Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо каталитическая активность

    Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]


    Для синтеза ЫНз (кривая 3), где лимитирующим этапом является хемосорбция азота, максимум каталитической активности смещен в сторону Ре (З Чх ). Удельная каталитическая активность никеля в этой реакции на 3 порядка ниже железа. Видимо, энергия связи азота с поверхностью железа наиболее близка к оптимальной при синтезе аммиака. Аналогичные зависимости имеются и в других периодах [4]. [c.34]

    Смешанные катализаторы состоят из компонентов, каждый из которых обладает каталитической активностью к данной реакции. Они могут существенно отличаться по каталитической активности от компонентов в чистом состоянии. Например, реакция разложения гипохлорита натрия на хлорид и хлорат натрия в водном растворе катализируется одной из гидроокисей никеля, меди и железа. При этом скорость реакции равна (в условных единицах) 700, 100 и 100 соответственно. При применении смешанного катализатора, содержащего 70% гидроокиси никеля и по 15% гидроокисей меди и железа, скорость реакции повышается до 1200 условных единиц. [c.429]

    Пероксидазы и катализы катализируют реакции, протекающие с участием пероксида водорода как окислителя. В качестве восстановленной формы образуется вода. Для каталитической активности этих ферментов требуются ионы железа и/или меди. [c.399]

    Кроме железа, каталитически активны никель, кобальт, алюминий, палладий. Для химического осаждения никеля на медь и медные сплавы поверхность этих металлов должна контактироваться с никелевой или алюминиевой проволокой. [c.157]

    Катализаторами, ускоряющими окисление бензинов и дизельных топлив при хранении, могут быть металлические поверхности резервуаров и трубопроводов, а также оксиды и соли, покрывающие эти поверхности. Ускорение окисления вызывается, кроме того, оксидами и солями металлов, которые могут находиться в топливах в виде тонкодисперсной взвеси. Каталитическую активность в основном проявляют металлы переменной валентности— железо, медь, хром, марганец, кобальт [66]. [c.58]

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]


    На рис. 1Х-1 показано влияние некоторых добавок на каталитическую активность железа в процессе синтеза аммиака. Рис. 1Х-2 иллюстрирует проявление избирательных свойств катализатора. Добавки, которые сами по себе не обладают каталитическими свойствами, но усиливают активность катализатора, называются промоторами. Вещества, в присутствии малых количеств которых снижается активность катализаторов, носят название катализа-торных (контактных) ядов. Обычно они не добавляются специально к катализатору, но неизбежно отлагаются на нем в течение процесса. Ускорителями называют вещества, при добавлении которых в реакционную систему поддерживается активность катализатора за счет подавления действия катализаторных ядов или какого-либо другого воздействия. Вещества, добавляемые в процессе производства катализатора для уменьшения их активности, носят название ингибиторов, они могут иметь ценность в том случае, если катализатор вводится не для увеличения скорости реакции, а для проявления избирательности действия. [c.304]

    Алюмосиликатный катализатор крекинга, полученный активацией сернокислым алюминием, содержит значительное количество железа, внесенного на стадиях мокрой обработки. Оно отлагается на поверхности катализатора в каталитически активной форме, в результате чего показатели крекинга ухудшаются. Шарики после прокаливания нередко имеют различную окраску — от светло-розовой при содержании железа 0,07% до ярко-оранжевой (0,1% железа). Такой катализатор обладает повышенной коксообразующей и дегидрирующей способностью выход бензина снижается почти на 10%, выход кокса увеличивается примерно до 15% и содержание водорода в газе увеличивается почти в 3 раза. [c.21]

    Алюмосиликатный катализатор помещали в реакторе на полученных спеканием пористых бронзовых пластинах со средним диаметром пор 25 мкм. Катализатор состоял из тщательно просеянного песка с добавкой необходимого количества окиси железа для повышения каталитической активности. Ниже приведены некоторые свойства применявшихся катализаторов  [c.349]

    На скорость окисления масел в двигателях существенное влияние оказывают металлы, из которых изготовлены детали двигателя сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хром и др. Некоторые из этих металлов оказывают явное каталитическое действие на процесс окисления масел, другие действуют слабо. Сильнейшими катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению способствуют и продукты первичного окисления компонентов масла. Они тоже могут взаимодействовать с металлами, давая вещества, в свою очередь ускоряющие процессы окисления. Было, например, установлено, что каталитической активностью обладают соли нафтеновых кислот, особенно нафтенаты свинца и меди. [c.14]

    Оксиды несходных металлов подгруппы железа и хрома. В состав катализаторов дегидрирования, гидрообессеривания, риформинга и ряда других входят соединения переходных и благородных металлов, которые проявляют каталитическую активность в окислительно-восстано-вительных реакциях [93]. Поэтому естественно, что уже в ранних работах, посвященных изучению закономерностей окислительной регенерации катализаторов, содержащих переходные металлы, наблюдали более высокие скорости окисления кокса по сравнению с Таковыми для некаталитического окисления углерода [3, 75]. Однако только в цикле работ сотрудников Института катализа СО АН СССР детально изучены закономерности каталитического окисления кокса на оксидах чистых переходных металлов, а также промотированных щелочными металлами [104-108]. [c.40]

    Наблюдаемую особенность изменения каталитической активности в процессе регенерации в зависимости от природы оксида авторы объясняют влиянием энергии связи кислорода катализатора на скорость выгорания углеродистых отложений [104]. Энергия связи кислорода в оксиде железа(П1) значительно выше энергии связи для оксидов кобальта и никеля, значения которых близки. Установлено [104, 105], что при низких температурах регенерации процесс лимитируется отрывом кислорода от решетки оксида, и в уравнении, связывающем энергию активации процесса с энергией связи кислорода катализатора, Е = Ео щ, будет знак плюс. В этом случае снижение энергии связи кислорода должно уменьшать энергию активации процесса в целом и увеличивать скорость выгорания углерода. Следовательно, при 450 С наиболее медленно выгорание углерода протекает на оксиде железа(П1), так как кислород в данном случае связан наиболее прочно. [c.41]

    Такие металлы, как платина, палладий, медь, железо, сплавы палладия с родием, с самого начала претерпевают характерные, сложные изменения структуры поверхности, не прекращающиеся при длительной работе. Пластинки платины после работы переходят в нагромождения кристаллов разной величины и формы. После длительной работы (реакция водорода с кислородом) в катализаторе появляются отграниченные друг от друга зоны, соответствующие граням отдельных кристаллов, выходящих на поверхность . Такие грани имеют разную каталитическую активность, что очень важно для понимания распределения активных центров на поверхности катализатора. [c.56]


    При синтезе аммиака из азота и водорода в качестве катализатора применяется железо 0,01 % серы в железе заметно снижает каталитическую активность железа, а при 0,1% серы железо полностью теряет каталитические свойства. Некоторые веш,ества отравляют одни катализаторы и не отравляют другие. В обш,ем каждый катализатор имеет свой список ядов. Каталитические яды ограничивают, снижают срок службы катализаторов. В технологии очень важно тш,ательно предохранять катализаторы от отравления, предъявляя специальные требования к аппаратуре и очистке исходных веществ. Иногда действие яда удается использовать для ведения процесса в желательном направлении. Так, например, гидрирование хлористого бензоила в бензольном растворе над платиной приводит через ряд последовательных стадий к образованию толуола  [c.430]

    Хорошо известно, что металлическое железо, кобальт и никель способны катализировать полное разложение углеводородов до кокса и водорода. Рассмотренные выше катализаторы содержат соединения железа и никеля, и поэтому режим процесса должен исключить условия, при которых возможно восстановление этих компонентов до каталитически активных металлов. Такому восстановлению препятствует использование избытка водяного пара или образование водяным паром соединений с другими компонентами катализатора. В результате попытка применить эти катализаторы для реакций с углеводородами без водяного пара неизбежно приведет к повышенному коксообразованию. [c.76]

    Оба метода активирования испытаны в том виде, в каком они применялись с целью получения активных контактов для обесцвечивания смазочных масел. Так как активная поверхность алюмосиликатных катализаторов, но-видимому, мало зависела от наблюдающегося в природе соотношения между основными компонентами глины — оксидами кремния, алюминия и железа, а также учитывая установленное С. В. Лебедевым влияние на каталитическую активность алюмосиликатов теплового активирования, следовало ожидать, что значительную роль в формировании активной новерхности катализатора будут играть режимы процессов активации и последующего процесса сушки активированной глины. Однако подобрать оптимальный режим активации для каждого образца глины отдельно практически не представлялось возможным, поэтому все исследованные образцы глин активировались серной кислотой, а часть глип — также и соляной кислотой. Влияние всех факторов процесса активации еш формирование каталитической активности глиегы детально изучено на образцах наиболее активных Г.ЕИЕЕ. [c.84]

    Отсюда можно сделать практически важный вывод главной причиной влияния дисперсности на активность является образование максимально эффективной поверхности при определенных размерах кристаллов катализатора, что является критерием для получения эффективных технических катализаторов. Эти работы убедительно доказывают активность кристаллической фазы, а не отдельных атомов, как считает Н. И. Кобозев. Г. К. Боресков пишет, что нет никаких оснований считать кристаллическое вещество лишенным каталитической активности [25]. С. Л. Киперман и М. И. Темкин [50] проверили работы Н. И. Кобозева о высокой каталитической активности очень разбавленных слоев железа на угле и нашли, что железо находится всегда не в виде атомов, а в виде кристаллов, т. е. основные положения теории ансамблей становятся сомнительными. .  [c.151]

    Одним из путей подавления каталитической активности примесей металлов переменной валентности в процессах окисления является перевод их в неактивную форму за счет образования комплексов или хелатов. В качестве таких агентов могут применяться антиоксиданты, относящиеся к производным /г-фениленди-амина [30, 31], которые пассивируют каталитическое действие меди, марганца и железа в процессе окисления каучуков. Аналогичный эффект наблюдался при введении в высокомаслонапол-ненный бутадиен-стирольный каучук, содержащий повышенное количество меди и железа, таких антиоксидантов, как п-гидрокси- фенил-р-нафтиламин (параоксинеозон) или меркаптобензимидазол [31]. Достаточно эффективными пассиваторами меди в процессе окислительной деструкции каучуков является щавелевая кислота, аминобензойные кислоты, продукт конденсации бензальдегида с гидразином [41]. [c.631]

    Наряду с железом каталитически активных соединений ткани растений и животных содержат этот элемент в составе веществ иного, в ряде случаев запасного характера. В списке таких соединений особое место занимает ферритин, который до недавнего времени был обнаружен лищь в животных тканях. Известны его физические и химические свойства и изучена физиологическая роль в основном у животных. Совсем недавно получена электронно-микроскопическая картина его строения и произведен анализ белковой части. [c.211]

    Наряду с железом каталитически активных соединений ткани растений могут включать этот элемент в вещества запасного характера. Одно из них — белок ферритин, который содержит железо в негемовой форме. Он имеет оранжевокоричневую окраску и состоит из бесцветного белка апофер-ритина и нескольких тысяч атомов железа в виде соединений основного характера с гидроксильными и фосфатными группами. На долю железа может приходиться около 23% сухой массы ферритина. В больших количествах ферритин присутствует в пластидах. [c.253]

    Вместо кобальта или железа в качестве каталитически активных металлов можно использовать также никель и рутений, однако промышленного значения они не получили. С технической точки зрения в настоящее время наибольший интерес представляют катализаторы иа основе железа, хотя вначале катализаторами синтеза по Финчеру—Тропшу являлись исключительно кобальтовые катализаторы. [c.66]

    Из металлов наиболее характерными каталитическими свой-стнами обладают элементы VUl группы периодической системы элементов Д. И. Менделеева. Для ряда процессов катализаторами являются железо (синтез аммиака) кобальт, никель, иридий, платина, палладий (гидрирование и для последних — окисление двуокиси серы). Кроме того, металлы VUl группы являются катализаторами и других процессов разложени.я перекиси водорода, получения гремучего газа, окислеиия аммиака, метанола, метана, окиси углерода, дегидрирования спиртов и т. д. Каталитической активностью обладают и соседние (в периодической системе) элементы медь, серебро, отчасти золото, возможно цинк и кадмий. [c.363]

    Изучая нричр ны каталитической активности флоридина, Гайер [49] установил, что активной составной частью флоридина является алюмосиликат, а содержащиеся в глине силикаты кальция, магния и железа не активны. Исходя из этого, (.н приготовил синтетический алюмосиликат путем осаждения оксида алюминия (до 1 % ) на силикагеле, который вызывал значительную полимеризацию пропилена при 350 °С. В случае полимеризации изобутилена синтетический алюмосиликат ведет себя так яге, как и активированный флоридин [50]. [c.49]

    В качестве природных катализаторов для ряда процессов (кре кинг, этерификация, полимеризация, производство серы из серии стых газов и другие) могут быть использованы боксит, кизельгур железная руда, различные глины [200—206]. Природные катализа торы дешевы, технология их производства сравнительно проста Она включает операции размола, формовки гранул, их активацию Применяют различные способы формовки (экструзию, таблетиро ввние, грануляцию на тарельчатом грануляторе), пригодные для получения гранул из порошкообразных материалов, увлажненных связующими. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой растворо м"щелочи йли кислоты при повышенных Температурах. При активации, как правило, увеличивается поверхность контактной массы. Наибольшее применение в промышленном катализе нашли природные глины монтмориллонит, каолинит, бейделлит, бентониты и др. Они представляют собой смеси различных алюмосиликатов и продуктов их изоморфных замещений, а также содержат песок, известняк, окислы железа, слюду, полевые шпаты и другие примеси. Некоторые природные алюмосиликаты, например, каолин, обладают сравнительно высокой каталитической активностью в реакциях кислотно-основного катализа уже в естественном виде, после сушки и прокаливания. Большинство других требует более глубокой предварительной обработки кислотой при соответствующих оптимальных условиях (температура, концентрация кислоты, продолжительность обработки). В активированных глинах возрастает содержание SiOa, а количество КагО, СаО, MgO, AI2O3 уменьшается. Часто для уменьшения потерь алюминия в глинах к активирующему раствору добавляют сол , алю.мниия [46]. [c.168]

    НОЙ атмосфере и в присутствии следов кислорода и паров воды без растворителя и с-неполярным (бензол) и полярным (изопропиловый спирт) растворителями. Изучено также активирование изомеризации УФ-лучами и у-квантами. Некоторые результаты приведены табл. 29. Видно, что наибольшую каталитическую активность проявляют наименее стабильные карбонилы металлов VII и VIII групп (Ке, Со, Ре), в то время как стабильные к облучению карбонилы металлов VI группы не активны. Наибольшей активностью обладает карбонил рения, но попытки активировать его УФ-лучами и у-квантами оказались безуспешными, так как разложение карбонила протекало быстрее, чем активирование им изомеризации. Это же характерно и для другого двуядерного карбонила — Со2(СО)8. Что касается карбонила железа, то он наиболее чувствителен к активированию и поэтому особенно удобен для исследовательских целей. [c.108]

    Следует отметить, что присутствие в катализаторах окислов железа (РегОз), натрия (NaaO), кальция (СаО) нежелательно, так как приводит к ухудшению стабильности и избирательности катализатора. Порошкообразный алюмосиликатный катализатор характеризуется насыпным весом, структурой, механической прочностью, каталитической активностью, тер-мо- и плроустойчивостью, регенерируемсстью. [c.12]

    Отравление ионами металлов свойственно платиновым, палладиевым и другим катализаторам из металлов VIII группы и благородных металлов других групп. Было обнаружено, что каталитическая активность платиновых и палладиевых катализаторов гидрирования понижается в присутствии ионов ртути, свинца, висмута, олова, кадмия, меди, железа и других. Сравнение токсичности ионов различных металлов по отношению к платиновым катализаторам гидрирования приводит к заключению, что токсичность свойственна, по-видимому, тем металлам, у которых все пять орбит d-оболочки, непосредственно следующих за s- и р-валептными орбитами, заняты электронными парами или по крайней мере одиночными -электронами. По мнению Мэкстеда, отсюда вытекает, что отравление платины и подобных ей катализаторов ионами металлов включает, вероятие, образование адсорбционных комплексов, которые можно рассматривать как интерметаллические соединения с участием d-электронов в образовании интерметаллических связей. [c.54]

    Большинство каталитически активных металлов, как указывалось выще, представляет собой элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы этих металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации, гидрокрекин" га и насыщения кратных связей. Так как серосодержащие соединения присутствуют практически в любом сырье, следует применять серостойкие катализаторы — сульфиды металлов. В большин-, стве современных процессов в качестве катализаторов используют кобальт или никель, смешанные в различных соотношениях с молибденом, на пористом носителе (окиси алюминия). Иногда применяют сульфидный никельвольфрамовый катализатор. [c.215]

    Введение в топливо стеарата железа Ре(С,7Нз5СОО)2 заметно ускоряет окисление. Однако в одинаковых условиях стеарат железа по своей каталитической активности уступает стеарату меди (табл. 3.17). [c.115]

    Основными компонентами наиболее селективных катализаторов окисления метанола в формальдегид являются железо, молибден и кислород. Промышленный катализатор представляет собой механическую смесь молибдата железа и триоксида молибдена. Эти вещества пмеют упорядоченную кристаллическую структуру, используются без осителей и обычно без промоторов. Еще не так давно дискутировался вопрос о том, нужны ли в промышленном катализаторе оба компонента. Пытались выяснить, какая из фаз действительно является катализатором, Сейчас известно [5], что при окислении метанола в формальдегид высокую каталитическую активность проявляют как молибдат железа, так и триоксид молибдена. [c.16]

    Для повышения каталитической активности монтмориллонит обрабатывают сильными минеральными кислотами. Результат химической активации зависит от природы глины, крепости кислоты, температуры и длительности обработки. Активация состоит в замене обменоспособных катинов водородом и удалении магния и железа, а также некоторой части алюминия. Кислотная обработка [c.11]

    Впервые реакция гидроформилирования была осуществлена в присутствии кобальтового катализатора процесса Фишера—Тропша. Впоследствии были исследованы и запатентованы в качестве катализатора многие другие металлы. В литературе сообщается о каталитической активности родия, кобальта, хрома, иридия, железа, марганца, натрия, магния, кальция, платины, рения, осмия и рутения. Однако в промышленности до настоящего времени преимущественно используются кобальтовые катализаторы. [c.255]

    Износоустойчивый окисножелезный катализатор [13, 27, 28, 38] может применяться в комбинированном контактно-башенном способе производства серной кислоты, для которого достаточно окислить около 30 объемн. % ЗОз перед поступлением газа в нитрозную башенную систему с целью получения купоросного масла и разгрузки питрозной системы. При переработке газов от сжигания колчедана ванадиевый катализатор отравляется мышьяком, в результате чего его активность снижается примерно в 2 раза. Железный катализатор мышьяком не отравляется, однако он все же менее активен, чем отравленный ванадиевый катализатор. Окись железа в виде крупных кусков огарка, получаемого при обжиге колчедана, применялась ранее в промышленных аппаратах для окисления сернистого газа. Активность ее достаточно исследована [2, 39—41]. Во взвешенном слое огарок в качестве катализатора не пригоден, так как его истираемость составляет 95% в месяц. Исследованиями [28, 38] было установлено, что можно резко повысить механическую прочность колчеданного огарка за счет введения цементирующих добавок (жидкое натриевое стекло или фосфорная кислота). При этом каталитическая активность огарка практически не снижается. Истираемость такого катализатора составляет 2—3% в месяц. В качестве порообразующего компонента в смесь вводится технический глицерин или другая органическая примесь, выгорающая при прокаливании катализатора. [c.148]

    Наиболее активным катализатором является платина, однако она вышла из употребления вследствие дороговизны и легкой отравляемости примесями обжигового газа, особенно мышьяком. Оксид железа дешевый, не отравляется мышьяком, но при обычном составе газа (7% SO2 и 11% О2) он проявляет каталитическую активность только выше 625°С, т. е. когда Jip<70%, и поэтому применялся лишь для начального окисления SO2 до достижения Хр 50—60%. Ванадиевый катализатор менее активен, чем платиновый, но дешевле и отравляется соединениями мышьяка в несколько тысяч раз меньше, чем платина он оказался наиболее рациональным, и только он применяется в производстве серной кислоты в СССР. Ванадиевая контактная масса содержит в среднем 7% V2O5 активаторами являются оксиды щелочных металлов, обычно применяют активатор К2О носителем служат пористые алюмосиликаты или диоксид кремния. Обычные ванадиевые контактные массы представляют собой пористые гранулы, таблетки или кольца. При катализе оксид калия превращается в K2S2O7, а контактная масса в общем представляет собой пористый носитель, поверхность пор которого смочена пленкой раствора пяти-оксида ванадия в жидком пиросульфате калия. [c.129]

    Действие АЬОз в качестве активатора заключается в следующем. Ввиду того, что АЬОз — трудновосстанавливаемое соединение, оно отделяет кристаллы Fe друг от друга тонкой пленкой и тем самым препятствует их срастанию и уменьшению числа активных центров катализатора. А 2О3 имеет такую же кристаллическую структуру как и Рез04, но поскольку она йе восстанавливается до металла, то не принимает участия в росте кристаллов. Вместе с тем АЬОз обладает и нежелательным свойством — способна удерживать на своих поверхностных кислых центрах аммиак, что снижает эффективность катализатора. Для устранения отрицательного действия АЬОз к катализатору добавляют К2О, которая нейтрализует кислотные центры, снижает работу выхода электрона железа и повышает удельную каталитическую активность. Количество вводимой К2О должно быть пропорционально содержанию АЬОа. Нужно учитывать, что ввиду сильного минерализирующего действия, добавка К2О значительно снижает удельную поверхность катализатора. Введение ЗЮг понижает активность катализатора при одновременном же добавлении ЗЮ2 и СаО (MgO) активность немного возрастает [177, 182]. [c.162]

    Железооксидные катализаторы обладают высокой механической прочностью, технология их получения проста. Для их приготовления могут быть использованы широко доступные реактивы, при этом входяище в состав последних примеси, за исключением ионов хлора, не оказывают влияния на каталитическую активность полученного оксида железа в окислении сероводорода. Каталитические свойства оксида железа зависят от температуры прокаливания образцов. С ее повышением значительно уменьшается удельная поверхность катализаторов и удельный объем пор. При этом снижается активность, однако, возрастает селективность в образовании элементной серы. По известным в настоящее время сведениям, оптимальной температурой прокаливания для железооксидных ка-гализаторов является 600-700 С. Для предотвращения спекания оксида железа в процессе приготовления катализаторов может быть применен метод нанесения актив юй массы на пористый носитель. При этом в катализаторе сохраняются поры среднего диаметра, о гспечивающие высокую каталитическую активность. Нанесенные катализаторы имеют перед массовыми еще и то преимущество, что они проявляют более высокую селективность и обладают высокой механической прочностью. [c.66]

    При крекинге в железной аппаратуре в промышленных условиях сера, содержатцаяся в нефти, разрушает каталитическую активность железа. Кроме того, водяной пар и углекислота способны реагировать с железом с образованием плотно пристающей пленки из окислов железа, которая парализует активность железа. [c.231]

    В качестве первых катализаторов крекинга применялись монтмориллонитовые глины, обработанные кислотой. Эти глины представляют собой гидратированные алюмосиликаты, обладающие ионообменными свойствами. В процессе кислотной обработки из алюмосиликата удаляются гидратированные катионы и приблизительно половина атомов алюминия /20/, Катализаторы этого типа получили широкое распространение, но обладают двумя существенными недостатками. Во-первых, некоторая часть железа, входящая в кристаллическую решетку алюмосиликата, становится каталитически активной при крекинге нефтепродуктов с большим содержанием серы. Это железо окисляется при регенерации и в ходе крекинга катализирует коксообразование и образование водорода. Кроме того, монтмориллонитовые глины чувствительны к высоким температурам регенерации. Впоследствии были найдены пути преодоления этих недостатков. Прежде всего нашли применение в качестве катализаторов другие алюмосиликаты, в частности гал-луазит и каолинит. К тому же сама кислотная обработка глин стала проводиться таким образом, чтобы удалить более половины алюминия и одновременно часть железа, после чего некоторое количество алюминия вводилось путем рекатионирова-ния. Таким образом, приготавливались катализаторы, которые можно назвать полусинтетическими. Катализаторы такого типа получают и другими препаративными методами. [c.50]

    Соединения таких металлов, как железо, никель и ванадий, присутствующие в нефтяных месторождениях, отлагаются на поверхности катализатора. Их каталитическое действие проявляется как при крекинге, так и при регенерации. В процессе крекинга эти соединения способствуют образованию кокса и водорода, не проявляя каталитической активности в отнощении образования бензина. При регенерации соединения названных металлов катализируют реакцию сгорания до СО2, а не до СО, что приводит к нежелательным тепловым эффектам. Методы удаления этих примесей из катализаторов вполне доступны, но не получили широкого распространения. Если эффект отравления, обусловленный присутствием железа, принять за единицу, то воздействие примесей ванадия и никеля оценивается соответственно величинами 4 и 14. Тогда, вьфазив концентрацию примесей в частях на миллион, суммарный эффект их действия можно представить следующим образом  [c.53]

    Во всех гетерогенных окислительпо-носстановительных процессах катализаторами служат производные /-элементов. Так, ]]рн синте с аммиака наибольшую каталитическую активность проявляют простые вещества, образованные элементами под-групны железа (рис. 89). В промьппленпости п[)именяют железный катализатор (с добавками активаторов). Применение в промышленных масштабах рутения и осмия ограничивает их высокая стоимость. [c.157]


Смотреть страницы где упоминается термин Железо каталитическая активность: [c.529]    [c.303]    [c.244]    [c.59]    [c.90]    [c.227]    [c.11]    [c.73]    [c.327]    [c.82]   
Каталитические процессы переработки угля (1984) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая

Железо активная



© 2025 chem21.info Реклама на сайте