Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроны валентные остов

    Рассмотрим теперь математическое представление реактантов, учитывающее явление геометрической изомерии. Отметим сразу, что современные формулы строения химических веществ непригодны для проведения расчетов на ЭВМ химических реакций, так как их нельзя непосредственно ввести в оперативную намять ЭВМ или записать на внешние носители информации. Далее, для этой цели нецелесообразно использовать и векторное представление молекул, которое строилось на основе их брутто-формул. Следовательно, требуются дальнейшие обобщения, связанные с представлением молекул в виде матриц определенной размерности, равной числу содержащихся в молекуле атомов. При формировании элементов этой матрицы, называемой В-матрицей, учитывается, что каждый атом состоит из атомного остова, составленного из ядра атома и внутренних электронов и имеющего некоторый формальный заряд, и электронов валентной оболочки. Последние менее сильно связаны с атомным остовом и участвуют в образовании химических связей. [c.174]


    Отметим, что при расчете кристаллов, так же как и молекул, электроны внутренних атомных оболочек, которые, как правило, не играют активной роли, могут быть объединены с атомным ядром в неподвижный остов кристаллической решетки. Такое валентное приближение оказывается недостаточным, если вещество содержит ионы или атомы переходных или редкоземельных элементов. В этих случаях в рассматриваемую систему электронов необходимо включать электроны внутренних незаполненных оболочек. Электроны атомных остовов приходится принимать во внимание, например, в расчетах, в которых учитывается корреляция электронов, а также при исследовании таких явлений, как поглощение рентгеновских лучей веществом и т. п. [c.151]

    Атом удобно представлять состоящим из остова и определенного числа валентных электронов. Под остовом понимается ядро плюс электроны на низших энергетических уровнях, не принимающие участия в химических превращениях. Элементы одной группы отличаются друг от друга своими остовами, но имеют одинаковое число валентных электронов. На размеры атома и его способность терять или приобретать электроны оказывают влияние число заполненных энергетических уровней остова и заряд ядра, но основным фактором, определяющим химические свойства элемента, является строение валентной электронной оболочки его атомов. [c.92]

    Химическое окружение атома отражается в изменениях орбиталей электронов валентных оболочек, которые в свою очередь влияют на атомный потенциал и энергию связи электронов атомного остова. Энергии связи внутренних К- и L-оболочек сдвигаются в унисон с изменениями химического окружения. В KLL-линиях Оже-электронов участвуют как К-, так и L-оболочки, причем электроны L-оболочки участвуют в переходе дважды. Поэтому энергии электронов внутренних оболочек, выбрасываемых в KLL-процессе, будут отражать химические сдвиги. Однако химические сдвиги в двухэлектронных Оже-процессах с трудом поддаются интерпретации и редко используются для исследования изменений в химических связях. [c.51]

    Понятие формального заряда имеет следующий смысл. Если у атома заряд остова равен (где е означает заряд электрона) и он окружен к электронами, образующими связи, и р электронами, не участвующими в связях с другими ато- мами, то его формальный заряд равен = . — ( /2) — р. Заряд остова атома определяют как заряд иона, который получился бы при отрыве всех электронов валентной оболочки (т. е. всех электронов, которые в обычных электронных структурах изображают точками). Например, атом кислорода, соединенный с атоМ ом водорода в структуре XXI, имеет Z = 6, й = 6 и р =2. Следовательно, / == 6 — (7г) — 2 = - - 1 для другого атома кислорода в этой структуре = 6 — ( Д) — Ь=—1. [c.32]


    Как было показано, численное значение Рз должно быть очень мало, тогда как а1 должно быть велико. Вклад (4.76) поэтому будет мал по сравнению с рг, а значит, и по сравнению с полной энергией связи в системе Ыг. Это заключение подтверждается более детальными расчетами. Взаимодействие между электронами внутренней оболочки, находящимися на МО ф1 и фг, и электронами валентной оболочки, занимающими орбиталь фз, незначительно. На этом основании можно пренебречь внутренними электронами, поскольку в молекуле Ыа они практически имеют такую же полную энергию, как и в двух изолированных атомах лития. Это положение оказывается достаточно общим поэтому молекулы можно рассматривать, учитывая только взаимодействия электронов валентных оболочек атомов, т. е. внешних орбиталей, не полностью заполненных. В данном случае можно рассматривать атомы лития как водородоподобные системы, в которых 2 -электрон валентной оболочки движется в поле остова, состоящего из ядра и двух 1 -электронов. Тогда соответствующее вековое уравнение для системы принимает вид [c.167]

    Существенно более высокая локализация валентных электронов у остовов атомов металлов V группы приводит к значительно более сильному увеличению связи Ме — Ме с уменьщением содержания углерода, причем это изменение силы связи нелинейно (см. рис. 2), соответственно взаимодействие Ме — С слабее, чем в случае карбидов переходных металлов IV группы. [c.84]

    Плотность валентных зарядов кристалла теперь может быть представлена в виде суперпозиции сферически симметричных атомных зарядов в узлах кристаллической решетки и зарядов связи на линии, соединяющей соседние атомы решетки. Если обозначить через р/(<7) фурье-образ плотности электронов свободного атома (электронов атомного остова, плюс валентных электронов), а через р ( ) фурье-образ плотности электронов атомного остова, то атомный фактор рассеяния рентгеновских лучей может быть записан в виде [c.22]

    Квантовая химия описывает химическую связь как результат электростатического взаимодействия между электронами валентных подуровней и положительно заряженными остовами атомов. Вещества, образующиеся благодаря возникновению хи- [c.145]

    Свойства атомов. Сопоставление внутренних электронных остовов, валентных и вакантных подуровней показывает, что различия в физических и химических свойствах элементов обусловлены в основном особенностями строения электронных оболочек атомов (табл. 19.2). Атомы элементов этой подгруппы имеют совпадающие по строению валентные подуровни (пз пр ), различные электронные остовы и вакантные подуровни. Два электрона валентных з-подуровней спарены, три электрона р-подуровней заселяют орбитали этих подуровней по одному. Электронная структура азота выделяется отсутствием вакантных подуровней, энергетически близких к наполовину заполненному 2р-подуровню. У фосфора есть один вакантный с -подуровень, а мышьяк, сурьма и висмут имеют несколько вакантных подуровней, близко расположенных к валентным подуровням. [c.383]

    При подсчете е каждый свободный s- или р-электрон валентного слоя считается за единицу, а -электрон — за 2. Подобным же образом удвоенное значение —не 2, а 4 — приписывается свободным электронам s -слоя при остовах металлов (в Tl , и др.). Необходимость удвоения (в первом приближении) обусловлена, по-видимому, повышенным экранирующим действием таких электронов. [c.480]

    На рис. 14-25 схематически изображены три зоны энергетических уровней, образованных Ь-, 25- и 2р-орбиталями простейшего металла, лития. Молекулярные Ь-орбитали полностью заполнены электронами, потому что в изолированных атомах лития 15-орбитали также заполнены. Следовательно, 15-электроны не принимают участия в химической связи. Они являются частью положительно заряженных атомных остовов (ионов), и их можно не принимать во внимание при дальнейшем обсуждении. Атомы лития имеют по одному валентному электрону на 25-орбитали. Если в кристалле лития 10 атомов, то взаимодействие 10 25-орбиталей приводит к возникновению зоны, состоящей из 10 делокализованных орбиталей. Как обычно, каждая из этих орбиталей способна принять до двух электронов, так что в пределах зоны может находиться 2 -10 электронов. Ясно, что в кристалле лития имеется ровно столько электронов, чтобы заполнить только нижнюю половину 25-зоны, как это показано на рис. 14-25. [c.625]

    Можно ли применить подобные рассуждения к молекулам Да, можно, причем двояко. Во-первых, из спектроскопии известно, что характеристические частоты электронов в молекулярных системах лежат в видимой и ультрафиолетовой областях спектра, тогда как частоты колебаний ядер — в инфракрасной области, так что (oj / u ) 100 и критерий адиабатичности для молекул выполняется (правда, как мы увидим далее, — не всегда). Во-вторых, слоистое строение электронных оболочек атомов и молекул позволяет разделить электроны на группы в зависимости от скорости их движения, так как периоды движения оптических (валентных) электронов и электронов остова существенно различаются. В настоящее время адиабатическое разделение быстрых и медленных электронов применяется главным образом в теории атомов, и мы о нем в дальнейшем говорить не будем, сосредоточив внимание на адиабатическом разделении электронных и ядерных движений. [c.109]


    Математическое представление химических реакций. Химическая реакция между ансамблями молекул определяется как превращение исходного АМ в изомерный АМ соответствующим перераспределением валентных электронов. При этом всегда должны соблюдаться следующие два требования, обусловленные законами сохранения заряда и массы 1) атомные остовы АМ остаются неизменными 2) общее число валентных электронов АМ сохраняется постоянным. [c.176]

    Металлическое состояние вещества характеризуется наличием электронного газа, т. е. совокупности электронов, обобществленных совокупностью атомных остовов и способных перемещаться в пространстве между ядрами без значительных энергетических затрат. В этом случае наблюдается высокая электрическая проводимость, уменьшающаяся с повышением температуры. В противоположность металлическому состоянию вещества в изолирующем (диэлектрическом) или полупроводниковом состоянии имеют сравнительно низкую электрическую проводимость, увеличивающуюся с повышением температуры. Физически изоляторы и полупроводники качественно не различаются, отлична лишь энергия, требуемая для возбуждения связанного валентного электрона в проводящее состояние. [c.95]

    Приближение замороженного остова позволяет вместо решения всей системы уравнений Хартри - Фока для молекулы решать лишь уравнения для валентных орбиталей. Однако эти уравнения соответствуют задаче о движении электрона в сильном поле Хартри — Фока и отыскании состояний с малой энергией связи, гораздо меньшей, чем энергия основного состояния в этом поле. Такая задача является довольно сложной. Здесь на помощь приходит факт пространственной разделен-ности электронных состояний, который позволяет свести задачу к движению электрона в сравнительно слабом поле. [c.277]

    Пространственная разделенность электронных состояний, которая существует в случае потенциала Хартри - Фока, показьшает, что остовные и валентные электроны можно рассматривать как две подсистемы, взаимное влияние которых определяется главным образом не детальными, а некоторыми интегральными характеристиками подсистем. Это, вместе с приближением замороженного остова, позволяет сформулировать задачу расчета валентных состояний при заданных остовных как задачу о движении только валентных электронов, но в эффективном поле, отличающемся от поля Хартри — Фока. Такое эффективное поле должно быть в целом слабым по сравнению с полем Хартри - Фока, так как энергия основного состояния в эффективном поле определяет энергию валентных электронов, что на несколько порядков меньше энергии основного состояния (1х-состояния) в поле Хартри - Фока. Более того, так как орбитали валентных электронов сосредоточены в той области пространства, где потенциал Хартри — Фока мал (кулоновское поле ядра экранировано остовными электронами), то рассматриваемое эффективное поле может быть слабым не только в целом, но и в каждой точке пространства (заметим, что последнее условие не является необходимым). [c.278]

    Таким образом, в приближении замороженного остова ф . и фу — собственные функции одного и того же оператора Фока изолированного остова, т.е. при рассмотрении канонических уравнений Хартри - Фока для изолированного остова виртуальные орбитали (незаселенные электронами остова) дадут орбитали валентного электрона в приближении замороженного остова. [c.279]

    В методе модельного псевдопотенциала (в случае одного валентного электрона сверх остова из заполненных оболочек) сначала для каждого атома, входящего в состав молекулы, строится сравнительно простой по-лулокальный модельный псевдопотенциал (его конкретный вид описан ниже). Каждый модельный псевдопотенциал соответствует определенному типу псевдовалентной орбитали. Он строится так, чтобы операторы точного и модельного псевдопотенциала при действии их на орбитали, мало отличающиеся от рассматриваемых псевдовалентных, давали близкие результаты. Подчеркнем, чго эти результаты близки только при действии на указанные орбитали. При действии на другие орбитали (например, остовные) операторы точного и модельного псевдопотенциалов могут давать совершенно разные результаты. В уравнении для молекулы псевдопотенциал заменяется на суперпозицию модельных псевдопотенциалов атомов, образующих молекулу. При решении построенного таким образом уравнения получают орбитали, мало отличающиеся от точных псевдовалентных орбиталей молекулы, и энергии, близкие к орбитальным энергиям молекулы. Остовные орбитали здесь можно не использовать. Они нужны только, если требуется получить валентную орбиталь из псевдовалентной, ортогонализуя последнюю к остову. [c.287]

    В качестве псевдопотенциала атомного остова можно, основьтаясь на результатах предьщущего параграфа, взять модельный псевдопотенциал. При этом модельный псевдопотенциал атомного остова желательно построить так, чтобы он обладал свойством трансферабельности, т . чтобы модельный псевдопотенциал некоторого атомного остова, построенный на основании расчета одной молекулы, можно было использовать для расчета других молекул, содержащих этот атом. Для этого при выборе вида и главным образом параметров конкретного модельного псевдопотенциала надо позаботиться о том, чтобы он описьтал только взаимодействие одного валентного электрона с остовом и не содержал вклада (даже неявного) от взаимодействия валентных электронов между собой. Построение модельного псевдопотенциала атомного остова особых затруднений не вьюьтает, так как здесь всегда можно использовать результаты задачи с одним валентным электроном. С другой стороны, при переходе от валентных функций к псевдовалентным надо изменить оператор межэлектронного взаимодействия так, чтобы измененный [c.292]

    Метод псевдопотенциала значительно облегчает математические трудности при вычислении характеристик многоэлектронных атомов, молекул и твердых тел (в частности, металлов и их сплавов) метод вводит вместо требования ортогональности (т. е. взаимной перпендикулярности облаков и, очевидно, малого перекрывания) волновых функций валентных электронов особый член в уравнении Шрёдингера, заменяя ортогонализацию этот член держит валентные некайносимметричные электроны вне остова атома, особенно полно выталкивая их внутренние максимумы из самых глубинных частей, где при больших 2 создается особенно тесная электронная заселенность (4). [c.29]

    В уравнении Шрёдингера для валентных электронов, кроме обычных кулоновского (связанного с дальнодействием) и обменного (связанного с перекрыванием) интегралов, вводится псевдопотенциал , действующий на каждый валентный электрон. Влияние остова входит в уравнение постольку, поскольку он определяет точную форму псевдопотенциала. [c.29]

    Электронное строение. Теория хим. связи в кластерных соед. находится в стадии разработки. В большинстве теоретич. работ устанавливают связь между общим числом т.наз. кластерных валентных электронов (КВЭ) и строением остова. Общее число КВЭ вычисляют по след, схеме к суммарному числу электронов валентных оболочек атомов металлов, образующих остов молекулы К., прибавляют число электронов, предоставляемых лигандами по обычным правилам (см. Металлоорганические соединения) для кластерных ионов прибавляется также заряд К., взятый с обратным знаком. Напр., для Н2Ки (СО)]8 число КВЭ = = (6-8), -Ь (2 - 18)ео + (2 - 1)н = 86 для Со,(СО),, (6-9)с -Ь + (2- 16)со = 86, для [Со, (СО), 5] - (б -9)с + (2- 15)со + 2 = = 86. Осн. особенность небольших полиэдрич. К.-существо-вание магических чисел КВЭ, определяющих геометрию полиэдров, что особенно хорошо соблюдается для разл. К. переходных металлов однотипного строения. Изменение числа валентных электронов приводит к перестройке метал-лополиэдра. Так, для треугольных К. магическое число КВЭ 793 [c.401]

    Отсюда следует, что не только деление электронов многоэлектронной частицы,ка так называемые а- и я-электроны не обосновано квантово-ме-ханическИ, но строго говоря, электроны (а не отрицательный электрический зарЯк) не могут быть корректно разделены на внутренние (электроны атомнЫх остовов ) и валентные. [c.112]

    Наиболее надежным из методов, перечисленных в разд. 2.4.1, является метод ОПВ, развиваемый в последние годы Германом и другими в двух направлениях — неэмпирическом (метод самосогласованных ОПВ, СС ОПВ [82— 97]) и полуэмиирическом (метод эмпирически скорректированных ОПВ, ЭС ОПВ, см. ниже). В методе ОПВ все состояния электронов в кристалле делятся на отвечающие атомным остовам и на валентные. Остовые состояния в методе ОПВ описываются в приближении ЛР АО блоховскими функциями вида [c.71]

    Развитие представлений о химической связи как о связи, осуществляемой внешними вагантными электронами атома, позволило ясно показать, что, в случае изменения валентности атома при переходе от одного соединения к другому, изменяется число внешних электронов, осуществляющих химические связи данного атома. Следовательно, изменяется для данного атома и число оставшихся необобщенных электронов (электронов атомного остова, не принимающего существенного участия в образовании связи ). Отсюда можно было сделать ясный вывод, что свойства химических связей между двумя данными атомами в двух разных молекулах, в которых один из этих атомов меняет свою валентность, должны быть различны. [c.52]

    В тех случаях, когда поверхности нулевого потока выделяют фрагменты, которые соответствуют электронным парам остова или валентной связи, метод вириального разбиения приводит к наилучшему разграничению систем, как это имеет место, например, для молекул ЫН+ и ЫН. Однако в общем вириальные фрагменты содержат плотности как остовов, так и валентных электронов с различными нецелочисленными значениями заселенностей. В таких случаях метод вириального разбиения приводит к атомным фрагментам , для которых нельзя построить поверхность нулевого потока, изолирующую внутренний остов атома. В этих более общих случаях возможно определить лоджию остова внутри вириального фрагмента по методу Доделя, т. е. по величине 1 Р, О). Для полноты изложения мы приведем эти наилучшие лоджии для ВеН и ВН, однако сравнение вири-альной теории и теории лоджий можно будет провести лишь после того, как будет рассмотрено разбиение плотности валентных электронов. [c.33]

    Притяжение электрона. на АО к остову атома / входит непосредственно в расчет методом МО ССП [Vin в уравнении (10.11)]. Его можно оценить теоретически, но предпринимавшиеся попытки такого рода до сих пор, насколько нам известно, не увенчались успехом. К тому же было бы нелогично использовать для F,- теоретические значения, если для межэлектронного отталкивания используются эмпирические значения, а не величины, полученные непосредственным интегрированием. На притяжение к остовам и межэлектронное отталкивание влияют, вероятно, одни и те же факторы. Это легко показать на основании следующих сображений. Рассмотрим взаимодействие между электроном, на АО атома т и остовом и электронами какого-то другого атома га. Если атом п в целом нейтральный (т. е. в среднем имеет достаточное число валентных электронов для того, чтобы компенсировать заряд остова), кулоновское взаимодействие между нашим электроном и атомом п должно исчезать ). Это будет верно, конечно, только в том случае, если принять, что притяжение электрона к остову между электроном на fi и остовом атома п равно и противоположно по знаку отталкиванию между электроном на ij>i и электронами АО валентной оболочки атома п. Такое условие -явно не будет выполняться при использовании теоретического значения для первой из этих величин и эмпирического— для второй. Поэтому во всех проведенных до сих пор расчетах методом Попла с включением всех валентных электронов использовалось приближение, в котором притяжение электронов к остову полагалось равным по величине и противоположным по знаку суммарному межэлектронному отталкиванию электронов на fi и электронов в атоме п при принятой заселенности АО в валентном состоянии этого атома. Так, если га — атом углерода, имеющий в валентном состоянии [c.561]

    Для того чтобы проиллюстрировать наши рассуждения, рассмотрим сначала очень простой пример электрона, движущегося в поле приблизительно тетраэдрической симметрии [8] отвлечемся при этом от эффектов, обусловленных наличием ядерных спинов. С такой задачей приходится сталкиваться, например, в используемой часто аппроксимации кристаллического поля для комплекса переходного металла V I4, где нечетное число Зс/-электронов находится вне Ne-подобного остова иона и все они движутся в тетраэдрическом поле, создаваемом лигандами С1 . Формально проводимое здесь разделение электронов на валентные электроны и электроны ионного остова будет обсуждаться в разд. 9.5. Здесь мы просто примем его и рассмотрим эффекты двух возмущений члена спин-орбитального взаимодействия Hsl и члена, линейного по полю В  [c.276]

    Таким образом, гиперхимические соединения представляют собой структуры с двумя и большим числом ядер, в которых связь между атомами обеспечивается не столько электронами внешних валентных оболочек, сколь частично обобществленными электронами атомных остовов. [c.64]

    Остов можно рассматривать как размазанное сферически-симметричное облако отрицательного электричества, заряд которого равен (7—1) зарядов электрона, тогда как ядро имеет положи-юльный заряд 2. Плотность заряда в электронном облаке остова за пределами некоторого расстояния становится пренебрежимо малой. Если валентный электрон на.кодится далеко за пределами остова, электроны остова будут в точности компенсировать (2-—1) положительных зарядов ядра, так что потенциальная энергия валентного электрона будет изменяться с pa тoяFlиeм в соответствии с соотношением У = — 1/г (в атомных единицах). Если же валентный электрон проникнет в остов, он будет п )итягиваться к ядру сильнее. Точная зависимость потенциальной энергии от расстояния до ядра яудет в свою очередь зависеть от вида облака остова, но можно ожидать, что в общем случае [c.171]

    Рассмотрим модель сильно связанных с ионами электронов (валентных электронов), применимую для случая, когда расстояния между соседними атомами велики по сравнению с их размерами. Пусть кристалл представляет собой бесконечную пепочку одинаковых, одновалентных, периодически расположенных атомов. Обозначим через д(г — R ) волновую функцию валентного электрона, где g — номер атома в цепочке, г и R , — радиусы-векторы электрона и д-го атомного остова. Подставляя эту волновую функцию в уравнение Шредингера (9.7), получим  [c.234]

    Работа выхода электрона ф определяется минимальной энергией, необходимой для перемещения его с поверх юсти Ферм И в твердом теле при температуре, равной абсолютному нулю, в точку пространства, где поле практически равно нулю. Согласно представлениям [196, 568, 849, 1232, 1326], работа выхода электрона зависит от внутренней структуры тела и от условий на его поверхности. Некоторые исследователи, в частности авторы работ [143—144], при интерпретации эмиссионных характеристик считают главным состояние поверхности эмиттера, принимая, что уровень энерлии Ей кЫ) электрона, находящегося перед гранью hkl кристалла, не связан с положением уровня химического потенциала, зависящего от природы атомов и электронного строения твердого тела. Такая точка зрения полностью отрицает результаты работ [196, 502, 1326], а также более поздних [79, 134, 451], в которых принимается, что работа выхода электрона <в общем случае определяется степенью связанности его с электронным коллективом остова кристаллической решетки, т. е. энергетическим состоянием валентных электронов атома эмиттера при этом считается, что реальные [c.7]

    Итак, если молейула имеет N атомов, то размерность соответствующей и-матрицы N X N. На главной диагонали записываются неподеленные пары электронов всех последовательно расположенных N атомов молекулы, а недиагональные элементы определяют характер связи (одинарная, двойная, тройная и т. п.) между соответствующими атомами. Определим теперь для каждой элементарной реакции ансамбль молекулы (АМ) как совокупность молекул — исходных реактантов или совокупность молекул — конечных продуктов реакции. Нетрудно видеть, что математическое представление АМ есть блочно-диагональная i e-мaтpицa, составленная из 2 -матриц, которые находятся на главной диагонали. Совокупность всех возможных АМ образует семейство изомерных АМ (СИАМ), которое характеризует химические превращения реактантов. Конечно, множество всех АМ из СИАМ может быть однозначно представлено совокупностью Р = В ,. . ., В -Ве-матриц. Причем каждая Де-матрица содержит всю информацию о химической структуре молекул, составляющих заданный АМ, т. е. всю информацию о распределении связей и об определенных аспектах распределения валентных электронов. Поэтому каждая химическая реакция будет представлять собой не что иное, как взаимопревращение АМ вследствие перераспределения электронов между атомными остовами. [c.174]

    Объяснение направленной валентности. Атомы элементов второю и последующих иериодов можно рассматривать, как состоящие пз остова, содержащего внутренние слои, и наружных валентных электронов, которые вносят основной вклад в образование химической связи. Далее мы будем рассматривать только орбитали валеигпых электронов. [c.84]

    Изменению подвергаются только валентные состояния, именно они и определяют химические свойства. Роль остовных электронов состоит в том, что они создают поле, в котором движутся валентные электроны. Таким образом, используя энергетическую разделенность электронных состояний, задачу расчета молекулы можно свести к расчету только валентных состояний при заданных остовных. Эта идея не является специфической для метода псевдопотенциала. Указанное приближение назьтают по-разному, например, приближением валентных электронов или приближением замороженного остова. Это приближение используется во многих квантово-химических расчетах и приводит к большой экономии времени расчета и машинных ресурсов, требуемых при расчете, а также позволяет более наглядно представить себе результаты расчета и проще описать свойства и поведение молекул. [c.274]

    Чтобы представить себе качество приближения замороженного остова, посмотрим, насколько сильно влияет на одноэлектронные состояния атомов отрыв одного или нескольких валентных электронов. Это можно сделать с помощью таблиц атомных волновых функций Клементи и Роетти . Рассмотрим атомы С1, К, Са, 8с, ионы которых СГ, К, Са ", Зс " имеют электронную конфигурацию аргона с пятью оболочками, содержащими 18 электронов. Сравнивая состояния К,К , Са, Са "", 8с, Зс , можно оценить влияние на заполненные оболочки отрьта одного, двух и трех электронов, расположенных сверх этих оболочек, а сравнивая С1 и С1 , можно, к тому же, увидеть, насколько отрыв электрона из заполненной оболочки влияет на саму эту оболочку. [c.274]

    Наиболее важным является самый распространенный случай молекулы с несколькими валентными электронами. Строгий переход от случая одного валентного электрона к случаю нескольких валентных электронов в большинстве вариантов метода псевдопотенциала приводит к весьма сложным и громоздким формулам, буквальное применение которых сводит на нет все достоинства метода псевдопотенциала. В то же время надо помнить, что приближение Хартри - Фока и приближение замороженного остова уже были использованы. Поэтому все дальнейшее рассмотрение надо вести в пределах точности, обусловленной этими приближениями. Превьпшть точность не только бесполезно, но даже вредно, поскольку при этом неоправданно возрастают требования к машинным ресурсам. Кроме того, и сама схема расчета становится более громоздкой, что создает затруднения при ее реализации и увеличивает вероятность ошибки. [c.291]


Смотреть страницы где упоминается термин Электроны валентные остов : [c.283]    [c.57]    [c.36]    [c.122]    [c.500]    [c.211]    [c.32]    [c.270]    [c.171]    [c.279]    [c.280]    [c.291]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Валентные электроны

Электронный остов

Электронный остов и орбитали валентных уровней атома

Электроны валентные электроны



© 2025 chem21.info Реклама на сайте