Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы измерения распределения метод поглощения света

    Последний из упомянутых выше методов измерения поглощения — метод линейной абсорбции — заключается в измерении относительной величины поглощения света от линейчатого источника. Если спектральное распределение энергии в падающем излучении обозначить через коэффициент поглощения в абсорбционном сосуде — через к,,, то величина линейного поглощения выражается следующим образом  [c.33]


    В своей первоначальной форме этот метод, основанный на применении стеклянного электрода для измерения pH, пригоден главным образом для исследования комплексов с NH3 и всеми другими лигандами, обладающими кислотными или основными свойствами (например, органическими моно- и диаминами). Путем измерения активности водородных ионов определяется концентрация соответствующего свободного лиганда. В других случаях концентрация свободного лиганда может быть измерена с помощью металлического электрода второго рода. Для определения концентрации свободных лигандов могут применяться также другие методы, например измерения растворимости, распределения, упругости пара или поглощения света (см. соответствующие главы). [c.89]

    Для исследования многочисленных сложных равновесий в растворах привлекают разнообразнейшие физико-химические методы, на которых в пределах данной книги нет возможности останавливаться. Наряду с обычными методами определения молекулярного веса используют измерение проводимости и чисел переноса, электродвижущих сил, коэффициентов распределения, поглощения света, эффекта Рамана, а также аналитические методы. В последнее время особенно развились методы точного измерения скорости диффузии и диализа о методике и значении полученных этими способами результатов появился очень подробный обзор [204]. В качестве примера исследования равновесия в растворе следует назвать исследование гидратации ионов [205], [c.194]

    В экспериментах по фотопроводимости иногда желательно применять прозрачные контакты. Они могут быть получены тремя способами. Проще всего использовать металлическую сетку или нарисовать решетку на поверхности кристалла. Недостатком такого метода является то, что в той точке кристалла, где происходит интересующее нас поглощение света, существует несимметричное распределение электрического поля. Как показали Фергюсон и Шнайдер [48], геометрия электродов может оказывать заметное влияние на спектральную чувствительность фотопроводимости. Второй метод предполагает использование напрессованного или наплавленного на образец проводящего стекла (стекло пирекс, покрытое двуокисью олова). Третий возможный вид контакта представляет собой полупрозрачный слой металла. Имея опыт, можно получить напыленные металлические контакты с низким сопротивлением, пропускающие до 80% видимого и ультрафиолетового света. Но в этом случае величину измеренной фоточувствительности приходится исправлять с учетом поглощения слоем металла. [c.21]


    Методы спектрофотометрического анализа основаны на качественном и количественном изучении спектров поглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 0,76 до 500 мк), видимой (от 0,76 до 0,4 мк) и ультрафиолетовой (от 0,4 до 0,01 мк). Задача спектрофотометрического анализа — определение концентрации вещества путем измерения оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома исследуют оптическую плотность раствора хромата желтого цвета, поглощающего свет в сине-фиолетовой части видимого спектра. При проведении фотометрического анализа необходимо создать оптимальные физико-химические условия (избыток реактива, светопреломление растворителя, pH раствора, концентрацию, температуру). Фотометрический анализ применяют для определения соединений различных типов окрашенных анионов кислот, перманганата, гидратированных катионов меди (II), никеля (II), роданидных комплексов железа (III), кобальта (II), различных гетерополикислот фосфора, мышьяка, кремния, перекисных соединений титана, ванадия, молибдена, лаков различных металлов с органическими красителями и др. Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 25). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бутиловый, амиловый спирт), хлорпроизводные (хлороформ, четыреххлористый углерод) и др. Иод можно извлечь бензолом, сероуглеродом, хлорное железо — этиловым или изопропиловым эфиром. [c.568]

    Трудности изучения морфологии ИП определяются, в первую очередь, несовершенством методического арсенала для измерения основного морфологического параметра данных материалов — неравномерности распределения кажущейся плотности по сечению изделий. До последнего времени для получения подобной информации использовали трудоемкие и недостаточно точные методы фотометрической денситометрии, основанные на определении поглощения видимого света [95, 379, 380, 383] или рентгеновского излучения [252, 382 ] тонкими срезами материала, последовательно вырезаемыми по сечению изделия. [c.51]

    Точное определение абсолютных квантовых выходов флуоресценции связано с большими трудностями, поскольку приходится сравнивать число поглощенных квантов от пучка монохроматического света с числом квантов полихроматического излучения флуоресценции, распределение которого в пространстве может быть геометрически сложным. Первые измерения были выполнены Вавиловым [105] в 1924 г., который получил удивительно точные результаты, если учесть несовершенство аппаратуры тех времен. Его метод состоял в сравнении света от облучающего пучка, рассеянного от чистой матовой поверхности, с флуоресценцией от поверхности кюветы с веществом, помещенной в такой же пучок он использовал идеализированные законы рассеяния поверхностью и излучения флуоресценции и учел изменения чувствительности приемника для разных длин волн и другие факторы. [c.636]

    Идея всякого спектроскопического эксперимента чрезвычайно проста. Электромагнитное излучение с длиной волны X (или частотой V = с/Х) направляют на образец и определяют какие-либо параметры излучения, исходящего из образца. Одним из простейших таких параметров является доля потока излучения, поглощенная или рассеянная образцом (на этом принципе основаны спектроскопические методы, некоторые методы ЯМР-спектроскопии, а также разнообразные измерения упругого рассеяния). Кроме того, можно исследовать излучение образца, характеризуемое иной частотой, чем частота падающего света (примерами могут служить флуоресценция, фосфоресценция, спектроскопия комбинационного рассеяния и неупругое рассеяние света). Помимо интенсивности излучения как таковой исследуют также ее распределение по частотам. В более сложных методах измеряют, кроме того, поляризацию излучения (КД, ДОВ и поляризационная флуоресценция). [c.10]

    В пространстве. Поэтому для объяснения свойств растворов требуется изучить распределение частиц в растворе, или внутреннее строение раствора, и силы, действующие между частицами. С этой целью приходится обращаться к другим методам химии и физики. Так, например, препаративные методы неорганической, органической и аналитической химии позволяют в ряде случаев установить наличие в растворах химических соединений между компонентами, что указывает на большую роль химических сил в таких растворах и проливает свет на их строение. Исследование спектров комбинационного рассеяния и спектров поглощения света также позволяет судить о наличии или отсутствии химических соединений в растворах. Изучение интенсивности и степени деполяризации молекулярного рассеяния света дает сведзния о характере пространственного распределения частиц в растворах. Еще более детальные данные о взаимном расположении частиц получаются из измерений рассеяния рентгеновских лучей и т. д. [c.202]


    Измерения квантового выхода при помощи манометрического метода были также описаны в работах Кока [42, 48]. Кок работал с разбавленными суспензиями водорослей он считал, что экспериментальные трудности, возникающие в этом случае вследствие рассеяния света, все же меньше, чем трудности, определяющиеся большой величиной дыхания, неравномерным распределением света в толще суспензии и прерывистым характером освещения, неизбежным при сильном перемешивании таких суспензий. Суспензии hlorella, с которыми работал Кок, поглощали лишь 30—40% падающего света (желтые линии натрия) для измерения поглощения света была использована сфера Ульбрихта. Кок обнаружил практически линейный ход световых кривых до весьма высокой интенсивности падающего света, иногда в 20 раз превышающей интенсивность света, компенсирующего дыхание (ср. гл. XXVIII) Определения квантового выхода были сделаны четырьмя различными путями 1) измерением обмена одной лишь двуокиси углерода (кислород поглощался хлористым хромом в боковом отводе манометрического сосуда) 2) измерением обмена одного лишь кислорода (двуокись углерода поглощалась обычным путем, в карбонатном буфере) 3) измерением обмена двуокиси углерода и кислорода методом двух сосудов 4) измерением чистого газообмена в одном сосуде, причем был принят равным 1,09. [c.550]

    Фотоэлектрические методы. Наиболее удобным и точным способом измерения интенсивности лучистой энергии является применение фотоэлектрического эффекта, вписанного в 26 первого тема. Чаще всего применяются обычные фотоэлементы, ток которых усиляется и передается на гальванометр или электрометр. Иногда удобнее применять селеновые или купроксид-ные ячейки. Отбрасывая зайчик от зеркальца гальванометра на фотографическую бумагу, можно регистрировать изменения интенсивности света. Большое применение при обработке спектральных данных получили автоматические регистрирзпощие микрофотометры фотографическое изображение спектра движется с постоянней скоростью вдоль узкой щели, перед которой ставится фотоэлемент или термостолбик, ток которого регистрируется вышеописанным способом, что непосредственно дает кривую распределения почернения в разных участках изображения (например кривую поглощения света в разных участках спектра, спектральные линии и полосы и пр.). [c.476]

    При экспериментальном использовании метода центрифугирования необходимо учитывать следующие особенности для этого метода также существует зависимость определяемых констант седиментации и диффузии от концентрации. В связи с этим (так же как и при измерении осмотического давления) необходимо проводить измерения в наиболее удобном интервале концентраций и экстраполировать полученные результаты к нулевой концентрации. Чем лучше растворитель, тем более вытянуты молекулы и тем круче ход концентрационной зависимости поэтому не следует применять слишком хорошие растворители. Изменение концентрации, состоящее при седиментации в снижении концентрации полимера в растворе в верхней части камеры, а при диффузии — в повышении концентрации полимера в растворителе, часто может быть определено оптически (в корпусе центрифуги имеется окно). Для этого применяются методы абсорбции, рефракции или интерференции. Для определения изменения концентрации может быть использовано поглощение света, если по крайней мере в одной определенной волновой области растворенные или суспендированные частицы поглощают значительно больше света, чем растворитель. Это имеет место для растворов красителей или суспензий пигментов. Различные типы белков также имеют в ультрафиолетовой области спектра сильные полосы поглощения. Полистирол имеет одну полосу поглощения при длине волны менее 290 лщ. Таким образом, по фотометрическим кривым можно сделать вывод об изменении концентрации полимера. Метод рефракции основан на изменении показателя преломления при изменении концентрации в местах изменений концентрации образуются оптические неоднородности, почти количественно определяемые по методу шкалы Ламма. Филпот и Свенсон предложили целесообразное расположение линз, которое так фиксирует изменение показателя преломления, что на экране или фотографической пластинке возникает кривая, которая непосредственно характеризует изменение концентрации. Для полимолекулярных веществ при седиментации концентрационное распределение соответствует молекулярному распределению получающиеся кривые имеют форму, приведенную на рис. 10. Метод интерференции применим только к диффузионным измерениям. [c.156]

    Умкер-метод (метод обращения) Гётца является косвенным и основан на наземных измерениях падающего сверху рассеянного света двух различных длин волн, имеющих разные, но специально подобранные коэффициенты поглощения озоном. С помощью этого метода получена большая группа ценных данных на различных широтах однако он не вполне точен, особенно для нижней стратосферы, и дает лишь основные характеристики [90]. Другой косвенный метод состоит в исследовании распределения освещенности в зоне тени, отбрасываемой Землей на поверхность Луны. На это распределение оказывает влияние поглощение света озоном, и измерения могут проводиться одновременно для различных земных широт во время лунного затмения [160]. [c.64]

    Для вычисления квантового выхода наблюдаемую интенсивность надо перевести в число квантов. Для этого требуется знать спектральное распределение света и спектральную чувствительность приемника. Боуэн и Соу-телл [58] описали метод, не имеющий этих недостатков. Кусок уранового стекла или иной флуоресцирующий экран, помещенный перед фотоумножителем, преобразует падающий свет с одной и той же постоянной эффективностью независимо от длины волны в их собственные полосы флуоресценции. Свет, который попадает на приемник, имеет при этом всегда одно и то же спектральное распределение, будь то свет от исследуемого образца или от стандартного образца, используемого для сравнения. Таким образом, отношение наблюдаемых интенсивностей дает прямое отношение квантовых выходов. Этот метод применим только в случае длин волн, лежащих в пределах полосы поглощения счетчика квантов, т. е. обычно в голубой и ближней ультрафиолетовой областях. Однако его можно было бы распространить на случай более длинноволнового излучения, если использовать такие вещества, как рубрен, который дает высокий выход флуоресценции и сильно поглощает в зелено-голубой области спектра. В качестве такого счетчика квантов удобен родамин В, флуоресцирующий в красной области спектра. Если флуоресценция поляризована, то ее угловое распределение неоднородно. В подобных случаях измерения при неизменном заданном угле приводят к ошибкам. Чтобы устранить эти ошибки, надо собрать весь испускаемый свет с помощью интегрирующей сферы, покрытой окисью магния. Образец или стандарт помещают в центр сферы, освещают через одно небольшое отверстие, а измерения проводят с помощью приемника, помещаемого у другого отверстия [93]. [c.92]

    Существенно, что распределение растворенного вещества в кювете должно регистрироваться в ультрацентрифуге в момент ее вращения на большой скорости. В первоначальных экспериментах Сведберга [446 —448] это достигалось измерением поглощения света растворенным веществом. С этой целью раствор фотографировали в свете с определенной длиной волны, и концентрация в различных участках кюветы рассчитывалась по относительному почернению фотографической пластинки. Этот метод обладает большими преимуществами при работе с некоторыми образцами биологического происхождения (например, белками и нуклеиновыми кислотами), которые имеют широкие полосы поглощения в ультрафиолетовом свете и, следовательно, подходящие значения оптической плотности могут быть получены при очень сильном разбавлении [453]. Как будет показано ниже, при интерпретации данных, полученных при таких концентрациях, когда отклонения от закона Рауля становятся заметными, возникают определенные осложнения, и поэтому чрезвычайно н елательно работать с как можно более разбавленными растворами. [c.158]

    Наиболее важными являются два средних значения — средне численный и средневесовой. В принципе они определяются следующим путем. Когда показание измерительного прибора пропорционально числу частиц, то определяют среднечисленный молекулярный вес. Когда оно пропорционально весу вещества, тогда получают средневесовое значение. Так, эквимолярные растворы мономера и его димера будут обладать равным осмотическим давлением, но раствор димера будет иметь примерно вдвое большее поглощение света и вдвое больший показатель преломления, чем раствор мономера. Таким образом, молекулярный вес, определенный по осмотическому давлению, будет среднечисленным, но большинство физических методов зависит от измерения двух последних физических свойств. При этих обстоятельствах количество материала, отнесенного к -му компоненту, зависит не от числа присутствующих молекул, а от массы материала этого вида. На практике 5о является средневесовым, так же как и Од, в тех случаях, когда инкремент показателя преломления на единицу веса остается одним и тем же для всех видов молекул. Однако молекулярный вес зависит от отношения За/Од. Когда это отношение определяется непосредственно, как в методе Арчибальда, никаких сомнений не возникает но когда средневесовые во и Од определяются раздельно, полученное отношение не обязательно является подлинно средневесовым. Если распределение молекулярных весов не очень широкое, это вряд ли приведет к серьезным ошибкам. Вычисленное значение молекулярного веса зависит также от парциального удельного объема предполагается, что он также постоянен для всего полидисперсного набора молекул. Фактически он может немного изменяться, особенно для заряженных молекул (стр. 70, 71) это опять-таки не вызовет серьезных ошибок, за исключением метода седиментации в градиенте плотности. [c.43]

    Существует много способов измерения как концентрации растворенного вещества j, так и градиента концентрации в любой точке образца. Наиболее прямым методом является измерение распределения по образцу оптической плотности, или поглощения света, в разные моменты времени. Концентрация определяется по закону Ламберта—Бэра. Если по тем или иным причинам нельзя измерить поглощение света образцом, то распределение концентрации по кювете можно получить с помощью рэлеевского интерферометра, измеряющего разности коэффициентов преломления. Это дает возможность представить кривую распределения концентрации по образцу. И наконец, с помощью щлирен-оптики непосредственно измеряется градиент показателя преломления, откуда прямо находят i/ j/dx. Последние два оптических метода весьма изящны, ио сложны. Интересующийся читатель может обратиться к специальным источникам, в которых подробно описаны принципы этих методов и их практическое применение (Van Holde, 1971 Freifelder, 1976). После измерения j или d j/d/ с помощью целого ряда численных или графических способов определяют величину ) из уравнения (10.58) или (10.59). [c.214]

    Особого внимания для оценки чистоты нефтепродуктов заслуживают методы дисперсионного анализа, основанные на их оптических свойствах поглощение, отражение и рассеяние света. Эти методы являются универсальными, бесконтактными, быстрыми, позволяющими исследовать труднодоступные объекты, не нарушая их исходного состояния [2, 3, 9, 39—50]. Оптические методы сводятся в основном к измерению следующих величин пропускания излучения в функции длины волны (спектральная прозрачность или мутнометрия) окраски рассеянного излучения (тиндалеметрия) отдельных отблесков рассеянного излучения (ультрамикроскопия или темнопольная микроскопия) поляризационных характеристик рассеянного излучения углового распределения рассеянного излучения (нефелометрия) уширения спектральной линии рассеянного излучения (гетеродинирование). [c.17]

    Количественный анализ в ТСХ возник на ранних этапах развития метода. Первые попытки количественной оценки хроматограмм, основанные на измерении размеров пятен, были сделаны Фишером в 1948 г. [18]. В 1962 г. предложен [19] метод количественного анализа, основанный на использовании эмпирического соотношения между площадью пятна и количеством содержащегося в нем вещества. При последующем развитии количественной ТСХ с пластинки снимался слой адсорбента в области хроматографических пятен и из него вымывалось исследуемое вещество, которое затем анализировалось каким-либо физическим или физико-химическим методом. Начиная с 1967 г., намечается переход от методов извле-"чения вещества из тонкослойной пластинки (так называемых элюционных методов) к количественному анализу in situ, т. е. анализу непосредственно на слое путем сканирования пятен ж отыскания распределения вещества путем измерения свето-поглощения, флуоресценции, радиоактивности или каких-либо других свойств (например, электропроводности [20]). [c.267]

    Образование ассоциатов в растворах электролитов было доказано экспериментально с помощью различных методов криоскопических [23] и кондук-тометрических [17, 24], путем измерения скоростей реакций [25], определения коэффициента распределения между несмешивающимися жидкостями [261, электрохимических (потенциометрическое титрование [271), а также непосредственно с помощью измерения оптического поглощения (ультрафиолетовый [28] и [291 видимый свет), комбинацион гого рассеяния [30], поглощения звука [311 и ядерного магнитного резонанса [32]. Обзор этих методов дан в работе [331. [c.117]

    Важное преимущество всех методов, основанных на взаимодействии образца с электромагнитным излучением, заключается в том, что отрезок времени, проходящий между фактическим изменением исследуемой системы и измерением величины, отражающей это изменение, чрезвычайно лшл. Рассмотрим, например, процесс, при котором две находящиеся в растворе молекулы образуют ассоциат. Такое превращение, конечно, приведет к уменьшению осмотического давления и изменению распределения растворенного вещества при равновесном центрифугировании, что в свою очередь обусловит резкое изменение свойств раствора, основанных на внутреннем трении. Однако измерепие всех этих изменений осуществляется медленно, и такие методы не могут применяться в том случае, если цель экспериментатора — изучение кинетики превра-щений, протекающих в очень короткое время. Напротив, изменения интенсивности рассеянного света, оптической активности или спектров поглощения системы проявляются мгновенно, и скорость процессов, которые могут сопровождать изменения этих свойств, ограничивается лишь нашей способностью регистрировать временную зависимость очень быстрых изменений интенсивности света. [c.171]


Смотреть страницы где упоминается термин Методы измерения распределения метод поглощения света: [c.76]    [c.141]    [c.9]    [c.321]    [c.6]    [c.237]    [c.338]   
Физические методы органической химии Том 2 (1952) -- [ c.468 , c.470 , c.484 , c.485 , c.489 , c.512 , c.515 , c.517 , c.521 , c.530 , c.532 ]

Физические методы органической химии Том 2 (1952) -- [ c.468 , c.470 , c.484 , c.485 , c.489 , c.512 , c.515 , c.517 , c.521 , c.530 , c.532 ]




ПОИСК





Смотрите так же термины и статьи:

Измерения света

Метод поглощения

Поглощение измерения методы



© 2025 chem21.info Реклама на сайте