Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость выделения вещества из адсорбента

    Благодаря большой удельной поверхности адсорбентов возможны сравнительно большие скорости адсорбции веществ при малых концентрациях в исходных смесях и даже практически полное их поглощение, что трудно осуществимо другими технологическими методами (например, абсорбцией или ректификацией). В связи с этим процесс адсорбции применяют на практике преимущественно для выделения из смесей компонентов с низкой концентрацией, а в ряде случаев также для разделения смесей, состоящих из компонентов с очень близкими физическими и химическими свойствами (осушка и тонкая очистка газов и жидких [c.613]


    Стеклянную колонку Диаметром 10—12 мм и объемом Й5—30 мЛ (или бюретку, снабженную каучуковой трубкой, зажимом и стеклянным наконечником) тщательно моют, сушат и закрепляют в штативе. В нижнюю часть колонки помещают кусочек стеклянной ваты и заливают постепенно взмученную суспензию 15 г оксида алюминия (марки для хроматографии ) в 40 мл четыреххлористого углерода, спуская через нижний кран избыток растворителя в приемник. Необходимо все время постукивать по колонке, чтобы адсорбент оседал равномерно. Растворитель должен вытекать из колонки со скоростью 20—30 капель в минуту. Если скорость вытекания будет значительно меньше, тогда верхнюю часть колонки закрывают пробкой с трубкой и через нее нагнетают сжатый воздух или просасывают воздух через колонку, подключив водоструйный насос к герметично соединенному приемнику. После заполнения колонки адсорбентом верхний уровень его закрывают тампоном из стеклянной ваты. Когда слой растворителя дойдет до верхнего тампона, то в колонку заливают раствор 0,2—0,3 г смеси о-нитро-анилина и азобензола (1 1) в 20 мл четыреххлористого углерода. По мере прохождения раствора через колонку на адсорбенте появляются две окрашенные зоны нижняя — светло-желтая (азобензол) и верхняя —темно-желтая (о-нитроанилин). Когда уровень смеси дойдет до верхнего тампона, в колонку заливают четыреххлористый углерод. Постепенно окрашенная зона азобензола спускается вниз, ее собирают в приемник, вымывая из колонки растворителем. Когда в приемник начнет стекать по каплям бесцветная жидкость, приемник меняют, избыток четыреххлористого углерода спускают (когда он достигнет уровня верхнего тампона) и заливают диэтиловый эфир, вымывая им о-нитроанилин. Окрашенный слой о-нитроани-лина в эфире собирают в отдельный приемник. Оба элюата переливают в маленькие колбы Вюрца и отгоняют растворители на водяной бане при нагревании или лучше в вакууме (при комнатной температуре) до объема в 2—3 мл каждого. Оставшиеся растворы выливают на тарированные часовые стекла и после испарения растворителей определяют массу и температуру плавления выделенных веществ (азобензол — темп. пл. 68°С, о-нитроанилин—темп. пл. 7ГС). [c.181]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]


    Электропечь, внутри которой имеется постоянный градиент температуры, передвигается вдоль слоя сверху вниз с определенной скоростью, быстро возвращается из нижнего положения в верхнее, и цикл повторяется снова. При движении печи вдоль слоя адсорбента на его остывающей части все компоненты из газового потока, а при следующем цикле все накопленные на слое вещества передвигаются вместе с печью, каждый при своей характеристической температуре. Выделение отдельных компонептов в чистом виде происходит последовательно, по мере движения печи вдоль слоя адсорбента. [c.317]

    Адсорбция является универсальным процессом извлечения веществ в том смысле, что все твердые тела поглощают из растворов и газообразных смесей хотя бы в небольших количествах любые вещества даже при самой малой концентрации последних. Величина и скорость адсорбции увеличиваются с увеличением концентрации поглощаемого вещества—адсорбтива до тех пор, пока ие наступит насыщение адсорбента после этого адсорбция прекращается. При каждой данной концентрации через некоторое время адсорбент насыщается поглощаемым веществом, при постоянной температуре устанавливается равновесие между поглощением (адсорбцией) и выделением обратно в раствор (в окружающую среду) поглощенного вещества—десорбцией. Величина и скорость сорбции при прочих равных условиях тем больше, чем выше величина поверхности сорбента. [c.342]

    Простейшие колонки изображены на рис. 178. Колонки заполняют гранулированным сорбентом таким образом, чтобы он образовывал столбик равномерной плотности. Для этого слой адсорбента механически уплотняют, или вносят адсорбент в виде однородной суспензии (из делительной воронки, снабженной эффективной мешалкой), или же вносят его в колонку, наполненную на /з объема растворителем. Во время загрузки растворитель должен каплями выливаться из нижнего конца колонки. Анализируемый раствор вводят в колонку и разделяют компоненты элюированием соответствующей подвижной фазы. Элюент через колонку внутренним диаметром 1 см пропускают со скоростью примерно 1 мл/мин. Фракции, содержащие обычно несколько миллилитров элюата, собирают вручную или с помощью автоматического коллектора фракций и определяют в них содержание веществ соответствующим аналитическим методом. Время выделения одного компонента составляет приблизительно 30 мин, т. е. для элюирования одного компонента требуется не менее 25 мл элюента. [c.314]

    Теперь рассмотрим хемосорбцию, или химические реакции с поверхностью твердого носителя. Этот процесс приводит либо к полной, либо к частичной потере пробы в зависимости от емкости хемосорбента. Если химическая реакция с твердым носителем или адсорбентом протекает с выделением летучих продуктов, то при достаточно высокой скорости этой реакции из колонки выходит продукт реакции. Все это приводит либо к уменьшению точности анализа, либо к полной невозможности его проведения. При малой скорости реакции происходит искажение формы пика за счет побочных продуктов, которые непрерывно образуются в процессе продвижения зоны анализируемого вещества по колонке. Чтобы предотвратить эти явления, необходимо ослабить адсорбционное влияние твердого носителя, адсорбента или конструкционного материала. [c.13]

    Процесс адсорбции сопровождается выделением тепла. Количество выделенного тепла в зависимости от размера адсорбируемых молекул составляет от 1—5 до 10—20 ккал/моль. Скорость адсорбции зависит от диффузии (диффузия — самопроизвольный процесс переноса веществ, приводящий к установлению равновесного распределения концентраций) молекул адсорбата из объема к поверхности раздела фаз (внешняя диффузия), от движения молекул вдоль поверхности (поверхностная диффузия) п от диффузии в порах адсорбента (внутренняя диффузия). Медленнее идет диффузия в порах. Адсорбция газов происходит почти мгновенно. Адсорбция нз жидких растворов идет значительно медленнее из-за меньшей скорости диффузии молекул в поверхностный слой адсорбата и в глубь пор адсорбента. [c.51]

    Четкость выделения зон адсорбции зависит от природы разделяемой смеси и адсорбента, а также от условий проведения процесса температуры, давления, скорости подачи разделяемого потока. При хорошей дифференциации зон адсорбции появление компонентов в выходном потоке строго последовательно при этом говорят о хроматографическом разделении исходной смеси. В промышленных условиях хроматографического разделения, как правило, не происходит, такая цель и не ставится обычно решается задача извлечения из исходной смеси одного или нескольких целевых компонентов. В последнем случае процесс ориентируется на извлечение ключевого компонента — наименее сорбируемого из целевых. Появление ключевого компонента в выходном потоке является сигналом о необходимости прекращения процесса адсорбции. В силу обратимости процесса адсорбции адсорбированные компоненты можно удалить из слоя адсорбента, т. е. десорбировать. На процесс десорбции особое влияние оказывает повышение температуры слоя адсорбента и создаиие потока газовой (паровой) фазы — десорбирующего (регенерационного) потока. В результате осуществления процесса десорбции получают целевые компоненты в виде продукта и регенерированный (освобожденный от адсорбированного вещества) адсорбент. Слой адсорбента, таким образом, последовательно переходит из цикла адсорбции в цикл регенерации. Цикл регенерации, в свою очередь, подразделяется на стадию нагрева (собственно десорбция) и стадию охлаждения (снижение температуры слоя адсорбента до температуры адсорбции). В соответствии с этими стадиями адсорбционного процесса путем последовательного переключения перерабатываемого потока с одного адсорбционного аппарата на другой организуется непрерывный производственный процесс. [c.93]


    Рогинский с сотр. разработали тепловытеснительные методы препаративной хроматографии, достоинствами которых являются, в частности, отсутствие необходимости в газе-носителе и возможность введения больших проб. Так, описан метод получения пропилена высокой чистоты путем термической десорбции с адсорбента [30 ]. Предложены также методы непрерывного хроматографического выделения веществ из смесей. На рис. VIII, изображена уста-npotia новка [31], представляющая собой цилиндр 4, вдоль внутренней поверхности которого помещены 100 колонок 1 длиной 1,2 м, внутренним диаметром 6 мм каждая (другие модели этого прибора включают меньшее число колонок). Цилиндр вращается с постоянной скоростью, причем в каждый момент проба поступает только в одну колонку, а газ-носитель — в остальные 99 колонок. При повороте цилиндра [c.276]

    Метод, описанный в работе [145] и предназначенный для дистиллятных топлив, состоит в пе,рколяции отмеренного объема топлива через мелкосферический алюмосиликагель (алюмосили-катный катализатор ТУ 38 10119—70) и вытеснении метанолом адсорбированных им веществ. Основное условие точного отделения смолистых соединений—соблюдение регламентированной скорости перколяции и установленных оптимальных соотношений топлива и адсорбента. Скорость перколяции, в зависимости от типа топлива, составляет 0,01—0,05 мл/мин количество пропускаемого топлива — 3—50 объемов на 1 объем адсорбента (меньше для дизельных топлив и больше для гидроочищенных реактивных топлив). Анализ проводят в бюретке емкостью 100 мл, в которую засыпают 50 см просушенного адсорбента (5 ч при 500 °С). Авторы [145] использовали этот метод для выделения кислородных соединений с целью их дальнейшего исследования. [c.170]

    Различие сорбируемости компонентов смеси особенно ярко проявляется при медленном движении смеси через слой зерен сорбента. Лучше адсорбируемое вещество сильнее и поэтому дольше удерживается поверхностью и, следовательно, движется через слой медленнее. Это явление было открыто в 1903 г. русским ботаником М. С. Цветом при разделении экстракта пигментов, выделенных из листьев растений. Введя окрашенный раствор в колонку с адсорбентом (А12О3), при промывании колонки растворителем Цвет наблюдал, как окрашенная полоса разделяется на ряд полос разного цвета, движущихся с разными скоростями. Каждый компонент смеси был представлен отдельной полосой и мог быть выделен в чистом виде. Поскольку в этих опытах о разделении смеси свидетельствовала различная окраска полос, Цвет назвал разделение хроматографическим. Это название сохранилось и поныне, хотя современные методы обнаружения, идентификации и количественного определения компонентов смеси не связаны с окраской веществ, очень многообразны и часто сложны. [c.232]

    Идея хроматографического метода в общем виде принадлежит русскому ученому бота)1ику М С. Цвету, который для разделения веществ использовал явление мзбкрательной адсорбции. Так, при фильтрации пигментов, выделенных нз хлоропластов и растворенных в петролейном эфире, через стеклянную колонку, заполненную карбонатом кальция, М. С. Цвет наблюдал разделение исходной смеси па окр. тен)1ые зоны в соответствии с эффективностью адсорбции пигментов на данном адсорбенте (рис. 9.1). Эти зоны перемешались в колонке с раз-лич)1ыми скоростями, при пропускании чистого растнорителя перемещение продолжалось до завершения разделения. Цвет назвал свой метод хроматографией (разделением по цвету), но уже тогда он вполне обоснованно предположил, что хроматографический метод применим и к бесцветным веществам. Однако а то время не было еще приборов, с помощью которых можно было бы контролировать процесс разделения бесцветных веществ. В настоящее время такие приборы имеются в больнгом разнообразии, их называют детекторами. [c.220]

    Учитывая определяющую роль диффузии, можно понять зависимость скорости адсорбции от различных факторов [133, 141]. Так, скорость адсорбции молекул малого размера оказывается выше, чем больших, что обусловлено диффузией. Поэтому в растворе полидисперсного полимера адсорбированный слой оказывается обогащенным низкомолекулярной фракцией. Затем макромолекулы малого размера постепенно вытесняются медленно диффундирующими большими макромолекулами. Поэтому после установления равновесия (когда количество адсорбированного полимера уже не увеличивается) вязкость раствора продолжает снижаться [155]. Однако при очень прочной связи адсорбтива >с поверхностью адсорбента такой обмен становится невозможным, л Основной вывод, который можно сделать при рассмотрении влия-j ния молекулярного веса полимера на адсорбцию, заключается в том, что повышение молекулярного веса способствует увеличению адсорбции [133, 173], хотя обнаружены и противоположные результаты [142, 165, 174]. Адсорбция низкомолекулярных веществ, как правило, происходит с выделением тепла, а с повышением температуры уменьшается, поскольку возрастает интенсивность теплового движения и увеличивается десорбция. Адсорбция1 полимеров очень часто протекает с поглощением тепла и возрастает с повышением температуры. Однако можно наблюдать и уменьшение адсорбции с повышением температуры и даже экстремальную зависимость [142, 166]. Иногда адсорбция первого слоя полимера протекает эндотермически, а последующие слои адсорбируются экзотермически. [c.24]

    Меры профилактики. В производстве платины и платиноидов, в местах пересыпки пылящих материалов, где допустимо по технологическим условиям, необходимо предусматривать гидрообеспыливание. Применение поверхностно-активных пылесмачиваю-пщх веществ и адсорбентов влаги должно быть согласовано с органами санитарной службы. Выгрузка пыли из очистных устройств и ее транспортировка должны быть механизированы и исключать пылеобразование. Конструкция укрытий и отсосов должна быть неотъемлемой частью оборудования и обеспечивать удобство его обслуживания и ремонта. Основное технологическое оборудование (машины для приема и усреднения сьфья, мельницы, дробилки, реакторы, фильтры, отстойники, центрифуги, печи) должно иметь местные отсосы со скоростью движения воздуха в проемах не менее 2 м/с. Скорость движения воздуха в рабочих гфоемах лабораторных шкафов, в рабочем сечении камеры должна быть не менее 1,5 м/с. Запрещается ручная очистка тары от материалов, содержащих платиноиды. Уборку производственных помещений и оборудования необходимо проводить при включенной приточно-вытяжной вентиляции. Снятие пыли со стен помещений, с оборудования, воздуховодов проводить вакуумным способом. При снятии краски, штукатурки обильно орошать водой соответствующие поверхности. Одним из основных требований к этим производствам является организация технологического процесса с учетом сокращения ручных операций при сохранении поточности производств. В связи с загрязнением рабочих поверхностей оборудования и помещения в целом необходимо проводить регулярную влажную уборку. Необходимы местная и общая вентиляция, механизация всех операций, сопровождающихся выделением пыли [c.469]

    Параллельно с этим исследовали влияние смолистых веществ, образующихся при длительном хранении, на процессы образования твердой фазы в реактивных топливах. Из исходного топлива ТС-1 были выделены на силикагеле и изучены смолистые вещества. Обессмоленное топливо закладывали на хранение, через год из него снова выделяли смолЭ. Такая операция повторялась еще дважды. Хранили топливо в железных 27О-литровых бочках при соотношении жидкой и паровой фаз 3 1. Смолы выделяли на силикагеле АСК. Углеводородную часть десорбировали изопентаном, смолистую — смесью этанола, ацетона и бензола в объемном соотношении 1 1 1. Скорость прохождения топлива через адсорбент составляла 1 Полноту извлечения контролировали по показателю преломления и весовым путем после отделения растворителя. Растворитель отгоняли в токе азота при нагревании. Характеристика выделенных смолистых веществ приведена в табл, 41. [c.176]

    Иногда, особенно при очень небольших давлениях, на очень чистых стеклянных поверхностях не происходит ожидаемой конденсации. Этого не наблюдается, если на стекле предварительно сконденсировано небольшое количество данного илндругого подходящего вещества [551]. Другим, гораздо более неприятным затруднением является образование аэрозоля, возникновение которого возможно при очень небольших скоростях потока (1 лЫас и менее). В результате быстрого расширения влажного воздуха при температуре выше —50° образуются только капельки водяного тумана образование тумана из льда может, по-видимому, произойти только в случае, если имеются зародыши льда или при еще более низких температурах [552]. Выделение тумана в газовом пространстве снежная буря) происходит главным образом в ламинарном потоке, в то время как осаждение его на стенках лучше происходит в турбулентном потоке [553]. Однако это явление прежде всего зависит от системы. Попытка устранить этот процесс, заполняя конденсационный сосуд различными веществами, оказалась безуспешной [554]. Даже применение адсорбентов не позволяет решить эту задачу. Однако полное удаление всех взвешенных частичек часто возможно при сжижении всего имеющегося газа или растворении его в подходящей жидкости и повторной отгонке. Менее надежный метод — пропускание газа последовательно через несколько конденсационных сосудов, которые изготовлены в виде 6-витковой спирали из трубки с внутренним диаметром 6 мм и помещены в охлаждающую ванну при использовании этого метода верхнюю половину витков следует оставлять теплыми, с тем чтобы после прохождения каждой спирали газ нагревался настолько, чтобы частицы аэрозоля полностью испарялись [555]. [c.481]

    Газ при переходе из колонки в ловушку резко охлаждается, что часто приводит к образованию аэрозоля (тумана), неконденсирующегося и выходящего из ловушки вместе с газом-носителем. Для осаждения тумана применяют электрическое поле (до 20 кВ), центрифугирование, заполнение ловушки насадкой (в частности, стеклянной ватой, адсорбентом, носителем, пропитанным жидкостью) или растворителем, создание температурного градиента между стенками ловушки и т. д. Полнота выделения фракции зависит не только от конструкции ловушки и температуры хладагента, но также и от летучести вещества, его концентрации в потоке газа-носителя и скорости потока. Так, в ловушке, изображенной на рис. 9.9, при —20 °С эфир не улавливается, циклогексан улавливается на 39%, изооктан — на 44,6% и гранс-декалин — на 88%. Степень улавливания компонента из потока можно повысить путем увеличения его концентрации. В частности, при повышении температуры колонки от 100 до 200 °С степень извлечения транс-яе-калина увеличивается с 47 до 93,1%. Программирование температуры также дает возможность увеличить степень улавливания. В момент выхода выделяемого компонента целесообразно снизить скорость газа-носителя. Например, при резком уменьшении расхода газа-носителя (начальный расход 200 смУмин, конечный — 25 см /мин) декалин улавливается на 97%. [c.261]

    Дифференциальная теплота адсорбции определяется по уравнению (10.4). Принимается, что изменения мощности, компенсирующие выделение теплоты адсорбции (AlFa) и скорость самой адсорбции (AWt—А г), относятся к одному и тому же моменту времени т. Это допущение справедливо лишь в том случае, когда адсорбционное равновесие устанавливается быстро, т. е. когда распределение адсорбированного вещества на поверхности адсорбента не затруднено медленными процессами миграции его молекул по неоднородным участкам его поверхности и внутри узких пор. Таким требованиям отвечают однородные адсорбенты с малой удельной поверхностью, особенно непористые неспецифические адсорбенты, такие, как графитированная термическая сажа. На таких адсорбентах описываемый метод позволяет определять весьма тонкие тепловые эффекты, связанные, например, с двумерной конденсацией. [c.172]


Смотреть страницы где упоминается термин Скорость выделения вещества из адсорбента: [c.103]    [c.237]    [c.91]    [c.683]    [c.279]    [c.100]    [c.8]    [c.244]    [c.23]   
Регенерация адсорбентов (1983) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбент веществом



© 2025 chem21.info Реклама на сайте