эпоксидной смолы ЭД-20, которая применялась как связующее. На рис. III. 34 приведены спектры времен релаксации образцов с разным. содержанием ЭД-20. (в объемных долях). Для сравнения там же приведена спектральная кривая образца, из которого был изготовлен наполнитель (эпоксидная смола, отвержденная в отсутствие наполнителя). При анализе результатов этого эксперимента обращает на себя внимание существенный сдвиг спектральных-кривых в сторону больших времен релаксации по сравнению со спектром смолы, отвержденной без наполнителя. Введение наполнителя приводит также и к изменению наклона спектра. Характерно, что сдвиг и расширение спектров в этом случае заметны больше чем для образцов с кварцевым наполнителем. Связано это с исключением фактора недефор-мируемости наполнителя, в результате чего влияние поверхности наполнителя на изменение свойств граничных слоев связующего, отверждаемого на этой поверхности, проявляется более четко. [c.142]

    Находят широкое применение смеси каучуков с различными смолообразными продуктами [1058—1082], так как такие смеси обладают рядом улучшенных свойств. Так, совмещение броми-рованных сополимеров изоолефинов и нолиолефинов, стабилизованных силикатом металла И группы периодической системы Менделеева, с бутадиенстирольным, бутадиеннитрильным каучуками, бутилкаучуком или хлоропреном приводит к улучшению физических свойств вулканизатов [1060]. Смеси синтетических каучуков с жидким полиэтиленом мол. в. 800—2000 [1066] обладают хорошими электрическими и химическими свойствами, легко поддаются обработке, светостойки. Содержание в каучуке 10 ч. полиэтилена ускоряет диспергирование наполнителей. Введение алкилфенолальдегидных смол [1069] увеличивает клейкость смесей вне зависимости от типа сажи. [c.663]

    Предел прочности при растяжении зависит от состава смол. Наиболее прочными из чистых смол являются лавсан, полиформальдегид и поликарбонат. Введение порошкообразного и волокнистого наполнителя не сказывается на прочности смолы при растяжении. Значительное усиление получается при введении наполнителя в виде полотнищ, т. е. у слоистых пластмасс. Наиболее прочные на разрыв — ДСП и стеклотекстолиты (2500—3000 кПсм ), а также анизотропные материалы на основе непрерывного стеклянного волокна (8000—9000 кПсм вдоль волокна). [c.285]

    Хотя Тд полимерной матрицы часто возрастает при введении наполнителя, величина эффекта, по-видимому, зависит от прирО ды поверхности наполнителя. Так, Даммоно и Квей [208] нашли, что при одинаковой объемной доле (0,05) ТЮг более эффективно увеличивает Тд, чем А12О3, хотя разница составляет всего несколько градусов. Важна также поверхностная обработка наполнителя. Им и др. [1003] показали, что обработка поверхности кремнезема, уменьшающая адгезию, исключает повышение Тд в некоторых полимерных матрицах. Наполнитель, использованный Мэнсоном и Чу [572], который повышал Тд эпоксидной смолы на 10 °С (см. рис. 12.42), был обработан аппретом, увеличивающим адгезию. Интересно, что значение АГ , наблюдаемое Имом и др., прямо пропорционально энергии взаимодействия полимер — наполнитель, оцененной по теплотам адсорбции модельных низкомолекулярных соединений. Эти результаты находятся в противоречии с резуль- [c.376]

    Введение наполнителя в расплав олигомеров или полимеров, на начальных стадиях формирования адсорбционных слоев сопровождается разрыхлением их структуры (тем большим, чем выше молекулярный вес связующего). Фиксация структуры пограничного слоя на этой стадии его образования в результате быстрого за-стекловывания или отверждения связующего приводит к тому, что матрица становится менее плотной, чем отвержденная ненаполнен-ная смола. С увеличением степени наполнения изменение свойств материала, связанное с понижением плотности матрицы, проявляется резче в связи с увеличением объема связующего, вовлеченного в сферу влияния поверхности наполнителя. [c.8]

    Введение в смолу пластификаторов (например, тиокола) или дисперсных наполнителей (кремнекислого алюминия, аэросила, белой сажи и т. д.) уменьшает ее усадку. В то же время излишне большое количество наполнителей может привести к увеличению вязкости связующего, а это, в свою очередь, заметно ухудшает качество пропитки стеклоарматуры. Основными технологическими характеристиками связующих являются вязкость, экзотермич-ность реакции, жизнеспособность, температура отверждения, период желатинизации, а также время, в течение которого деталь должна находиться в форме до ее извлечения, и время выдержки до полного отверждения детали. При этом связующее приобретает пространственную сшитую структуру, а материал детали становится твердым, неплавким и нерастворимым. Происходящая в процессе отверждения усадка связующего сдерживается стеклянными волокнами арматуры, что неизбежно приводит к возникновению значительных структурных напряжений во всей композиционной системе. [c.14]

    Приготавливать клей удобно в реакторе типа РКР-П-100 с пропеллерной мешалкой и рубашкой для обогрева (рис. 17). В реакторе растворяют смолу в ацетоне и вводят наполнитель. При температуре помещения нпл е 18°С для ускорения растворения смолы через рубашку обогрева пропускают теплую воду. Для этого рубашку реактора подключают к системе водяного отопления. Температуру воды в обогревательной рубашке поддерживают до 25—30°С. При растворении смолы в ацетоне и введении наполнителя включается пропеллерная мешалка, работающая от электропривода. Выгрузка готового клея производится через нижний спуск. Для облегчения и ускорения работы реактор устанавливают над бункером клеерасфасовочного аппарата. [c.47]

    Прочностные характеристики изделий на основе фенольных композиций конструкционного назначения, отверждаемых без давления и подвода тепла, в 2—4 раза ниже соответствующих характеристик термически отвержденных смол, что ограничивает возможности их применения в качестве конструкционных материалов. Одной из наиболее существенных причин снижения прочности материала является порообразование за счет выделяющихся при поликонденсации воды и формальдегида. Для ликвидации микропор в композицию рекомендуют вводить различные адсорбирующие воду добавки (глину, силикаты, карбонат кальция, метаоиликаты, цеолиты и др.). Увеличение прочности изделий происходит при повышении гидрофильности смол, применении специальных катализаторов отверждения, введении наполнителей и обработке их поверхности физическими и химическими методами. Широкое распространение получили заливочные конструкционные материалы на основе фенолоформ альдегидных смол с различными минеральными наполнителями — так называемые полимербетоны. Использование резольных смол заливочного типа позволяет изготавливать крупногабаритные защитные покрытия, обладающие термо- и огнестойкостью, хорошими электроизоляционными свойствами и химической скоростью. [c.18]

    Поскольку полиэфирные смолы часто используют как связующее в наполненных композициях, для оценки технологических свойств материала требуется изучение роли наполнителя. Систематические исследования показали [79], что для наполненных полиэфирных смол в полной мере соблюдаются общие закономерности, проявляющиеся при введении наполнителя в сравнительно маловязкую матрицу. Естественно, что при этом наблюдается рост вязкости, темп которого зависит от содержания и природы наполнителя, поскольку последняя влияет как на характер взаимодействия наполнителя с матрицей, так и на образование собственной структуры наполнителя. При введении в полиэфир неструктурирующих наполнителей сохраняется ньютоновский характер течения материала, а при использовании активных наполнителей возможно появление еньютоновских эффектов вплоть до возникновения предела текучести. Кроме того, резко возрастает упругость материала, что проявляется в появлении нормальных напряжений при сдвиговом течении (эффект Вайссенберга). [c.51]

    Релаксационные свойства клеев проявляются во времени. Это существенно влияет на характер временной зависимости прочности [9]. Так, испытывались образцы с односторонней нахлесткой из алюминиевого сплава, склеенные эпоксидными клеями (ЭПЦ-1, К-1531, К-147 и К-134), различающимися главным образом содержанием жидкого эластомера (О, 20, 70 и 200 масс. ч. на 100 масс. ч. смолы ЭД-20 соответственно). Во всех случаях в состав клея был введен наполнитель — цемент в количестве 200% от массы смолы. Испытания проводили при постоянных температуре (18 1°С) и относительной влажности (60 3%) воздуха. Результаты испытаний представлены на рис. 8.1, из которого видно, что графики временной зависимости прочности клеевых соединений (сдвиг при растяжении) в системе координат нагрузка — логарифм времени отклоняются от прямолинейности (рис. 8.1,а). Для всех исследованных клеев, роме К-134, отличающегося наибольшим содержанием эластомера, на кривых наблюдается более или менее ярко выраженный излом при относительно малых временах нагруже- [c.226]

    В работе также подтверждается, что процесс развития трещин в полиэтилене является результатом вязкого течения в их вершинах. Значение энергии активации растрескивания полиэфирных смол в воде (24 ккал1молъ), по-видимому, также свидетельствует о известной роли пластической деформации при разрушении С увеличением жесткости полиэтилена при введении наполнителя энергия активации растрескивания в Igepal возрастает до 25—30 ккал/молъ, что можно связать с частичным разрывом химических связей в этих условиях. [c.155]

    Возрастание поверхностной энергии разрушения обычно наблюдается только при введении дисперсных наполнителей в очень хрупкие полимеры. Во всех описанных выше исследованиях поверхностная энергия разрушения ненаполненных отвержденных имели колебание от 50 до 150 Дж/м и при введении наполнителей возрастала обычно до 450—500 Дж/м Это возрастание весьма существенное для хрупких полимеров. Оно происходило вследствие того, что частицы связывали края трещин и затрудняли их развитие по механизму, который будет более подробно описан ниже. При использовании полимеров с повышенной поверхностной энергией разрушения эффект связывания краев трещин уменьшается и введение хрупких дисперсных наполнителей снижает вязкость разрушения вследствие уменьшения в материале объема матрицы с высокой вязкостью разрушения. Это подтверждается данными о влиянии стеклосфер на поверхностную энергию разрушения хрупкой и эластифицнрованной эпоксидной смолы типа ЭД-20, отвержденной диаминодифенилметаном [38]  [c.73]


Смотреть страницы где упоминается термин Введение наполнителей в смолу: [c.239]    [c.139]    [c.213]    [c.139]    [c.139]    [c.177]    [c.92]    [c.166]    [c.89]    [c.169]    [c.32]    [c.34]    [c.379]   
Смотреть главы в:

Справочное руководство по эпоксидным смолам -> Введение наполнителей в смолу


Справочное руководство по эпоксидным смолам (1973) -- [ c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители



© 2024 chem21.info Реклама на сайте