Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители изучение

    В спектральном анализе довольно часто применяются но-сители , т. е. химически активные вещества, при добавления которых в анализируемые пробы увеличивается интенсивность Линий определяемых элементов. Ввиду сложности процессов, протекающих в кратере угольного электрода, механизм действия носителей изучен не полностью, хотя имеется ряд работ, посвященных роли носителей [1—4]. Экспериментальные данные, полученные исследователями, позволяют предположить, что носители способны легко образовывать положительные и отрицательные ионы с высоким сродством к электрону, тем самым повышая силу тока разряда, а следовательно, и температуру дуги. [c.67]


    Несмотря на сравнительно малое количество неуглеводородных примесей, они, как мы убедимся в этом дальше, оказывают большое влияние на эксплуатационные характеристики авиационных топлив. Главными же носителями энергетических и некоторых эксплуатационных характеристик топлив являются углеводороды. Постоянное стремление к повышению весовой и объемной теплоты сгорания, улучшению характеристик сгорания, низкотемпературных и высокотемпературных свойств топлив привело к.необходимости глубокого изучения химической структуры углеводородов и к разработке таких технологических методов производства топлив, когда в их состав включаются нужные углеводороды. Углеводороды, входящие в состав топлив, разделяют на следующие группы. [c.11]

    Таким образом, на примере вышеописанного эксперимента, можно сделать вывод, что изучение вопросов агрегатного состояния сырья при внсоких температурах с оценкой степени проникновения компонентов сырья в поры реальных катализаторов и использованием метода ГПХ — один из надежных методов выявления механизма диффузии тяжелого сырья в поры катализатора. На основе таких экспериментов, очевидно, можно проводить отбор пористых носителей для создания эффективных катализаторов. Зная распределение компонентов сырья по их размерам и распределение общего объема пор катализатора по диаметрам этих пор,можно прогнозировать степень проникновения сырья в поровую структуру катализатора. [c.39]

    Тщательное изучение гидрогенолиза [53] метилциклопентана проведено в присутствии промышленного катализатора гидроформинга, так называемого двухфункционального катализатора крекинга, — металлы группы платины на носителях кислого характера (табл. 8). [c.256]

    Катализаторы изомеризации представляют собой систему металл — носитель, поэтому ввиду избирательного характера действия каталитических ядов изучалось действие соединений в модельных реакциях, характеризующих функции металлических и кислотных центров катализаторов. Состояние металлических центров характеризовала реакция дегидрирования циклогексана, состояние кислотных центров носителя — изомеризация о-ксилола, н-пентана, н-гексана, метилциклопентана. Несмотря на некоторую условность подобного разделения функций катализатора, оно оказалось весьма полезным для изучения явлений отравления. Известно, что при давлении водорода на платиновом катализаторе сернистые и азотистые соединения превращаются соответственно в сероводород и аммиак. (Концентрация сернистых и азотистых соединений в последующем изложении указана в пересчете на элементарные серу и азот.) [c.85]


    В результате изучения кинетики окисления углеводородов установлено, что оно носит характер цепной реакции [83—86]. Такого рода реакция продолжается до тех пор, пока не произойдет, обычно в результате столкновения носителя цепи со стенкой сосуда, обрыв цепи. Если распространение цепи заканчивается одновременно с окончанием горения, то горение происходит нормально. Если же деактивация носителя цепи (активного центра) происходит медленнее, чем распространение цени, то наступит такой момент, когда концентрация цепей и носителей цепи станет настолько большой, что скорость реакции будет подниматься очень быстро несгоревшие газы при этом окислятся, и реакция закончится с неожиданной силой. [c.405]

    Опыты по адсорбции проводились при различных температурах и объемных скоростях подачи газа-носителя. При таких же условиях проводились опыты по изучению адсорбции бинарных смесей [24]. [c.218]

    Изучению кислотных свойств алюмосиликатных и цеолитовых носителей посвящена обширная литература (см. обзоры ), рас- [c.124]

    Таким образом, изменения структурных характеристик или размеров нанесенного на носитель активного компонента проявляются у всех катализаторов. Спекание может протекать по разным механизмам и в зависимости от условий регенерации и свойств катализатора может вызывать кристаллизацию вещества катализатора. В связи с этим при изучении спекания катализатора в конкретном процессе необходимо прежде всего выяснить, какой из возможных механизмов играет большую роль, что позволит наметить пути повышения стабильности катализатора. [c.62]

    VI и VHI групп Периодической системы, нанесенные на различные кислые носители. До последнего времени в качестве носителей применяли в основном окись алюминия и алюмосиликат. В последние годы большое внимание уделяется изучению и разработке катализаторов на цеолитной основе. Эти катализаторы обладают высокой активностью и селективностью и повышенной устойчивостью к воздействию азотсодержащих соединений. Содержание в сырье до 0,2% (масс.) азота практически не влияет на их активность. В табл. 5.2 представлена общая характеристика основных катализаторов гидрокрекинга. [c.138]

    Изучению азоторганических соединений нефти в настоящее время уделяется большое внимание, что связано с нежелательным влиянием этих соединений на каталитические процессы и эксплуатационные свойства нефтепродуктов [1—3]. С другой стороны, азоторганические соединения нефти могут быть использованы в различных отраслях народного хозяйства как физиологически активные вещества, присадки к маслам, ингибиторы коррозии [4—6]. Поэтому вопрос быстрого и надежного анализа азоторганических соединений является весьма актуальным. Одной из задач исследования является подбор инертных носителей и наиболее эффективных жидких фаз. [c.95]

    В раздел включена также статья, посвященная изучению возможности гидроочистки сернистого бензола на отработанном катализаторе никель на кизельгуре. Развитие процессов получения циклогексана с использование / катализаторов чистый металл или металл на носителе требует больших ресурсов малосернистого бензола. Из известных методов очистки бензола наибольшее распространение получили сернокислотная очистка и очистка в атмосфере водорода на специальных катализаторах. При получении циклогексана образуется большое количество отработанного катализатора. Использование отработанного катализатора никель на кизельгуре в ступени предварительной гидроочистки бензола представляет определенный интерес с точки зрения как экономичности, так и гибкости процесса. Возможность использования такого варианта и была доказана нашими исследованиями. [c.81]

    Промотирующее действие кобальта на молибденовые катализаторы известно уже давно [54], но лишь в последнее время это сочетание приобрело значение важнейшего катализатора для гидроочистки дистиллятных нефтяных фракций. Было показано [7], что окись кобальта (2) на бентоните и трехокись молибдена на бентоните раздельно менее активны, чем смесь обоих окислов на том же носителе в свою очередь эта смесь значительно менее активна, чем катализаторы, содержащие в качестве активного компонента химическое соединение этих окислов, т. е. молибдат кобальта СоМо04 на бентонитовом носителе. Изучение влияния атомного отношения кобальт  [c.143]

    Ц.р. применяют в физике твердого тела при изучении энергетич, спектра электронов, особенно для точного измерения их эффективной массы, С помощью Ц.р. возможно определение знака заряда носителей, изучение процессов их рассеяния и электрон-фононного взаимод. в металлах. В твердых телах область наблюдения Ц. р. офаничивается низкими т-рами (1 - 10 К) и частотами со> 10 П(, В полупроводниках Ц, р. наблюдается на частотах 10 - 10 Гц в полях 8-10 -8-10 A/M. [c.375]


    Джеррард и другие [31 ] нашли, что верхний предел температуры для жидкой фазы зависит от скорости газа-носителя. Изучение стабильности нулевой линии нри применении колонки с динонилфталатом (рис. УХ-З) показало, что при высоких температурах порядка 150° С можно работать только с низкими скоростями газа-посителя, не превышающими 80 мл мин. [c.145]

    Анаэробные дегидрогеназы — высокоспецифичные ферменты катализирующие отщепление водорода от определенных хими ческих веществ и передающие отщепляемый водород другим ферментам, другим промежуточным переносчикам водорода По химической природе анаэробные дегидрогеназы—двухком понентные ферменты, которые состоят из белка и активной группы, или кофермента. Кофермент дегидрогеназ легко отде ляется от белкового носителя. Изучение активных групп раз личных дегидрогеназ, проведенное Варбургом, Эйлером и др. показало, что в состав активных групп дегидрогеназ могу входить два химических вещества — никотинамид-аде нин д и н у к л е о т и д (сокращенно НАД) или никотинамид а д е н и в-д инуклеоти д-ф о с ф а т (НАДФ). [c.54]

    С. Л. Киперманом и сотр. [30, 31] предложена кинетическая модель гидрогенолиза я-пентана в присутствии промышленного алюмоплатинового катализатора (атмосферное давление, 420—480 °С). Основной реакцией в изученных условиях является изомеризация н-пентана в изопентан. Предполагают, что гидрогенолиз и дегидрирование протекают на Р1-центрах катализатора, а изомеризация осуществляется путем миграции фрагментов СбНц с активных центров металла на пограничные центры носителя. Медленной стадией в реакции гидрогенолиза является симметричный и асимметричный разрывы С—С-связей поверхностных промежуточных фрагментов состава С5Н11, медленной стадией изомеризации — присоединение одного из атомов водорода к диссоциативно адсорбированному пентану. [c.94]

    В работах Бэрвелла с сотр. [94—96 ] исследована активность и селективность серии катализаторов Р1/8Юг в реакциях гидрогенолиза циклопропана и метилциклопропана при 0°С и гидрирования пропилена при —57°С [95]. Все реакции структурно чувствительны в изученных условиях скорость реакции зависит от содержания Pt на носителе, тогда как энергии активации для этих трех реакций достаточно близки. Показано [96] влияние предварительной обработки катализаторов Pt/Si02 на их активность и селективность в ходе гидрогенолиза метилциклопропана. Число оборотов на каждом из исследуемых катализаторов сильно изменялось в зависимости от условий обработки водородом, температура которой составляла 25—480 °С. Обработка при комнатной температуре обеспечивала высокую активность катализаторов, при 200 °С активность проходила через минимум и с возрастанием температуры реакции выше 250 °С снова повышалась. Таким образом, полученные результаты показывают, что структурная чувствительность реакции гидрогенолиза циклопропанов в присутствии катализаторов Pt/Si02 в значительной степени зависит от условий их предварительной обработки. [c.105]

    Весьма подробно изучен гидрогенолиз и О—Н-обмен монометил- и стереоизомерных 1,2-диметилциклобутанов [89, 121, 122] в присутствии металлов на носителях и напыленных пленок Р1, Р(1, N1 и КЬ. Установлено, что порядок реакции по водороду отрицательный, как и при гидрогенолизе этана и пропана. Селективность гидрогенолиза по различным связям четырехчленного цикла зависит от природы и состава катализатора и условий проведения реакции. Авторы этих работ считают, что гидрогенолиз циклобутанов (подобно циклопентанам) происходит в соответствии с тремя независимыми механизмами. Доля участия этих механизмов в каждом конкретном случае зависит от катализатора и температуры. Первый из рассматриваемых механизмов — селективный гидрогенолиз дивторичных связей цикла — связывают с образованием а,а,р,р-тетраадсорбированных промежуточных соединений, плоскость четырехчленного цикла в которых перпендикулярна поверхности катализатора. Отмечалось, что селективность гидрогенолиза уменьшается в следующем ряду металлов КЬ > Р1 > Рд (количества 2,3-диметилбутана, полученного из транс-1,2-ди-метилциклобутана, составляют соответственно 90, 68 и 53%). Второй механизм — неселективный гидрогенолиз — связывают с равновероятным разрывом связей [c.113]

    В соответствии с приведенной схемой установлено, что в изученных условиях изопропенил- и изопропилиден-циклобутаны претерпевают ряд превращений гидрирование в изопропилциклобутан, гидрогенолиз с образованием 2-метилгексана и 2,3-диметилпентана, миграцию двойной связи (рис. 19, 20) и расщирение цикла до пятичленного (рис. 21). На направления реакций влияет природа газовой фазы в токе Нг преобладают гидрирование и гидрогенолиз, а в токе Не и Ыг — расщирение кольца и миграция двойной связи. Каталитической активностью в этих реакциях обладают как нанесенные металлы, так и носитель (активированный уголь), который особенно активен в реакции расщирения четырехчленного кольца в пятичленное. [c.120]

    Роль дегидроизомеризации алкилциклопентанов при образовании аренов специально исследовалась на примерах метил-, этил- и 1,2-диметилциклопентанов [49]. В присутствии Р1/А120з эти углеводороды дегидроизо-меризуются с образованием аренов, подвергаются гидрогенолизу в алканы и частично дегидрируются с образованием циклопентенов и циклопентадиенов. Из метилциклопентана и н-гексана образуются примерно одинаковые количества бензола. Из 1,2-диметилциклопентана выход толуола значительно ниже, а из этилциклопентана примерно в два раза выше, чем из н-гептана. Таким образом, очевидно, что алкилциклопентаны в изученных условиях (Pt/AbOa, 350—520 °С) являются промежуточными продуктами при ароматизации н-алканов. При этом несомненно следует учитывать то обстоятельство, что вклад циклопентанового пути ароматизации алканов в значительной степени зависит от применяемого катализатора (кислотность носителя, природа модификаторов, дисперсность и содержание активной металлической фазы) и условий проведения опыта (температура, газ-носитель, давление и т. д.). [c.195]

    При изучении роли кристаллов платины с различной структурой в механизме процесса дегидроциклизации н-геисана на алюмоплатиновых катализаторах был сделан вывод [179], что в реальных условиях дегидроциклизации, когда процесс сопровождается крекингом и энергичным коксообразованием, скорость и направление циклизации н-гексана зависят от размера кристаллов Pt на носителе. Наиболее благоприятными для осуществления реакции на изученном образце -АЬОз являются кристаллы Pt размером 1,1 —1,4 нм и степенью дисперсности H/Pt 0,6—0,8. При сравнении результатов ароматизации н-гексана и гексена-1 на изученных алюмоплатиновых катализаторах предположили, что электронодефицитные частицы Pt прежде всего могут играть роль центров закоксовывания алюмоплатиновых катализаторов, на которых происходит крекинг ненасыщенных углеводородов, склонных к реакциям присоединения и расщепления. Вместе с тем полагают, что ароматизация н-гексана осуществляется путем непосредственного замыкания шестичленного цикла с одновремен- [c.253]

    Получило дальнейшее развитие предположение о высокой активности в реакции дегидроциклизации комплексных активных центров, содержащих ионы Pt +, химически связанные с поверхностью носителя — AI2O3 [188]. Так, в работах Н. Р. Бурсиан с сотр. [189—192] исследована структура активных центров алюмоплатиновых катализаторов в реакции Сб-дегидроциклизации н-гексана. На основании изучения с помощью экстракционного метода промотирующего действия щелочных металлов (Li, Na, s) на Pt-контакты, а также исходя из полученных данных об отсутствии связи между кислотными и ароматизирующими свойствами изучаемых катализаторов, предложена модель комплексного активного центра, содержащего ион Pt +. [c.256]

    Экспериментальные исследования детонации в двигателях с воспламенением от искры и изучение эффективности действия антидетонаторов позволили установить, что большое число металлоорганических соединений обладает антидетонационньш эффектом, а органических веществ, приближающихся по эффективности к металлоорганическим, не выявлено [130, 178]. Отсюда был сделан вывод, что носителем антидетонационного эффекта является металл, а органический радикал лишь обеспечивает растворимость соединения в топливе. [c.170]

    Выбор между этими двумя предположениями может быть сделан лищь на основании опыта. Изучению зависимости каталитической активности от концентрации катализатора на поверхности носителя было посвящено большое число исследований, которые показали, что в большинстве случаев кривые Л = [c.355]

    Стимулом к изучению кинетики реакции окисления нефтяных KOiK io B в последние годы послужила разработка процессов с аппаратами высокотампературното окисления неф-тяного кокса (коксонагреватели), а также регенерации углеродистых отложений на неорганических носителях или катализаторах при температурах 700—1400° С и выше. [c.80]

    Б. А. Казанский, А. Л. Либермап, А. Ф. Платэ, С. Р. Сер-гиенко и Н. Д. Зелинский [100] изучали влияние способа приготовления окиси хрома на ее активность и время, в течение которого она может работать без регенерации, а также снижение при этом ее активности. Указанные исследователи пришли к выводу, что способ приготовления окиси хрома, несомненно, влияет на ее активность, однако ни один из перечисленных ими способов не дает достаточно стойкого катализатора, и поиски более совершенных контактов должны быть направлены в сторону изучения влияния носителей и активизирующих добавок для окиси хрома. [c.288]

    Чаще других селективных детектирующих устройств при изучении ГАС применяются, по-видимому, микрокулонометрические детекторы (1У1КД), основанные на титровании элюируемых веществ или продуктов их деструкции. Так, ]У[КД с прямым титрованием ионами Ag+ использован. при анализе состава меркаптанов, содержащихся в бензине [294]. Распределение индивидуальных меркаптанов, сульфидов, тиофенов в нефтяных дистиллятах исследовалось путем непрерывного сожжения элюата в токе инертного газа-носителя и микрокулонометрического титрования образующейся ЗОа иодом [295, 296]. При изучении состава азотистых компонентов фракции 200—400°С элюа.ты каталитически восстанавливались, и генерирующийся аммиак также определялся с помощью МКД 140]. [c.35]

    Другим типом взаимодействия металла с носителем является перенос водорода (спилловер). Наиболее общий и хорошо изученный пример спилловера — адсорбция и диссоциация водорода на частицах металла с последующим переходом его на поверхность носителя, где водород реагирует с адсорбированными молекулами. [c.15]

    Авторами была исследована возможность применения метода ОГХ для изучения фазовых переходов в нефтяных пеках и особенностей их взаимодействия с органическими растворителями. Объектами исследования были нефтяной асфальтит, изотропный и анизотропный пиролизные пеки с температурой размягчения 140,185 и ЗОСГС, соответственно, и органические растворители - предельные углеводороды, бензол, спирты, альдегиды, кетоны, эфиры и карбоновые кислоты. Исследования проводились на хроматографе ЛХМ - 8 мД (катарометр при токе 100 мкА) при предварительно выбранных оптимальных условиях загрузка колонки - 12 г, зернистость пека - 0,2-0,5 мм, газ-носитель - гелий, продолжительность стабилизационной продувки - 8,64 10 с, скорость потока гелия - 50 mVmhh. [c.268]

    Хромовые катализаторы на алюмоокисном носителе в первые минуты дегидрирования имеют более низкую активность, чем в последующий период. Этот нестационарный режим работы катализатора подробно изучен Тюряевым [20]. [c.218]

    При помощи электронного микроскопа можно рассматривать как сан образец, так и отпечаток рельефа его поверхности (реплика). Таким обрг зок/ при изучении твердых вещеетв, в том числе катализаторов, носителей и г. д. можно различать три направления исследования 1) порошков 2) ультратон-ких срезов 3) реплик. [c.309]

    Из таких катализаторов наиболее изученным и до сих пор приковывающим к себе внимание является никелевый катализатор на кизельгуре. Первые обобщенные работы по гидрированию и гид-рогенолизу углеводов проводились именно на этом катализаторе [2], так как используемый носитель является наиболее доступным, дешевым и распространенным. После признания этого катализатора в разных странах стали появляться работы, посвященные его усовершенствованию, в частности промотированию железом, хромом, марганцем и др. [3]. В дальнейшем большое внимание уделялось и уделяется сейчас теоретическим аспектам действия этого катализатора как в процессе гидрирования, так и в процессе гид-рогенолиза углеводов [4, 5]. Работы, выполненные в последние годы, показывают, что наряду с природой катализатора важное значение имеет аппаратурное оформление и оптимальные условия проведения процесса. Так, при гидрировании глюкозы и ксилозы [6, 7] влияние давления водорода описывается экстремальной за- [c.22]

    Первые работы по приготовлению и изучению активности медного катализатора на носителе относятся к 30-ым годам нашего столетия [41]. Аммиакат меди с добавками аммиаката хрома высу- [c.45]

    Одним из катализаторов, подробно описанных в литературе [I] и позднее детально изученных, является медный катализатор на окиси хрома. Установлено, что лри использовании этого катализатора карбонильные соединения гладко подвергаются гидрогено-лизу, особенно в этаноле, диоксане при 180 °С [43]. Исследование медных катализаторов на различных носителях ( uO/MgO- --ЬРегОз СиО/СаРг Си/СггОз и Ag u/ r20з Си/кизельгур и др.) проводилось в различных странах [34, 44], однако во всех выполненных работах указывалось лишь на способность перечисленных Катализаторов вести процесс гидрогеиолиза без изучения степени активности, селективности, стабильности и физико-химических свойств катализаторов. В последнее время особый интерес вызвал катализатор Си—СеОг/кизельгур [45]. [c.46]

    В одной из работ [163] была иредиринята попытка применения различных катализаторов для изучения строения сераорганических соединений. Был исследован ряд катализаторов, которые представляли собой в основном сульфиды металлов и частично окислы на носителях или ббз них. [c.391]

    Интерес представляют также наблюдения о роли носителей. Так, А1гОз удерживает значительно больше порфирина, чем 8102. Очевидно, поэтому 8Ю2 уменьшает чувствительность катализатора к отравлению. Но с увеличением количества 810г глубина гидрообессеривания понижается. При изучении кинетики и влияния [c.258]


Смотреть страницы где упоминается термин Носители изучение: [c.829]    [c.796]    [c.178]    [c.339]    [c.361]    [c.337]    [c.79]    [c.299]    [c.92]    [c.151]    [c.321]   
Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.133 , c.152 , c.211 , c.223 ]




ПОИСК







© 2024 chem21.info Реклама на сайте