Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Градиентное элюирование в ионообменной хроматографии

    Градиентное элюирование. При разделении по методу ионообменной хроматографии часто требуется использование градиентов, другими словами, поскольку не все компоненты образца удается элюировать подвижной фазой постоянного состава, его приходится менять в процессе элюирования. Так как на удерживание слабых ионов наибольшее влияние оказывает величина pH, то в этом случае наиболее эффективны градиенты pH. Однако солевые градиенты (градиенты ионной силы) имеют более обший характер, и оказываемое ими воздействие является более предсказуемым [77]. [c.118]


    Обмен компонентов движущегося раствора с твердым, пористым материалом в процессе хроматографии может быть основан также на распределении веществ между двумя жидкими фазами, одной из которых является подвижный раствор, в то время как вторая жидкая фаза удерживается твердым носителем. Носителями неподвижной фазы могут являться крахмал, силикагель, целлюлоза или сшитые синтетические полимерные вещества, способные к поглощению органического растворителя и набуханию в воде. Законы распределительной хроматографии, как уже отмечалось, не отличаются от законов ионообменной или молекулярной хроматографии. В соответствующих уравнениях коэффициент адсорбции или константа ионного обмена заменяются здесь на коэффициент распределения вещества между двумя фазами. При низких концентрациях веществ коэффициент распределения может рассматриваться как постоянная величина. Вместе с тем имеются способы изменения этой константы, в том числе и в процессе хроматографии, например, путем изменения pH раствора. В результате этого при распределительной хроматографии оказывается возможным осуществление наиболее высокоэффективного процесса — градиентного элюирования. [c.122]

    Градиентное элюирование. Эта методика, широко применяемая в других типах хроматографии, например ионообменной <- [c.199]

    Разделение сложных смесей методом колоночной хроматографии в некоторых случаях удобнее проводить при градиентном элюировании [6, 13, 22а, 37] (см. разд. 1.3.3). В ионообменной хроматографии широко используется программирование потока элюентов и их градиента в настоящее время этот метод благодаря введенным в последнее время привитым фазам также применяется в жидко-жидкостной хроматографии i[3, 20]. Системы формирования градиента, в которых растворители смешиваются при нормальном давлении, относительно недороги и легко изготавливаются. [c.53]

    Градиентное элюирование или программирование растворителя широко используется в адсорбционной и ионообменной хроматографии и, безусловно, найдет применение и в распределительной [c.64]

    Ионообменные смолы отличаются тем, что они имеют широкий диапазон значений К для различных ионных групп. В некоторых сложных смесях значение К для составляющих может меняться на несколько порядков. Такой чрезвычайно широкий диапазон значений К (и, следовательно, применимость ко многим образцам) — одно из главных достоинств ионообменных смол. Однако в ионообменной хроматографии может возникнуть необходимость в градиентном элюировании с тем, чтобы свойства элюента менялись по мере уменьшения значений К анализируемых веществ. [c.217]


    Вода представляет собой важнейший растворитель в обращенно-фазной и ионообменной хроматографии. Основными примесями в воде, которые мешают проведению хроматографического процесса, являются различные соли и микропримеси углеводородов и других органических соединений. Присутствие солей недопустимо в ионообменной хроматографии, а примеси органических соединений вызывают существенные затруднения в обращенно-фазной хроматографии (особенно в градиентном элюировании) при использовании флюоресцентного и УФ-детекторов. [c.134]

    Вода является базовым растворителем в обращенно-фазовой и ионообменной хроматографии. Обычная дистиллированная вода после надлежащего фильтрования может быть использована преимущественно в тех работах, где не требуется достижения максимальной чувствительности. Она может оказаться недостаточно очищенной для более тонких работ, в особенности с применением градиентного элюирования. В последнем случае имеющиеся в ней примеси могут при регенерации колонки накапливаться в ней, а при повышении в ходе разделения элюирующей силы выходить из колонки в виде ложных пиков. Поэтому желательна помимо дистилляции дополнительная очистка воды в специальных фильтрующих системах (например, фирмы Милли-пор ), удаляющая Остаточные ионы и органические примеси. [c.295]

    Чтобы предсказать хроматографическую подвижность элементов, нужно прежде всего знать константы обмена или коэффициенты распределения [22]. На основании этих характеристик можно также предсказать положения пиков при градиентном элюировании [23] и влияние на разделение степени сшитости ионообменной смолы [24]. Показано, например [24], что наилучшее разделение щелочных металлов достигается на предельно сшитых смолах (рис. 51.2). Для определения оптимальных условий можно использовать результаты ионообменной хроматографии на бумаге, однако это возможно лишь в том случае, если речь идет о разделении конкретной смеси на аналогичном ионите [25]. Наблюдаемые расхождения в результатах часто вызваны либо использованием различных методик -[26], либо наличием связующих компонентов в ионообменной бумаге [27]. [c.323]

    Для разделения редкоземельных элементов или ионов лантанидов используют буферные растворы оксикислот. Разделение этих элементов [141 (получаемых в качестве продуктов деления урана) на сульфокислотных смолах при помощи буферных растворов лимонной кислоты при pH 3,2—4,5 было одним из наиболее ранних крупных достижений метода элютивной ионообменной хроматографии. Первым вымывался лютеций, последним — лантан. Из-за лантанидного сжатия сила поглощения ионов смолой с увеличением атомного номера уменьшается, вместо того чтобы увеличиваться ионный радиус с увеличением атомного номера уменьшается. Разница в объемах, соответствующих пикам соседних элементов, незначительна, однако по сравнению с крайними элементами ряда она велика. Поэтому выгодно применять градиентное элюирование [15]. [c.198]

Фиг. 41. Градиентное элюирование при ионообменной хроматографии. Буферный раствор, заполняющий резервуар А, имеет ббльшую ионную силу, чем раствор, находящийся в смесителе Б. Градиенты концентрации / — линейный 2 — вогнутый Фиг. 41. <a href="/info/153559">Градиентное элюирование</a> при <a href="/info/5708">ионообменной хроматографии</a>. <a href="/info/4682">Буферный раствор</a>, заполняющий резервуар А, имеет ббльшую <a href="/info/5296">ионную силу</a>, чем раствор, находящийся в смесителе Б. <a href="/info/25910">Градиенты концентрации</a> / — линейный 2 — вогнутый
    Как и в предыдущих разделах, мы попытаемся кратко рассмотреть применение ионообменной хроматографии на примере изучения белков сыворотки. До сих пор наиболее популярным методом разделения сывороточных белков является хроматография на колонке анионообменной ДЭАЭ-целлюлозы по методу Собера и Петерсона [18]. Предложено несколько модификаций этого метода. Фракции сыворотки элюируются с колонки различными способами градиентного элюирования и выходят обычно в следующем порядке IgG (как правило, имеет несколько пиков), р-, а-глобулины и затем альбумин. Этот метод особенно эффективен для приготовления препаратов IgQ высокой иммунохимической чистоты из нативной сыворотки. Его можно комбинировать с другими способами очистки, например с осаждением риванолом, Na2S04 и т. п. Подобным образом в качестве одного из этапов препаративного выделения анионообменная хроматография может применяться для очистки других белков сыворотки. При изучении структуры белка ее можно использовать для выделения и очистки полипептидов после расщепления белка ферментами или какими-либо другими веществами. [c.23]

    В ионообменной хроматографии элюирование часто проводят градиентным методом, меняя pH или концентрацию элюента. Ионообменники с органической матрицей меняют объем с изменением pH и особенно с изменением концентрации ионов, чго заметно ухудшает проницаемость колонки или ее разделительную способность из-за образования пустот. Такое же влияние оказывает и органический растворитель, добавляемый в процессе градиентного элюирования. [c.197]


    В некоторых случаях целесообразно проводить градиентное элюирование, при котором содержание более полярного растворителя в менее полярном повышают непрерывно. Градиентное элюирование проще всего осуществить, возвращая отогнанный от каждой фракции растворитель на колонку с добавлением к нему каждый раз одного и того же объема второго, более полярного растворителя. Если ход хроматографического разделения известен заранее, то можно использовать автоматическое гpaJ диентное элюирование, описанное в главе, посвященной ионообменной хроматографии. [c.364]

    У большей части белков в процессе хроматографии сразу происходит изменение величины К[От О до 1.Это вызвано тем, что белки либо прочно сорбируются на ионообменнике, либо выходят с элюирующим буферным раствором, поскольку происходит одновременная взаимная нейтрализация многочисленных реакций взаимодействия между белком и ионообменником при данных pH и ионной силе раствора. Поэтому важно тщательно подбирать буферный раствор для ионообменной хроматографии белка. Ионообменную колонку обычно загружают при низкой ионной силе раствора. Для катионообменника оптимальная величина pH равна 4—5, для анио-нообменника 7—8- Элюирование с колонки катионообменника происходит при увеличении pH буферного раствора, а с колонки анионо-обменника — при уменьшении pH. В том и другом случае с изменением pH можно увеличивать ионную силу. Изменение pH и ионной силы элюирующего буферного раствора можно производить поэтапно (ступенчатое элюирование) или непрерывно (градиентное элюирование). [c.22]

    В ионообменной хроматографии градиентное элюирование осуществляют с помощью градиента концентрации (концентрация элюирующего раствора непрерывно изменяется) или градиента pH (pH элюирующего раствора непрерывно изменяется). [c.61]

    Для разделения конденсированных фосфатов применяют ионообменную хроматографию [947]. Орто- и пирофосфаты, содержащиеся в виде примесей в перекристаллизованном триполифосфате, разделяют путем градиентного элюирования 0,002 N HG1, к которой непрерывно добавляют 0,6 М R 1. Последовательно элюируются орто-, пирО и триполифосфат в элюатах объемом 100, 200 и 300—350 мл соответственно. Фосфат в элюатах определяют фотометрически в виде фосфорномолибденового комплекса. В качестве ионита применяют смолу дауэкс-1Х8. Для анализа более конденсированных фосфатов используют элюент с большей концентрацией KG1 (1 М или 2М раствор KG1). Выход фосфатов составляет >95%. [c.166]

    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]

    В различных видах жидкостной хроматографии к разряду основных могут относиться различные параметры (см. табл. 3.10). Термин градиентное элюирование обычно применяют к хроматографическим экспериментам, в которых в течение анализа изменяется состав подвижной фазы. Часто используют градиент концентрации соли или pH, особенно в ионообменной хроматографии [26]. Однако наиболее популярны такие виды градиентного элюирования, которые предусматривают изменение состава подвижной фазы. Обычно при этом происходит добавление сильного растворителя В) к слабому растворителю (Л). Типичные примеры такого рода градиентов — это градиенты воды (растворитель А) с метанолом, ацетонитрилом или тетрагидрофураном (растворитель В) в ОФЖХ. В нормально-фазовой жидкостной хроматографии к н-гексану [c.240]

    Эту сложную проблему можно в значительной степени решить при помощи градиентов элюирования, используя смесители, как показано на рис. 21-1. Состав растворителя изменяют постепенно по мере проведения хроматографического разделения, начиная со слабого растворителя (дающего большие величины к ) и кончая сильным растворителем (дающего наименьшие величины к ). В результате разрешение пиков на хромограмме заметно улучшается. На рис. 21-7 показаны хроматограммы одной и той же смеси, полученные при элюировании в изократическом и градиентном режимах [1]. Пример градиентного элюирования в ионообменной хроматографии приведен на рис. 21-4, [c.439]

    Наиболее типичный пример ионообменной хроматографии — разделение ионов в соответствии с их сродством к ионообменным группам. Самый старый метод фронтальной хроматографии обладает лишь немногими преимуществами. Лучшие результаты дает вытеснительная хроматография, однако наиболее эффективен метод проявительной хроматографии. Небольшое количество смеси ионов В и С, обладающих большим сродством к иониту, вводят в колонку вместе с ионами А, обладающими малым сродством к иониту. Величина вводимой пробьЕ пренебрежимо мала по сравнению с полным объемом колонки Элюирование ведут ионами А. Разделение определяется коэффициентами распределения Ка Щ и /С<г(С) или фактором разделения /Сй(В)/Х<г(С). Коэффициент распределения — это отношение концентраций ионов в ионообменной фазе и в растворе, отнесенное к миллилитру раствора и к грамму (сухой массы) или миллилитру ионообменной фазы. При слишком большом Ка, например более 30, хроматографические зоны расширяются и увеличивается время, необходимое для разделения.. Этого можно избежать, меняя в процессе элюирования дискретно или непрерывно концентрацию элюента (градиентное элюирование). Оптимальное разделение достигается в равновесных условиях, поэтому благоприятное влияние на процесс оказывает уменьшение размера зерен ионита, повышение температуры и оптимальная скорость потока подвижной фазы (все эт меры способствуют достижению равновесного состояния). Размер зерен можно уменьшать лишь до некоторого предела, который зависит от механической прочности слоя ионита причем требования к стабильности формы зерен особенно жестки, когда элюент пропускают через колонку под действием избыточного давления (иногда до нескольких десятков атмосфер). Степень сшивки ионитов должна быть достаточно высокой, чтобьь их объем оставался неизменным, или это должны быть макропористые иониты. Благоприятное действие оказывает увеличение скорости потока элюента в колонке, способствующее более равномерному распределению пленки жидкости по поверхности зерен ионита, но слишком сильное увеличение скорости может увести систему из оптимального равновесного состояния. Величины коэффициентов распределения зависят от состава элюента, и их можно регулировать в значительных пределах, добавляя комплексообразующие компоненты например, при разделении лантанидов с этой целью используют органические оксикислоты. [c.243]

    Если необходимо определение содержания только нескольких нуклеотидов, то возможен более быстрый анализ. Так, ори использовании ионообменной хроматографии без применения градиентного элюирования возможно разделение moho-, ди- и трифосфатов аденозина за [c.205]

    В результате аналогичного фосфорилирования аденозина образуется смесь нуклеозид-2, 5 - и нуклеозид-3, 5 -дифосфатов. В этом случае для удаления бензильных групп наряду с гидрогенолизом используются анионный обмен (при действии хлорида лития) и щелочной гидролиз [147]. Ионообменная хроматография с применением градиентного элюирования позволяет разделить изомерные дифосфаты, которые можно охарактеризовать с помощью химического или ферментативного гидролиза [148]. Из той же реакционной смеси был выделен аденозин-2, 3, 5 -трифосфат дезаминирование последнего приводит к ииозин-2, 3, 5 -трифосфату [148]. Описано также прямое фосфорилирование аденозина 2-цианэтилфосфатом в присутствии дициклогексилкарбодиимида [237]. [c.152]

    Колоночная хроматография на силикагеле или оксиде алюминия составляет основу стандартной процедуры очистки практически всех типов дитерпеноидов [274, 275, 279, 281, 289—294]. Хроматография на колонках с силикагелем, пропитанным раствором нитрата серебра, и хроматография в режиме градиентного элюирования являются эффективными методами фракционирования кислородсодержащих дитерпенов [295, 296] и дитерпеновых углеводородов [281]. Описана также ионообменная хроматография смоляных кислот [297], представляющая собой удобный метод их отделения от родственных природных соединений, которые могут мешать газо-жидкостному хроматографическому анализу метиловых эфиров этих кислот. Обращенно-фазовая ВЭЖХ была использована для разделения дитерпеноидов с большим числом атомов кислорода в молекуле [298— 300]. [c.245]

    Условия двумерной ТСХ дезоксирибонуклеотидов и рибонуК леотидов аналогичны описанным для анализа нуклеозидов [31] (ср., например, конкретные методики анализа, приведенные в подписи к рис. 10.2). Для разделения нуклеотидов может быть использована также ионообменная хроматография в тонком слое целлюлозы, обработанной полиэтиленимином [25]. В этом варианте ТСХ применяется градиентное элюирование растворами солей, например хлорида лития или сульфата аммония. При анализе смесей моно-, ди- и трифосфатов в качестве элюента обычно используют 0,75 М NaHsP04 [5]. Подвижность этих соединений на указанном сорбенте уменьшается с увеличением числа остатков фосфорной кислоты в их молекулах. [c.167]

    В отличие от обращенно-фазовой хроматографии ионообменная хроматография на сорбентах с малым размером частид, устойчивых к воздействию давления, уже завоевала прочное место в неорганическом анализе следов. Используя градиентное элюирование, а также изократический режим, можно разделять многочисленные элементы и определять их затем с высокой чувствительностью во фракциях элюата или в проточной ячейке после получения соответствующих производных в дополнительной колонке (post- olumn) (см. разд. 2.3 гл. II). [c.43]

    УФ-детектор — очень чувствительный и очень селективный прибор. Если элюент не поглощает УФ-излучения в области рабочих длин волн, можно использовать метод градиентного элюирования. Однако даже при этом может наблюдаться дрейф нулевой линии, так как при принятой обычной конструтсции ячейки одновременно определяется изменение показателя преломления. Используя измерительную ячейку подходящей конструкции, можно с помощью оптических методов подавить указанное изменение показаний за счет изменения показателя преломления. В ионообменной хроматографии можно менять значения pH и ионную силу элюента, если ионы не поглощают в УФ-области. [c.66]

    Г радиентное элюирование незаменимо при разделении смесей соединений, полярности которьи значительно различаются. Необходимость в градиентном элюировании возникает при разделении таких смесей методом адсорбционной хроматографии на полярных и неполярных неподвижных фазах и методом ионообменной хроматографии (см. гл. УП1, разд. Г.5). Используя градиентное элюирование в адсорбционной хроматографии, можно в процессе одного анализа разделить смеси компонентов, значения к которых различаются в 10 и более раз. Чтобы можно было реалюовать это огромное преимущество в рутинных анализах, надо раиить ряд задач и, в частности, уменьшить вероятность ошибочной интерпретации хроматограмм, полученных при градиентном элюировании. При соблюдении определенных мер предосторожности, например проведении холостого градиентного элюирования в идентичных условиях перед [c.150]

    Разделение смеси аминокислот, приведенное на рис. 5.17, является примером ионообменной хроматографии при постоянной концентрации Na+ и трех различных значениях pH. Часто оказывается невозможным точно подобрать необходимые условия для удовлетворительного разделения неизвестной смеси ионов. По этой причине во многих случаях разделение на ионите проводят с помощью градиентного элюирования, при котором состав буферного раствора, поступающего в колонку, изменяют постепенно (либо относительно концентрации неорганического иона, участвующего в обмене с функциональными группами смолы, либо относительно pH), что приводит к изменению сродства растворенных веществ к иониту. На рис. 6.18 в качестве примера использования градиентного э.чюирования приведена картина разделения смеси белков. [c.155]


Смотреть страницы где упоминается термин Градиентное элюирование в ионообменной хроматографии: [c.58]    [c.119]    [c.280]    [c.258]    [c.239]    [c.212]   
Жидкостная хроматография при высоких давлениях (1980) -- [ c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменная хроматографи

Хроматография ионообменная

Хроматография элюирования

Элюирование



© 2024 chem21.info Реклама на сайте