Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эффект ширина

    Во многих отношениях релаксационные переходы под влиянием колебаний решетки похожи на рассмотренные ранее (раздел V.4) безызлучательные. Парамагнитная релаксация, определяя возможность непрерывного поглощения электромагнитных волн на спиновых переходах, в то же время служит основной причиной уширения линии ЭПР, которое препятствует наблюдению эффекта. Ширина уровней непосредственно связана с их временем жизни А посредством соотношения неопределенностей для энергии во времени [27] AE At й. Если время жизни спинового уровня определяется временем релаксации т, то с уменьшением последнего ширина уровня [c.167]


    Однако в случае открытых изоэнергетических поверхностей при переходе от замкнутых сечений к открытым эффект уширения за счет переходов крайне существен за счет этого эффекта ширина области размытия постепенно увеличивается и спектр из дискретного превращается в непрерывный. [c.80]

    При изучении свойств линейных полибутадиенов и сополимеров типа СКЭП было показано, что нестабильность течения смесей уменьшается при расширении ММР исходных каучуков. В последнее время фундаментальными исследованиями вязко-упругих свойств монодисперсных полимеров подтверждено решающее влияние ширины ММР на эффект разрушения потока при течении линейных полимеров [20]. Этот вывод широко подтверждается при [c.79]

    Причиной, порождающей термоосмос, является изменение удельной энтальпии АН (х) воды в структурно-измененной тонкой прослойке по сравнению с объемной водой [52]. Изотермическое течение воды в прослойке под действием АР сопровождается поэтому выделением (или поглощением, в зависимости от знака АН) тепла на входе в прослойку и обратным тепловым эффектом на выходе из нее. Количество выделяемого в единицу времени тепла пропорционально скорости течения. Для плоской щели толщиной к тепло переноса (на единицу ширины щели) составит  [c.21]

    Эту систему тщательно не исследовали. Низкоспиновые комплексы диамагнитны, а высокоспиновые комплексы с симметрией 0 напоминают / -комплексы. Высокоспиновый комплекс железа(П) при 4,2 К характеризуется д-фактором 3,49 и шириной спектральной линии 500 Э. Спин-орбитальное взаимодействие в основном состоянии велико, имеются в комплексе и близко лежащие возбужденные состояния, которые могут к нему подмешиваться. Если эффекты нулевого поля малы, то в основном состоянии с J = I должны наблюдаться два перехода. В искаженном октаэдрическом поле эффекты нулевого поля велики, и спектр ЭПР комплекса не регистрируется. Примером такой системы может служить дезоксигемоглобин. [c.243]

    Предварительно определим тип градирен и их число, задаваясь ориентировочным значением удельной тепловой нагрузки др пли плотностью орошения ст. Для вентиляторной пленочной градирни ширину зоны охлаждения (т. е. охлаждение воды в градирне) примем равной подогреву в конденсаторах А в = = 4 °С, пренебрегая тепловым эффектом потока свежей воды на подпитку [c.179]

    В изоляторах ширина запрещенной зоны значительна— несколько электрон-вольт (рис. 53), а в полупроводниках она невелика (меньше 10" эв). При достаточно низкой температуре (в отсутствие действия света) полупроводник является изолятором, но при нагревании, начиная с той или другой температуры, указанный переход электронов становится возможным и тело приобретает некоторую проводимость, возрастающую с повышением температуры. (Подобный же эффект может вызываться и действием света). Переход электрона из валентной зоны в зону проводимости физически означает, что электрон перестает быть связанным с определенным атомом и становится способным перемещаться по объему кристалла. Такой переход некоторого числа [c.148]


    Добавки коксовой пыли и эффект от изменения ширины коксовой камеры [c.176]

    Колена. Непосредственно после поворота потока в колене распределение скорости в канале оставляет желать лучшего. Как показано на рис. 6.14, на внутренней стенке колена происходит отрыв потока, вдоль стенок наблюдается обратное течение, а на наружной стенке колена на некотором расстоянии вниз по потоку сохраняется область высокоскоростного течения [91. Этот эффект становится еще более заметным по мере уменьшения отношения меньшего радиуса колена к ширине канала в радиальном направлении. При малой величине радиуса колена (рис. 6.15, а) все нежелательные эффекты можно рез- [c.124]

    Имеются краевые эффекты. Конические концы снижают турбулентные ффекты. Для многих комбинаций градиент скорости настолько велик, насколько велика ширина зазора между поплавком и стаканом. Поскольку взвешенные системы имеют большой момент инерции, трудно измерять зависимые от времени эффекты или предельное значение [c.210]

    Увеличение ширины канала приведет к увеличению давления, но при этом сталкиваются с ограничениями, связанными с значительными эффектами на входе и выходе. Влияние глубины канала несколько сложнее. В разд. 10.2 показано, что при данном расходе Q существует оптимальная глубина канала, обеспечивающая максимальное приращение давления  [c.320]

    Течение жидкости в устройстве типа плунжер—цилиндр и циркуляционное движение (эффект обратного фонтанирования) важно учитывать при литье под давлением, так как его суш ествование проявляется в ширине функции распределения времен пребывания и последовательности истечения различных участков дозы расплава. Этот эффект также должен быть принят во внимание при объяснении неоднородности времен пребывания дозы расплава в литьевом пластикаторе. [c.349]

    Рассмотрим две пластины бесконечной ширины с зазором длиной L и высотой Н. В направлении z непрерывно выдавливается расплав полимера. Если пренебречь гравитационными эффектами, то при изотермическом полностью развившемся установившемся течении без пристенного проскальзывания несжимаемой степенной жидкости получим следующее выражение для ФРД (см. Задачу Н.4)  [c.381]

    Подробное описание методики проведения эксперимента приведено и работе [199]. Сущность метода состоит в следующем. Кювету с образцом освещают лучем лазера. Излучение лазера обладает высокой степенью монохроматичности. Поскольку взвешенные в жидкости частицы, в данном случае коллоидные образования, находятся в хаотическом броуновском движении, то вследствие эффекта Допплера спектр рассеянного образцом света уширяется, причем его ширина пропорциональна коэффициенту диффузии частиц  [c.272]

    Для уменьшения влияния рассеянного света в микрофотометре устанавливают щелевую диафрагму из цветного стекла, которая ограничивает ширину освещаемого участка измеряемого спектра. С целью устранения краевого эффекта следует фотографировать, отступя 10—20 мм от края пластинки. [c.126]

    Характеристическое поглощение или излучение атомов, соответствующее переходам атомов из одного состояния в другое, по ряду причин не является строго монохроматическим, а характеризуется некоторым распределением коэффициента поглощения или интенсивности излучения относительно центральной частоты этого перехода (рис. 3.33). Основными параметрами такого распределения служат или I в центре линии и ширина линии на половине ее высоты Ау. Основными факторами уши-рения спектральных линий являются конечное время жизни возбужденных состояний атомов (естественное уширение), тепловое движение атомов относительно оси наблюдения (э ф -фект Допплера), столкновения атомов между собой и с посторонними частицами (эффект Лорентца) и ряд других эффектов. [c.139]

    В определенной мере рассматриваемые факторы затрагивают и ширину диапазона стеклования или размягчения. В силу только что изложенных причин диапазон, в пределах которого происходит выделение или поглощение теплоты стеклования, именуют аномальным интервалом. Такой термин обусловлен тем, что с этим интервалом связаны не только эндо- или экзотермические эффекты, легко регистрируемые на термограммах, но и аномалии кинетических макроскопических параметров, например той же вязкости. При размягчении стекла вязкость в аномальном интервале, вместо того чтобы падать с повышением температуры, поначалу увеличивается до равновесного (для данной температуры) значения, а потом уже экспоненциально убывает, что весьма напоминает множественные пики плавления при отжиге застеклованных частично кристаллизующихся полимеров (сначала степень кристалличности растет, затем начинается собственно плавление). [c.90]

    Сингх и Биркебейк [155] получили решение для двумерного течения с учетом конечной толщины пограничного слоя на краях. Конфигурация течения показана на рис. 5.3.10,6 — это длинная планка, на которой реализуется плоское течение. Предполагается, что края планки ограничены двумя адиабатическими вертикальными стенками, исключающими краевые эффекты. Ширина пластины 2а считается большой по сравнению с толщиной пограничного слоя, что позволяет применить приближенные методы. Холодная жидкость вовлекается в область пограничного слоя по всей его внешней границе. Она нагревается вблизи поверхности, течет вовне и стекает вверх с краев пластины. [c.248]


    Микроволновый спектрометр состоят из источника излучения (чаще всего клистрона), ячейки с исследуемым в-вом (или ииогда объемного резонатора), детектора (полупроводникового или болометра) и устройства, позволяющего модулировать частоты спектральных линий внешним электрическим Штарка эффект) или магн. полем Зеелиша эффект). Ширина спектральной линии обусловлена гл. обр. эффектом Доплера и соударениями молекул. Чтобы уменьшить роль соударений, эксперимент проводят при низкнх т-рах (200 К) и давлениях газа ( 0,13 Па, 10 мм рт.ст.) или используют мол. пучки, в к-рых практически отсутствуют соударения молекул. Это обусловливает высокую разрешающую способность метода (<в/Аш я 10 -10 ). Погрешности определения частот о, а следовательно, и крайне малы (АВд 10 см , 10 нм), что позволяет установить геом. параметры двухатомных молекул с наивысшей точностью по сравнению с др. методами иосле-дования структуры (в частности, дифракционными). [c.83]

    Как уже говорилось выше, пики ДП могут появляться в случаях, когда соответствующие анизотропии g vl Т близки. В качестве иллюстрации на рис. 3.37 приведен синтезированный спектр с параметрами, удов.петворяющими условию AHgy HAyz Компонента с т = —1 (штриховая линия) имеет аномальную форму, так как между линиями, соответствующими осям X, Y ж Z, находится пик ДП. Рис. 3.38 иллюстрирует эффект ширины линии, зависящей от ориентации, при синтезе спектров ЭПР с трехосной анизотропией g и Г-тепзоров. [c.122]

    Поверхностно-активные молекулы, попадая в микротрещины поверхностей трения и достигая мест, где ширина зазора равна размеру одной-двух молекул, стремятся своим давлением расклинить трещину (рис. 33). Это явление известно под названием адсорбцион-но-расклинивающего эффекта, что также впервые было обнаружено и изучено акад. П. А. Ребиндером. Подсчитано, что давление на стенки трещины может достигать до 1000 кПсм . Адсорбционно-рас-клинивающее действие поверхностно-активных молекул также приводит к облегчению пластических деформаций в поверхностном слое и к понижению прочности металла. При трении металлов это приводит к лучшей приработке деталей и снижению величины силы трения. Однако адсорбционно-расклинивающее действие может приводить к увеличению износа трущихся пар за счет облегчения процессов диспергирования поверхностных объемов металла. [c.61]

    Концевой эффект. Если ширина кольцевой щели меньше толщины свободно стекающей пленки, то средняя скорость в щели будет больше, чем в пленке. Кроме того, скорость вновь образованной поверхности в самой верхней части колонны равна нулю, и постоянство скорости устанавливается лишь асимптотически при дальнейшем стекании пленки по колонне. Таким образом, между выходом из распределительной щели и основной частью поверхности пленки происходит перераспределение скорости. Следовательно, предположение, что во всех точках поверхности скорость имеет установившееся значение, вносит некоторую ошибку. Анализ, проведенный Уилкесом-и Ниддерманом показал, что такая ошибка может быть сведена к ничтожно малой величине, если принять соответствующие меры при конструировании установки. В работе Робертса и Данквертса например, ошибка составляла менее 1%. [c.81]

    Оценка параметров, характеризующих структуру и молекулярную подвижность граничной воды. Наиболее важной оцениваемой характеристикой является толщина граничных слоев с анизотропной структурой (Х п) или заторможенной подвижностью (Хт). Исследования изменений Avd(Q) при увеличении толщины водных прослоек позволяют заключить, что Хап равна 1—2 слоям молекул (табл. 14.1) [579, 628, 632]. Авторы некоторых работ [634, 635], не учитывая при интерпретации экспериментальных данных по ширине протонных линий ЯМР-воды эффектов неоднородности магнитной восприимчивости, получают A 10—100 слоев. Количество незамерзающей воды по данным ПМР также обычно соответствует Х 1 [636], хотя авторы [627] получили несколько более высокие значения. Так как количество незамерзающей воды в гетерогенных системах может определяться наличием нерастворимых примесей, вычисляемая в этих экспериментах величина к может содержать вклад, связанный с образованием эвтектик [315]. Из релаксационных данных с помощью соотношений (14.12) и (14.13) несложно вычислить XxBf/xF и отсюда оценить xef- По данным большинства авторов (см. табл. 14.1), подвижность связанной воды на 1—2 порядка ниже подвижности объемной воды. [c.240]

    Поскольку эффекты сдвига и ущирения имеют различную зависимость от г г и г соответственно), две совокупности результатов дают дополнительную информапию к определению структуры. Ширина сигнала 2-метильных протонов аддуктов 2-пиколина с Ьп(с1рт)з [50] приведена в табл. 12.2. [c.196]

    Химические обменные процессы заметно изменяют ширину линий. Этот эффект также можно ослабить путем разведения. Если в обмене участвуют эквивалентные парамагнитные частицы, то линии уширяются у основания и становятся уже у центра. Если в обмене участвуют различные ионы, то отдельные линии сливаются и дают один сигнал, который может быть широким или узким в зависимости от скорости обмена. Такой эффект наблюдается для uS04-5H20, в элементарной ячейке которого имеются два различных центра меди [2]. [c.205]

    Согласно теории Хауффе и Ильшнера (1954 г.), скорость образования очень тонких (тоньше 50 А) пленок может контролироваться переносом электронов через окисный слой путем туннельного эффекта. Число электронов N с массой т и кинетической энергией Е = 1/2то (где о — компонента скорости в направлении, нормальном к энергетическому барьеру), проходящих сквозь прямоугольный (для упрощения вывода) энергетический барьер высотой и и шириной к, определяется по уравнению [c.48]

    Более эффективным и простым способом уменьшения пристенного эффекта может быть установка узких колец на определенном расстоянии одно от другого вдоль слоя (см. поз. 7 рис. 3.12, ж). Ширину кольца, очевидно, достаточно иринять равной диаметру пор слоя. Такие кольца увеличат сопротивление проходу жидкости через пристенные каналы и уменьшат возможность перетекания ее к стенкам аппарата. [c.91]

    В более ранних исследованиях [981 применили иной 1Юдход к решению задачи течения жидкости через неподвижный насыпной слой. Используя уравнение движения идеальной жидкости и закон Дарси, связывающий давление в слое и скорость фильтрации через него, они получили зависимость между распределением скоростей в слое, состоянием потока вне его и условиями подвода потока к слою и отвода от него. Несмотря иа сложность полученной связи, анализ ее позволил сделать ряд качественных выводов о влиянии геометрических параметров аппарата на распределение скоростей. Таким образом, сделана также попытка количественно оценить вызванную пристеночным эффектом неравномерность распределения скоростей по сечению слоя для случая, когда ширина пристеночной области с повышенной проницаемостью намного меньше ширины сечения канала. [c.278]

    Жидкость поступает на рабочую часть тарелки, свободно перетекая через приемную планку высотой Аь взаимодействует с газом и постепенно переходит в пену, но на участке, равном (5 - 6) /ii, возле приемной планки продолжает свое движение в виде клина светлой жидкости. На участке (4 - 5) Лi у сливной планки слой пены тормозится и происходит обратный процесс -разрущение пенного слоя и образование клина светлой жидкости. На этих участках плотность пены значительно выще, чем в центре рабочей части тарелки, что и приводит к неравномер-Н(Эй локальной эффективности массообмена по длине пути жидкости. Кроме продольной неравномерности в сфуктуре пенного с [оя на тарелке наблюдается эффект, который принято называть поперечной неравномерностью . Появление этого типа неравномерности объясняется, помимо возникающего у вертикальной Н(1подвижной стенки клина светлой жидкости, формой барбо-т 1жной тарелки. Наблюдается этот эффект не только на круглых тарелках, но и на прямоугольных лотках, у которых длина соизмерима с шириной. [c.105]

    Рост интенсивности сопровождается увеличением ширины спектральной липни. Ширина спектральной линии определяется такгке рядом факторов — естественное уширеиие допплеровское уширение, связанное с учетом движения атома уширеиие вследствие влияния электрического поля (эффект Штарка) и вследствие влияния магнитного поля (эффект Зеемана). На ширину линии влияет концентрация атомов на нижнем уровне и характеристика прибора (аппаратурная ширина). [c.11]

    Характерные диаграммы нагрузка - деформация для образцов с разными параметрами представлены на рис.4.20,в. Как видно, характеристики прочности и пластичности образцов с уменьшением относительной толщины прослойки возрастают. Причем зависимость ц(х) достаточно хорошо описывается формулой (4.41). При X < 0,3 образцы разрушались по основному металлу (рис.4.20,б). На рис.4.20,д сопоставлены зависимости коэффициента прочности сварных соединений от обобщенного показателя степени разупрочнения Усе (произведение наибольшей ширины разупрочненного участка на относительное снижение твердости) при сварке термоупрочненных сталей. Кривая 1 на этом рисунке получена в результате гидростатического выпучивания сварных пластин [22], а кривая 2 построена по результатам гидростатических испытаний цилиндрических сосудов, проведенных нами [84] и Пиксаевым Б.Г. Рост относительной прочности сварных соединений с уменьшением степени разупрочнения свидетельствует о проявлении эффекта контактного упрочнения, хотя разрушения всегда проис ходили по разупрочненному участку из-за неполной реализации эффекта контактного упрочнения. При сварке термоупрочненных низколегированных сталей иногда степень разупрочнения составляет 10-20%. В соответствии с формулой (4.43) при Кн = 1,1... 1,2 критическая относительная толщина мягкой прослойки составляет = 0,04...0,07. Ясно, что обеспечить относительные тол- [c.243]

    Серьезная экспериментальная работа по каландрованию недавно была опубликована Ункрюером [17]. Использованный им каландр имел валки диаметром 0,3 м и шириной 0,5 м. Изучалось поведение непластифицированного ПВХ и ПС. Профили давления, измеренные в различных сечениях, расположенных на разном расстоянии от середины валка, указывают на существование в области входа поперечного течения, накладывающегося на основное течение. В модели Гаскелла этот вид течения не учитывается. Ункрюер, используя цветные трассеры, исследовал также аномалии течения во входной области. Результаты подтвердили наличие поперечного потока и показали систему аномалий течения с несколькими циркуляционными областями (см. рис. 10.26, б). Эти результаты показывают, что во входном потоке расплава могут существовать аномалии, являющиеся следствием высокоэластических свойств расплава. Обоими эффектами модель Гаскелла, конечно, пренебрегает, поэтому не удивительно, что предсказываемые моделью результаты отличаются от экспериментально полученных данных. [c.340]

    Основной источник систематических ошибок связан с не-монохроматичностью излучения. Монохроматор может выделить из спектра излучения источника более или менее широкий, но всегда конечный участок спектра, который мы называем полосой монохроматора. Любая измеренная в точке величина (/, Т, В,) является эффективной, определенным образом усредненной в пределах полосы монохроматора, и результат такого усреднения в общем случае существенно зависит от ширины полосы монохроматора. Практически заметные отличия наблюдаемых величин от истинных будут в тех случаях, когда ширина полосы монохроматора сравнима с шириной полос (линий) поглощения и тем более когда первая превосходит вторую. При этих же условиях теряют силу простые законы поглощения (3)—(6). Величина наблюдающихся инструментальных отклонений от соотношений (3) — (6) зависит от величины погашения, соответственно произведения сх равные отно-сптельные изменения с и а по отдельности приводят к равным аффектам. То, что инструментальные отклонения являются в равной мере отклонениями от закона Бугера-Ламберта (3) и закона Беера (4), позволяет отличать их от действительных отклонений от закона Беера (4), наблюдающихся только при изменении концентрации с. Эффекты, связанные с немонохроматичностью излучения, особенно велики при измерениях спектров газов. Ширина полосы обычных призменных монохроматоров много больше расстояний между линиями и ширины линий вращательной структуры полос поглощения. Поэтому в пределах полосы моно- [c.494]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]

    Представляя энергию взаимодействия меиеду коллоидными частицами в виде суммы двух компонент — электростатической и вандерваальсовой (У и,), следует принимать во внимание форму и размер частиц. Подобного рода расчеты, например для сферических частиц, читатель найдет в книгах [2, 3]. Мы ограничимся только простым случаем взаимодействия двух одинаковых плоских частиц, между которыми имеется плоскопараллельный зазор с шириной много меньше линейных размеров частиц. Эта предельно упрощенная модель все же позволяет объяснить чрезвычайно сильно проявляющуюся зависимость критической концентрации коагулирующего иона от валентности. Для более тонких эффектов такая модель по меньшей мере не совсем точна. [c.210]

    На ширину хроматографической зоны в этом же направлении влияет и ряд других, кроме рассмотренных, факторов. К ним относятся возникновение так называемой вихревой диффузии, вызванной не-прямолинейностью потока газа вдодь слоя зерненого сорбента стеночный эффект, вызывающий дополнительное размывание [c.27]

    Разумеется, описанная выше идеальная ситуация, когда максимумы эмиссионной и абсорбционной линий совпадают, а ширина эмиссионной линии много меньше абсорбционной, существует лишь в редких случаях. Различие давлений в источнике света и в поглощающем слое приводит к сдвигу максимума линии поглощения относительно эмиссионной линии. Нельзя не учитывать также эффект самопоглощения резонансных линий внутри лампы с полым катодом, который иногда приводит к заметному уширекию линий. Кроме того, для многих элементов существенно св )хтонкое раоиепление резонансных линий. В со- [c.142]

    При определенных условиях наблюдается испускание и поглощение гамма-квантов атомными ядрами ряда более тяжелых элементов, начиная с железа, без заметного изменения их энергетического состояния за счет энергии отдачи. Последняя распределяется между всеми атомами твердого вещества и, таким образом, снижается до величины, значительно меньшей очень малой естественной ширины возбужденных уровней, составляющей всего 10-10—10- 5 величины энергии возбуждения, и это позволяет наблюдать резонанс излучателя и поглотителя гамма-квантов — эффект Мёссбауэра. Важно то, что резонансная энергия гамма-квантов зависит от состава и электронной конфигурации твердого вещества. Это позволяет более глубоко изучать природу твердого вещества, определять его электронную структуру, валентное состояние элементов, находящихся в составе данного вещества. Излучателем и поглотителем гамма-квантов при излучении мёссбау-эровских спектров служат вещества, содержащие атомные ядра одного и того же элемента (например, атомы в возбужден- [c.133]


Смотреть страницы где упоминается термин Эффект ширина: [c.98]    [c.77]    [c.234]    [c.366]    [c.201]    [c.355]    [c.120]    [c.98]    [c.283]    [c.495]    [c.495]    [c.142]   
Дисперсия оптического вращения и круговой дихроизм в органической химии (1970) -- [ c.12 ]




ПОИСК







© 2025 chem21.info Реклама на сайте