Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гелий системы пар жидкость

    Движущими силами образования растворов являются энтальпийный и энтропийный факторы. Энтропийным фактором объясняется самопроизвольное смешивание двух инертных, практически не взаимодействующих газов гелия и неона. Чем слабее взаимодействие молекул растворителя и растворенного вещества, тем больше роль энтропийного фактора в образовании раствора. Знак изменения энтропии зависит от степени изменения порядка в системе до и после процесса растворения. При растворении газов в жидкости энтропия всегда уменьшается, а при растворении кристаллов возрастает. Знак изменения энтальпии растворения определяется знаком суммы всех тепловых эффектов процессов, сопровождающих растворение, из которых основной вклад вносят разрушение кристаллической решетки и взаимодействие образовавшихся ионов с молекулами растворителя (сольватация). [c.94]


    Очевидно, что и сам объем фаз и их соотношение в условиях проведения реакции отличаются от таковых, рассчитанных по подачам или загрузкам реагентов. Поэтому надо уметь их определять. Проще всего это было бы осуществлять визуально, однако так удается делать достаточно редко, при работе без давлений, да и то в основном на системе жидкость — жидкость. Приходится искать другие пути. Одним из них является постановка специальных исследований по определению изменения объема фаз в ходе реакции в условиях равновесия, но при отсутствии взаимодействия. Однако такие исследования даже более сложны, чем изучение кинетики. Кроме того, исключить взаимодействие, сохранив полностью условия равновесия, можно только в гетерогенно-каталитических реакциях при постановке опытов без катализатора. Вследствие этого приходится либо расчетным путем определять объем фаз, исходя из молекулярных объемов их компонентов (часто тоже расчетных) и из постулата аддитивности этих объемов в растворе, либо ориентировочно оценивать при помощи метки. Последний прием заключается в том,что в одну из фаз дается инертная метка, не влияющая на ход реакции, например бензол, полихлорид бензола и т. н., в зависимости от реакции. Определяя содержание метки в каждой пробе и зная общее количество метки, можно рассчитать объем фазы. Можно давать метку и в газовую фазу в виде гелия или аргона. Однако при давлениях — 100 кгс/см и выше растворимость этих газов довольно заметна даже для повышенных температур, что вносит ошибку в расчеты. Все же газовая метка удобнее, поскольку в ряде случаев отбор газовой пробы удается осуществить из работающего аппарата установкой в нем специальных отбойников. [c.72]

    Исключением является система гелий над жидкостью, в которой с повышением давления поверхностное натяжение возрастает. [c.27]

    Для разделения стероидов так же широко применяют различные типы гелей сефадекса. На липофильных гелях сефадекса разделение определяется двумя основными механизмами распределением в системе жидкость—гель и ситовым эффектом. Однако в работе [41] было показано, что ароматические и гетероциклические соединения более сильно адсорбируются гелевой матрицей, нежели соединения других типов. Этот эффект играет важную роль в гель-хроматографии некоторых сопряженных ароматических стероидов (эстрогенов). [c.222]

    Образование тиксотропного геля системы неполярная жидкость — аэросил происходит за счет связывания частиц наполнителя водо- [c.44]


    По-видимому, оно обоснованно и для большинства полимерных расплавов, которые представляют собой вязкоупругие жидкости почти при всех условиях течения. Экспериментальное подтверждение отсутствия проскальзывания полимерных расплавов при низких скоростях течения было дано ден Оттером [121. Он использовал для наблюдений частицы гель-фракции, введенные в расплав полиэтилена, и изучал условия течения вблизи стенки. Эксперименты, в которых использовались трассеры большого размера, показали возможность появления проскальзывания на стенке [13, 14]. Часть этих наблюдений ден Оттер интерпретировал как артефакты, возникшие из-за несовершенства экспериментальной системы и больших размеров трассеров. Проскальзывание на стенке может наблюдаться также при высоких скоростях течения в области разрушения расплава (см. гл. 13). Этот случай типичен, например, для расплавов ПЭВД [15]. Явление, которое имеет место при повышенных скоростях течения, — стик—слип (отлипание—прилипание) заключается в том, что под действием растягивающих напряжений расплав отрывается от стенки (силы адгезии преодолеваются) и прилипает обратно, когда напряжения восстанавливаются [14]. В любом случае, особенно при скоростях ниже области разрушения расплава, используют условие прилипания. [c.115]

    Наиболее существенным фактором, влияющим на состояние нефти как дисперсной системы, является температура. Любое образование новой твердой макрофазы в виде отложений на поверхности возможно лишь после возникновения в объеме нефти диспергированной твердой микрофазы /4, 30/. Поэтому при температурах, выше температуры насыщения нефти парафинами, заметных отложений на поверхности оборудования не наблюдается. Опасность образования отложений возникает лишь ниже температуры насыщения, когда образуется твердая микрофаза и нефть превращается в свободнодисперсную систему, в которой дисперсные частицы не связаны друг с другом и способны независимо перемещаться в дисперсионной среде под влиянием броуновского движения или силы тяжести. При дальнейшем снижении температуры, после достижения характерного для каждой нефти ее критического значения, благодаря повышению концентрации дисперсной фазы нефть превращается в связнодисперсную систему - гель, в которой дисперсные частицы связаны друг с другом за счет межмолекулярных сил и образуют своеобразные пространственные сетки, формируя структурные каркасы и превращая нефть в структурированную жидкость. В гелеобразном состоянии дисперсные частицы практически теряют возможность свободно перемещаться внутри системы. Температура гелеобразова-ния является весьма важной технической характеристикой дисперсной системы как минимальная температура, при которой в отсутствии механического воздействия система способна находиться в подвижном состоянии. [c.46]

Рис. 114. Электрофорез в агарозном геле спинномозговой жидкости (СМЖ) и сыворотки крови, полученных от шести разных больных [772]. По краям электрофореграммы расположены образцы нормальной сыворотки, использованные в качестве свидетелей. 1, 3, 5, 7, 9 и И — образцы концентрированной СМЖ, остальные номера — образцы сыворотки. 1 и 2 — образцы от больного с хронической миелопатией 3 и 4, 5 ц 6, 7 и 8, 9 и 10 — образцы от четырех больных с рассеянным склерозом И и 12 — образцы от больного с опухолью центральной нервной системы. Стрелки, направленные вправо, указывают на дискретные зоны, присутствующие в СМЖ здоровых людей стрелки направленные влево, указывают на зоны в У"ГЛобулиновой области, отсутствующие у здоровых людей. Рис. 114. Электрофорез в <a href="/info/199926">агарозном геле</a> <a href="/info/574235">спинномозговой жидкости</a> (СМЖ) и <a href="/info/91064">сыворотки крови</a>, полученных от шести разных больных [772]. По краям электрофореграммы расположены образцы <a href="/info/1349764">нормальной сыворотки</a>, использованные в качестве свидетелей. 1, 3, 5, 7, 9 и И — образцы концентрированной СМЖ, остальные номера — образцы сыворотки. 1 и 2 — образцы от больного с хронической миелопатией 3 и 4, 5 ц 6, 7 и 8, 9 и 10 — образцы от четырех больных с <a href="/info/103667">рассеянным склерозом</a> И и 12 — образцы от больного с опухолью <a href="/info/100186">центральной нервной системы</a>. Стрелки, направленные вправо, указывают на <a href="/info/1409919">дискретные зоны</a>, присутствующие в СМЖ здоровых людей стрелки направленные влево, указывают на зоны в У"ГЛобулиновой области, отсутствующие у здоровых людей.
    В системе может существовать не одна, а несколько жидкостей. Многие системы содержат не только углеводороды, но и воду в жидкой фазе, так как они нерастворимы друг в друге. Они образуют отдельные жидкие фазы, имеющие различные свойства. Для системы, состоящей из паров, углеводородной жидкости и воды, р = 3 и и = 2. Подобными свойствами могут обладать и некоторые индивидуальные вещества. Например, гелий при температурах, близких к температуре абсолютного нуля, образует несколько жидких фаз, каждая из которых имеет свою характеристику. [c.26]

    Точка на диаграмме р—7, в которой сходятся к ривые зависимости давления от температуры для равновесий жидкость — пар, жидкость —твердая фаза и твердая фаза —пар, называется тройной точкой. При термодинамических параметрах тройной точки в системе находятся в равновесии одновременно три фазы твердая, жидкая и газообразная. Кривая сублимации твердой фазы идет от тройной точки до температуры абсолютного нуля, при которой давление в соответствии с тепловым законом Нернста приближается к нулю по касательной, параллельной оси температуры. Кривые равновесий жидкость — пар, жидкость — твердая фаза и твердая фаза — пар делят диаграмму состояния на три области области существования пара, жидкости и твердой фазы (рис. Б.25). Видно, что при температуре тройной то чки кончается область жидкости. Твердая фаза и пар могут существовать вплоть до абсолютного нуля температуры (даже вблизи абсолютного нуля над тве рдой фазой имеется некоторое давление пара данного вещества). Особую диаграмму состояния имеет гелий на ней нет тройной точки гелий находится в жидком состоянии при температуре, максимально близкой к абсолютному нулю для того чтобы перевести его в твердое состояние, необходимо увеличить давление до 2 МПа. [c.277]


    Фирма LKB рекомендует примешивать к исходному белковому препарату в качестве спейсеров амфолины. Отличие от ИЭФ здесь в том, что амфолины вносят не в объем геля или жидкости, в которых проводят электрофорез, а только в исходный препарат, причем в таком количестве, которого недостаточно для обеспечения проводимости по всему объему фракционирования. В отличие от ИЭФ, в этом случае зоны расположения амфолинов не перекрываются и сами они не разряжаются, не формируют градиента pH, а мигрируют в качестве ионов наряду с белками, встраиваясь между ними в цепочку зон с убывающей электрофоретической подвижностью. Все амфолины в этой системе несут заряд одного знака, но в зависимости от своих р1 различаются по величине этого заряда, образуя тем самым широкий набор спейсеров с различными электрофоретическими подвижностями. При этом pH среды, в которой идет миграция, определяет буферный противоион. [c.77]

    В последние годы появились приборы, позволяющие проводить разделение соединений методом хроматографии под высоким давлением. В этом случае неподвижную фазу помещают в узкую стальную колонку, в которую затем под давлением нагнетают подвижную жидкую фазу. Применение высокого давления позволяет использовать значительно более длинные колонки и одновременно существенно сокращать время разделения. Метод универсален, поскольку может применяться во многи видах хроматографического разделения адсорбционной хроматографии, распределении в системе жидкость—жидкость, а также ионообменной и гель-проникаю-щей хроматографии. Оборудование для жидкостной хроматографии под давлением включает обычно одну или несколько детекторных систем для непрерывной регистрации выхода элюата из колонки. [c.105]

    Для нахождения Z) ep проводилось, как в (II.47), сопоставление экспериментальных кривых распределения примеси — трассера — с расчетными при заданных начальных и граничных условиях как в стационарных, так и в нестационарных условиях. Краткая сводка полученных данных была приведена в [1], а некоторые попытки обобщений преимущественно при псевдоожижении капельными жидкостями в работах [16, гл. VII 143]. В качестве трассеров применяли при газовом псевдоожижении преимущественно гелий и углекислый газ, отличающиеся от основного потока воздуха своей теплопроводностью кроме того, использовали и радиоактивные изотопы. В системах псевдоожижаемых водой трассером обычно служил электролит. [c.118]

    В табл. 5-1 приведены составы жидкой и паровой фаз при различных температурах и давлениях [Г1-45]. На рис. 5-4 нанесены изотермы системы Не—N2, а на рис. 5-5 — изобары для жидкой фазы. Для системы гелий — азот наблюдается аномалия (так же как и для систем Нг—СО и Нг—N2), заключающаяся в том, что имеются области, где с увеличением температуры при данном давлении увеличивается содержание гелия в жидкости (рис. 5-5). Растворимость гелия в жидком азоте см. также рис. 5-6. [c.155]

    Движение под действием внешнего электрического поля а) свободных частиц дисперсной фазы (суспензии, эмульсии, золи) в дисперсионной среде называется электрофорезом (катафорезом), б) жидкости относительно неподвижной твердой фазы (капиллярные системы, гели) называется электроосмосом. [c.175]

    Система гелий —аргон (Не— Аг). Изучена растворимость гелия в жидком аргоне при температуре 84—87° К и при давлении гелия над жидкостью до 200 мм рт. ст. [Г 1-90]. В этом интервале система подчиняется закону Генри. Для 84,54° К константа Генри =4,3 10 а при 86,1ГК =3,6-Ю (давление в см рт. ст., а концентрация — в молярных [c.155]

    В зоне АБ состав дисперсионной среды, ее растворяющая способность, концентрация твердой фазы, соотношение в твердой фазе парафинов и асфальтенов так же, как размер и форма частиц дисперсной фазы, оказывают влияние на кинетику структурирования системы, ее структурно-механическую прочность и устойчивость. При сохранении в этой зоне постоянства структурной вязкости устойчивость системы не изменяется. При повышении температуры системы свойства геля изменяются, изменяется его механическая прочность н система приобретает текучие свойства прн температуре, соответствующей температуре застывания нефтепродукта (точка Б) гель переходит в состояние аномальной жидкости. [c.37]

    Большинство растворов высокомолекулярных соединений и золи некоторых гидрофобных коллоидов способны при известных условиях переходить в особое состояние, обладающее в большей или меньшей степени свойствами твердого тела. Твердообразная текучая система, образованная коллоидными частицами или макромолекулами высокомолекулярного соединения в форме пространственного сетчатого каркаса, ячейки которого заполнены иммобилизованной жидкостью, называется гелем. Таким образом, гели или, как их еще называют, студни, представляют собой коллоидные системы, потерявшие текучесть в результате возникновения в них внутренних структур (опыт 118—121). [c.229]

    Синерезис. Для эластичных гелей и студней характерно явление синерезиса, т. е. самопроизвольное выделение жидкости. Этот процесс сопровождается уплотнением пространственной структурной сетки вследствие образования дополнительных контактов между частицами или макромолекулами. При этом объем студня или геля уменьшается, однако сохраняется его первоначальная форма. Термодинамически синерезис обусловлен уменьшением энергии Гиббса пересыщенной системы за счет выделения из нее новой макрофазы. [c.477]

    Студни (гели) - поликомпонентные системы, состоящие из высокомолекулярного вещества и низкомолекулярной жидкости с преобладающим содержанием последней и проявляющие способность к высокой обратимой деформации при практическом отсутствии текучести. [c.405]

    Один из компонентов раствора называют растворителем, а остальные — растворенными веш,ествами. Обычно растворителем принято считать жидкость, если раствор получен смешением последней с газами или твердыми телами. Но если компоненты раствора перед смешением были в одинаковых агрегатных состояниях, то растворителем считается тот компонент, количество которого в системе преобладает. Например, воздух считается раствором кислорода, гелия, углекислого газа и др. в азоте, т. е. азот — растворитель, а все остальные компоненты — растворенные вещества. Система, состоящая из аммиака, поваренной соли и воды, считается раствором первых в воде. [c.200]

    Набухание ВМС. ВМС набухают и растворяются в низкомо-кулярных жидкостях. Так как подвижность молекул растворителя намного больше подвижности макромолекул, то первой стадией взаимодействия является набухание — проникновение молекул растворителя в глубь ВМС со значительным увеличением его массы и-объема, но с сохранением формы образуется гель. Если низкомолекулярная жидкость ограниченно растворима в ВМС, то набухание будет ограниченным, оно не заканчивается образованием текучей системы. Растянутая сетка макромолекул, стремясь сократиться, препятствует увеличению содержания растворителя. Прю неограниченной растворимости низкомолекулярной жидкости в полимере его пачки после набухания продолжают раздвигаться и макромолекулы постепенно диффундируют в растворитель, образуя раствор. Такое набухание называют неограниченным. Основным от личием разбавленных равновесных растворов ВМС от лиофобных. золей является их термодинамическая устойчивость, что свойственно и истинным растворам. [c.285]

    Подавляющее большинство коллоидных растворов являются гетерогенными и термодинамически неравновесными системами. Однако существуют системы, которые в одних условиях могут представлять собой истинные растворы, а в других становятся золями, структурированными жидкостями или даже гелями. Такие системы обратимы и термодинамически равновесны истинный раствор золь гель [c.399]

    Таким образом, гель состоит из двух фаз первая составляет его скелет, образованный частицами дисперсной фазы, обладающий механической прочностью и придающий всей системе свойства твердого тела, и вторая — жидкость, заполняющая все промежутки этого скелета. [c.253]

    Таким образом между твердым телом и жидкостью существует непрерывный ряд переходов, осуществляемых структурированными системами, сочетающими в себе свойства обоих состояний. Так, в твердообразных упругих системах (например, в бентонитовых гелях) при малых, но длительных напряжениях наблюдается очень медленное течение, называемое ползучестью. При этом структурная сетка, разрушаясь, успевает обратимо восстанавливаться. При дальнейшем увеличении Р наступает лавинное разрушение структуры, вязкость уменьшается скачкообразно на несколько порядков и система с разрушенной структурой течет далее как обычная жидкость. Чем резче выражено это уменьшение вязкости, тем более твердообразным является тело. [c.256]

    Цель исследований в К. х.-развитие научных основ управления образованием, св-вами и разрушением дисперсных систем (ДС) и граничных слоев путем регулирования межмолекулярных взаимод. на границах раздела фаз, прежде всего с по.мощью поверхностно-активных веществ (ПАВ), способных самопроизвольно концентрироваться (адсорбироваться) на пов-сти частиц дисперсной фазы. Объектами исследований в К. х. являются разнообразные ДС и пов-сти раздела между дисперсной фазой и дисперсионной средой, а также границы раздела между макроскопич. фазами адсорбц. слои (моно- и полимолекулярные) и смачивающие пленки тонкие пленки-как плоские, так и замкнутые (ламеллярные системы, в т. ч. липосомы) нити (фибриллярные системы) аэрозоли (дымы, туманы, смог, облака), а также порошки пены и газовые эмульсии эмульсии и латексы (с.м. Латекс натуральный, Латексы синтетические, а т кже Смазочно-охлаждающие жидкости. Эмульсионная полимеризация) суспензии, взвеси и пасты золи и гели системы с твердой дисперсионной средой (металлы и сплавы, горные породы, газовые и жидкостные включения в твердых телах). [c.433]

    Оба изотопа гелия можно получить в твердом состоянии путем повышения давления до 25—30 атм при 0,5° К. Из фазовой диаграммы (рис. УП 1.4) видно, что равновесное давление для системы тв. тело жидкость в случае Не сохраняется приблизительно постоянным до 2° К, а затем резко возрастает. Для Не равновесное давление увеличивается при температурах, превышающих 0,5° К. [c.296]

    Интересно отметить, как сильно изменяются свойства самой воды в гелях. В табл. 2 показано, что при содержании в воде 3% коллоидного кремнезема вместо подвижной жидкости получается мягкая студнеобразная масса, а при содержании 25% система становится хрупкой. Под действием частиц геля происходит дополнительная поляризация молекул воды, что способствует усилению связи между ними. [c.23]

    При больших значениях сил внутреннего трения нз сложных структурных единиц или надмолекулярных структур, находящихся во взвешенном состоянии, формируются пространственные внутренние сетки (ячейки), в которых в иммобилизованном виде находится неструктурированная жидкость. На рис. 2 схематично показана ассоциация частиц при гелеобразовагши и коагуляции. При гелеобразовании жидкая нефтяная система приобретает твердое (аморфное) состояние без фазового перехода, так как порядок дальнодействия между молекулами и структурнььми единицами при этом не изменяется. Такие системы имеют ближний порядок, 1при котором расположение каждой молекулы в надмолекулярной структуре и сложных структурных единиц в системе определяется положением соседей и не зависит от положения структурных единиц на дальних расстояниях. Система теряет подвижность (образуется гель), но не расслаивается или расслаивается медленно, хотя термодинамически и неустойчива (см. рис. 2,г). [c.34]

    При выборе наиболее подходящего метода разделения стероидов в каждом конкретном случае необходимо учитывать следующие факторы а) масштаб, т. е. количество разделяемой смеси б) количество выделяемого или анализируемого стероида в смеси, т. е. компонентный состав смеси в) физико-химическую характеристику стероидов, подвергающихся разделению, т. е. их полярность, растворимость и т. д. г) строение подвергающихся разделению стероидов. Стероиды резко различаются по своей полярности— от стероидов, этерифицированных жирными кислотами, липофильный характер которых аналогичен липофильному характеру жиров и парафинов, до стероидных гликозидов или производных желчных кислот, заметно растворимых в воде. Тем не менее вследствие наличия большого углеродного скелета молекулы большинства стероидов обладают средней полярностью и, как правило, лщюфильны. Вот почему для разделения стероидов в основном применяют адсорбционную хроматографию с растворителями низкой полярности и в гораздо меньших масштабах— гель-проникающую и распределительную хроматографии. Последний из упомянутых факторов (строение стероида) также может сыграть решающую роль при выборе подходящего метода разделения. Например, применение ионообменных смол, по-видимому, целесообразно для разделения способных ионизоваться стероидов, таких, как желчные кислоты или некоторые производные стероидов. Хорошо известно, что соединения, образующие гомологический ряд, плохо делятся на адсорбентах, но хорошо разделимы в системах жидкость—жидкость. В последнем слу- [c.212]

    Глава 3. Общее описание хроматографического процесса. Я. Новак, Я- Янак, С Вичар Глава 4. Фи ко-химические основы процесса хроматографического удерживания в системах жидкость—жидкость и жидкость— твердое -тело. И. Новак Глава 5. Гель-проникающая хроматография. М. Кубин Глава 6. Основы ионообменной хроматографии. О. Микеш Глава 7. Аффинная хроматография. Я. Туркова [c.5]

    Образцы системы 8 02—Т Ог получены жидкофазным со-гидролизом этиловых эфиров ортотитановой и ортокремневой кислот [2] в водно-спиртовой среде с использованием в качестве катализатора 1 н. НЫОз, последующим самопроизвольным гелеобразованием гидролизата, старением геля в жидкости, синерезиса в течение 20 дн и термообработкой после фильтрации. Контрольные образцы чистых 5102 и ТЮг получали по той же схеме из тетраэтоксисилана и тетраэтоксититана соответственно. Спектральные характеристики снимали на спектрофотометре иК-Ю в области 1300—400 слг из таблеток, приготовленных прессованием тщательно растертой смеси [c.67]

    Для получения низких температур используется обычно ожиженный газ. Снижая давление над свободной поверхностью жидкости, можно получить температуры ниже нормальной точки кипения хладоагента. При этом система жидкость — пар переходит в состояние, соответствующее равновесию при более низких температурах. Так, например, температура около 63° К легко получаегся при откачке паров из теплоизолированной ванны с жидким азотом. После достижения тройной точки при дальнейшем понижении давления над твердой фазой также будет снижаться температура, однако из-за плохого теплообмена между паром и твердым телом и низкой теплопроводности твердой фазы охлаждение откачкой паров из пространства над твердым азотом, как правило, не производится. Правда, ожижитель гелия Симона, описанный в гл. 1 (стр. 78), охлаждался до 10° К откачкой паров под твердым водородом. [c.118]

    По аналогии с золями, гели в зависимости от характера дисперсионной среды делятся на гидрогели, алкогели, бензогели и т. д. Бедные лсидкостью или совершенно сухие студнеобразные вещества носят название ксерогелей. Примерами ксерогелей могут служить сухой листовой желатин, столярный клей (в плитках), крахмал. К типу сложных ксерогелей относят муку, сухари, печенье. Существуют студни, содержащие очень мало сухого вещества (1—2% И менее), например кисель, студень, простокваша, растворы мыл и мылообразных веществ. Такие богатые жидкостью студнеобразные системы называются лиогелями. [c.389]

    Следует отметить, что для гелей характерно старение во времени, которое проявляется в постепенном упрочнении структуры, ее сжатии и высвобождении части жидкости из структурной сетки. Это явление получило название синерезиса. В результате синере-зиса система может перейти в сплошное кристаллическое тело. Самопроизвольный переход коагуляционной структуры в конден-оацпонно-кристаллизацнонную с выжиманием жидкости — типичный пример синерезиса. [c.381]

    В них присутствуют частицы собственно коллоидной дисперсности (10-3—10- мкм), микрогетерогенные (10- —10 мкм) и грубодисперсные (>10 мкм). Среди буровых жидкостей встречаются как лиофильные, так и лиофобные системы, как связноднсперсные (гели) так и свободнодисперсные (золи). Первые в буровых жидкостях имеют особенно большое значение. [c.4]

    Процесс структурообразования может привести к тому, что все частицы дисперсной фазы окажутся более или менее прочно связанными между собой, полностью утратив свою подвижность, и вся дисперсионная среда окажется заключенной в промежутках между частицами. Такая система, утратившая основное свойство жидкости — текучесть, ijo ht название гель, [c.252]

    В свободнодисперсных системах частицы дисперсной фазы не связаны мелсду собой и способны независимо перемещаться в дисперсионной среде. Такие бесструктурные системы проявляют способность к вязкому течению и качественно ведут себя как чистая дисперсионная среда (жидкость или газ). Сюда относятся разбавленные эмульсии и суспензии, коллоидные растворы (золи). В связнодисперсных системах частицы дисперсной фазы образуют непрерывные пространственные сетки (структуры) они теряют способность к поступательному движению, сохраняя лишь способность к колебательному движению. К ним относятся гели, студни, концентрированные суспензии (пасты) и эмульсии, а также пены и порошки. Такие системы проявляют некоторые свойства твердых тел — способны сохранять форму при небольших нагрузках, обладают прочностью, часто упруги. Однако вследствие малой прочности связей между отдельными элементами сетки такие системы легко разрушаются — обратимо (приобретая способность течь) и необратимо (проявляя хрупкость). Существует также ряд переходных систем, получивших название структурированные жидкости . В структурированных жидкостях частицы дисперсной фазы склонны к сильному взаимодействию, но концентрация их недостаточна для создания единой пространственной сетки. Эти системы способны течь, имеют малый модуль упрз гости, но течение их не подчиняется законам течения идеальных жидкостей, а период релаксации велик и приближается к значениям, характерным для твердых тел- [c.429]


Смотреть страницы где упоминается термин Гелий системы пар жидкость: [c.331]    [c.331]    [c.281]    [c.20]    [c.39]    [c.381]    [c.136]    [c.90]    [c.77]    [c.389]    [c.432]    [c.368]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Системы газ жидкость

Системы жидкость жидкость



© 2025 chem21.info Реклама на сайте