Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксационные свойства каучука

    Релаксационные свойства каучуков и резин непосредственно связаны с энергией ван-дер-ваальсового взаимодействия между звеньями цепных молекул точнее, они зависят от соотношения этой энергии и энергии теплового движения звеньев. Релаксационный процесс протекает тем быстрее, чем слабее межмолекулярное взаимодействие и чем энергичнее тепловое движение, т. е. чем выше температура. Последнее обстоятельство обусловливает резкую зависимость всего комплекса механических свойств каучуков и резин от температуры. [c.12]


    Характер релаксационных процессов должен учитываться и при эксплуатации полимерных материалов в различных условиях. Особенно важно предусмотреть возможность мгновенных деформаций (ударные напряжения) и многократных деформаций большой частоты. Для более полной оценки релаксационных свойств полимеров изучают зависимость деформации от температуры при воздействии переменных напряжений. Оказалось, что повышение частоты воздействия на деформацию эквивалентно понижению температуры. Эта зависимость должна учитываться при оценке, например, морозостойкости каучуков и резиновых деталей в различных режимах эксплуатации в случае динамических воздействий на материал его хрупкость может проявиться при более высокой температуре, чем она обнаруживается при статическом воздействии. [c.498]

    Изменение температуры оказывает сильное влияние на релаксационные процессы и на физико-механические свойства каучука. Для всех каучуков наблюдается понижение предела прочности при растяжении с повышением температуры, но оно происходит у различных каучуков в разной степени. [c.100]

    Таким образом, одной из главных особенностей механических свойств эластомеров, общей для каучуков и резин и отличающей их от упругих твердых тел, является существенная зависимость напряжения от времени действия силы или скорости деформации, т. е. известное явление релаксации напряжения или деформации. Зависимость напряжение—деформация носит сложный релаксационный характер. В свою очередь релаксационные свойства зависят от тем- [c.14]

    Таким образом, способность смоляных частиц деформироваться под действием напряжения приводит к распределению напряжения в вершине растущего очага разрушения и к увеличению его критического значения Процессу релаксации напряжения при усилении неорганическими наполнителями способствуют лишь гистерезисные свойства каучука и природа поверхностного взаимодействия, связанного с движением части молекул по поверхности наполнителя В вулканизате, усиленном полимерным наполнителем, уменьшению напряжения способствуют еще релаксационные процессы, происходящие в самой деформированной смоляной частице. [c.79]

    Впервые предположение о том, что процесс диффузии низкомолекулярных жидкостей или их паров в полимеры определяется не только проникновением молекул сорбата в поры полимера, но главным образом связан с конформационными перестройками макромолекул, т. е. с релаксационными процессами, сопровождающими процесс диффузии, было высказано П. И. Зубовым [71]. В ранних работах В. Е. Гуля и Б. А. Догадкина [72, 73] рассматривалось изменение релаксационных свойств полимеров в процессе набухания, изменение конформационного набора макромолекул, а также проводилось модельное описание кинетики набухания. Среди экспериментальных исследований в этой области отметим работу [74], в которой изучалось набухание каучуков в ряде растворителей различной полярности. Следует отметить, что конформационные перестройки макромолекул в процессе набухания могут привести к вырождению больших времен релаксации. Эти перестройки могут быть настолько глубокими, что часто вызывают кристаллизацию полимера, и тогда происходит выталкивание растворителя из полимерного образца. Все эти факторы влияют на кинетику процесса сорбции и приводят к своеобразному виду кинетических кривых. [c.215]


    Причины этих явлений разбираются в различных теориях усиления резин, в большинстве которых рассматривается главным образом влияние наполнителей на деформационные и релаксационные свойства резин с точки зрения природы связей, возникающих между частицами наполнителя и макромолекулами каучука. В этих теориях рассматривается не прочность материала как таковая, а прочность структур, например прочность связей каучук—наполнитель и влияние ее на деформационные свойства и течение каучукоподобных полимеров - . [c.194]

    Была предпринята попытка оценить релаксационные свойства рвущегося образца по скорости самопроизвольного сокращения 1295, с. 1364]. С помощью скоростной киносъемки исследовалось самопроизвольное сокращение образцов ненаполненных модельных вулканизатов из бутадиен-нитрильных каучуков, описанных в начале этого раздела. При проведении исследования использовали образцы разной формы пластины размером 60 X 50 X 1 мм с надрезом длиной 2,5 и 1 мм по середине большей кромки (1) и узкие полоски размером 60 х 10 Х 1 мм без надреза (И). Образцы деформировались вдоль большего размера. [c.185]

    Значительную склонность к образованию неравновесных систем с развитым переходным слоем имеют системы, получаемые в виде пленок из раствора. В этом случае, формирующаяся всей совокупностью процессов взаимодействия полимера и растворителя, физическая структура образцов, наряду с химическим строением цепей второго полимера, может оказывать влияние на скорость деструктивных превращений полимеров даже после полного удаления растворителя. Предыстория формирования полимерной композиции (химическая природа и термодинамическое качество растворителя в отношении каждого из полимеров, исходная концентрация раствора, соотношение компонентов, тип фазовой диаграммы) сказывается на ряде характеристик полимерной смеси -способности компонентов к взаиморастворимости, изменению конформационного состояния макромолекул каждого полимера, релаксационных свойствах образца. Все это в результате отражается на кинетике химических превращений полимеров. В пользу этого свидетельствуют данные по деструкции пленочных образцов ПВХ в смеси с СКН-18, полученных из совместного раствора в ДХ. Как видно из рис. 3, с ростом концентрации исходного раствора смеси полимеров наблюдается закономерное увеличение скорости деструкции ПВХ. Обращает на себя внимание факт, что при одном и том же содержании нитрильного каучука в смеси скорость дегидрохлорирования ПВХ в пленках, полученных из 1% и 5% растворов, различается в 2 раза. Аналогичным образом ведут себя и смеси ПВХ с СКН-26 и СКН-40, полученные в виде пленок. Изотермический отжиг пленок из смесей полимеров при температуре, превышающей ПВХ, приводит к значительному уменьшению значений скоростей дегидрохлорирования ПВХ в смеси, однако даже после длительного отжига сохраняется различие в значениях [c.251]

    Таким образом, как природа полиэфирной составляющей уретановых каучуков, так и тип поперечных связей вулканизатов оказывают влияние на их релаксационные свойства при повышенных температурах. [c.84]

    Таким образом, результаты исследования однозначно свидетельствуют о необходимости проведения ПРЭ между карбоксильными группами каучука и ЭГ для обеспечения высокого модифицирующего эффекта при получении эпоксидных материалов. В связи с этим рассмотрим более детально физико-механические и релаксационные свойства ЭП на основе продуктов ПРЭ. Проследим за влиянием концентрации вводимого каучука на термомеханические свойства ЭП на основе ДФП (ЭД-20) и ДГР (УП-637). На рис. 5.3 представлены термомеханические кривые для образцов на основе исходных и модифицированных олигомеров, определенные при напряжении 1 МПа. Видно, что добавка каучука при весьма различном его содержании (до 30 мае. ч. на 100 мае. ч. модифицированного олигомера) не приводит к существенному уменьшению Тс. В случае небольших добавок каучука (порядка [c.90]

    Было установлено , что релаксационные свойства мягких ненаполненных вулканизатов натурального каучука и многих синтетических каучуков в течение вулканизации существенно не изменяются. [c.105]

    Специальные принципы конструирования резиновых деталей учитывают релаксационные, деформационно-прочностные, теплофизические и другие особенности резины, а также зависимость свойств резины от свойств каучука, являющегося ее основой. [c.20]

    Объемная удельная проводимость. Это свойство каучука не является постоянной величиной, а зависит в известной степени от промежутка времени между моментами приложения потенциала и проведения измерений. Подобная зависимость объясняется ориентационными процеоса.ми, совершающимися в каучуке и имеющими релаксационный характер. [c.180]


    Релаксационные свойства эластомеров зависят от соотношения энергии взаимодействия между структурными элементами полимера и энергии теплового движения этих элементов. Изменение температуры приводит к соответствующему изменению энергии теплового движения, что обусловливает зависимость механических свойств каучуков и резин от температуры. [c.9]

    Влияние связанного каучука на напряжение при заданном удлинении сильно зависит от природы полимера и сажи. Наличие связанного каучука в количествах, обычных для смесей из натурального и синтетических каучуков, можно рассматривать как доказательство сильного взаимодействия между полимером и сажей, что обычно признается одним из необходимых условий усиления. Хотя наличие таких количеств связанного каучука считается положительным фактором, увеличение их выше этого уровня обычно ухудшает упруго-релаксационные свойства резины. Так, например, содержание связанного каучука можно увеличить путем повышения содержания кислорода в саже или, наоборот, уменьшить удалением кислорода из сажи термообработкой. В первом случае возрастает количество связанного каучука, но одновременно снижается напряжение при заданном удлинении, очевидно, в результате адсорбции сажами с высоким содержанием кислорода компонентов вулканизующих систем и связанного с этим ингибирования поперечного сшивания в процессе вулканизации. Содержание кислорода в сажах было небольшим, а количество связанного каучука возрастало с увеличением удельной поверхности сажи, как обычно. Однако параллельно этому росту уменьшалось напряжение при заданном удлинении резин на основе натурального каучука. Термообработка, которой подвергались образцы этих саж, проводилась при температурах, не вызывающих ослабления их усиливающих свойств. При более высоких температурах сажи графитируются, что сопровождается резким падением как содержания связанного каучука, тан и напряжения при заданном удлинении (см. табл. 12.6). [c.290]

    В состав многих смесей, применяющихся для изготовления резиновых технических изделий, помимо сажи входят и другие наполнители. Общепризнано, что для активации вулканизации смесей из бутадиен-стирольных каучуков требуется не менее 12 сажевой поверхности на 1 г углеводорода каучука. Сажи необходимы также для облегчения переработки резиновых смесей. В табл. 12.7 и 12.7А приведены данные, показывающие, каким образом комбинацией сажи с каолином и (или) мелом можно получать резины, имеющие заданные свойства Сажа вводилась в смесь в виде саженаполненного каучука БСК 1605, содержащего 50 вес. ч. сажи РЕР на 100 вес. ч. бутадиен-стирольного каучука холодной полимеризации, введенной в латекс до его коагуляции. Мел использовался в основном как инертный наполнитель. Однако введение каолина в маточную смесь, содержащую сажу РЕР, давало вулканизаты с хорошими упруго-релаксационными свойствами без значительного понижения предела прочности при растяжении. В такие сильно наполненные смеси обычно вводят большие количества мягчителей с целью достижения удовлетворительных технологических свойств и твердости. [c.307]

    Термин усиливающий органический наполнитель означает органическое вещество с частицами малых размеров, которое, будучи введено в каучук, улучшает физические свойства вулканизата, т. е. предел прочности при растяжении, упруго-релаксационные свойства, сопротивление истиранию и раздиру, без существенного изменения его высокоэластичности. [c.416]

    Физико-механические свойства серных и смоляных резин на основе бутадиенстирольного каучука с различными модулями жесткости приведены в табл. 4. При повышении степени вулканизации не только сохраняются отмеченные выше преимущества смоляных резин по теплостойкости, износу, усталостным и релаксационным свойствам, но и существенно улучшаются эластические свойства, особенно в условиях по- [c.82]

    Наполнение активной канальной сажей сопровождается улучшением релаксационных свойств вулканизатов. Если наполнение термической сажей до 40 объемн. ч. на 100 вес. ч. каучука не сопровождается заметным увеличением Тмакс. и то соответствующее наполнение канальной сажей приводит к увеличению в 24 раза, а Умакс. —в 2 раза по сравнению с ненаполненным вулка-низатом. При наполнении вулканизатов канальной сажей дс 40 объемн. ч. на 100 вес. ч. каучука сильно увеличивается время, необходимое для возникновения перенапряжений, достаточных для развития дополнительной ориентации исследуемых вулканизатов. Наполнение канальной сажей в этом интервале концентраций обязательно сопровождается развитием в вулканизате перед его разрывом более высоких напряжений, вызывающих значительную дополнительную ориентацию. [c.208]

    Важной составной частью работ по синтезу каучуков с необходимым комплексом свойств явились структурные исследования, направленные, с одной стороны, на изучение зависимости молекулярной структуры полимеров различных типов от условий их синтеза и, с другой, на установление -закономерностей влияния основных молекулярных параметров на физические, физико-механические и технологические свойства полимеров. Развитие этих исследований в значительной мере опиралось на труды А. П. Александрова, П. П. Кобеко, В. А. Каргина и П. Флори, в которых были сформулированы фундаментальные принципы строения молекулярных цепей и релаксационной природы механических и вязко-, эластических свойств полимеров. [c.14]

    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]

    Структура и релаксационные свойства резин — саженаполнен-ных вулканизатов каучуков — еще сложнее. Деформационные свойства саженаполненных резин могут быть описаны моделью, в котЬрой каучуковая часть резины состоит из двух составляющих мягкой и твердой (см. гл. I). Мягкая составляющая по структуре идентична ненаполненному сшитому каучуку, структура которого рассматривается как состоящая из упорядоченной и неупорядоченной частей. Первая представляет собой совокупность элементов надмолекулярной структуры — упорядоченных микроблоков, связанных в единую пространственную структуру с неупорядоченной частью и состоящих из свободных полимерных цепей и сегментов. Вторая представляет собой объем связанного, т. е. адсорбированного на частицах наполнителя, слоя каучука. Этот адсорбированный слой каучука менее эластичен, чем каучук в мягкой составляющей. В целом сажекаучуковая часть резины состоит из частиц наполнителя, образующих макросетчатую пространственную структуру, и твердой составляющей каучука, связанной с частицами наполнителя. Подвижности сегментов, находящихся в адсорбированном слое каучука, соответствует на рис. II. 14 а -процесс. В ненаполненной резине а -процесс не наблюдается. Более медленные процессы релаксации ф и б объясняются подвижностью самих частиц сажи и химических узлов сетки резины. [c.100]

    В связи с широким применением полпоксипроппленполполов в полиуретанах и других типах каучуков детально исследовались их релаксационные свойства как в линейных, так и в сшитых системах. Здесь использованы методы измерения диэлектрических, механических потерь II ядерный магнитный резонанс, приводящие к согласующимся результатам [82, 85]. [c.246]

    В настоящий сборник включены семнадцать оригинальных работ, опубликованных в периодической научной литературе в 1967—1968 гг. Из совокупности возможных направлений современной физической химии полимеров были выбраны те вопросы, которые в настоящее время разрабатываются наиболее интенсивно и, как нам кажется, представляют значительный интерес для советского читателя. Это, во-первььс, фазовые и релаксационные переходы и, во-вторых, вязкоупругие и реологические свойства каучуков, растворов и расплавов термопластов, Конечно, как выбор тематики, так и классификация работ весьма условны, поскольку вся специфичность физической химии полимеров обусловлена одной особенностью строения полимерных систем — чрезвычайно резко выраженной анизотропией простейших структурных элементов (макромолекул) с принципиально различным характером взаимодействия вдоль и поперек цепей. Следствием этого является, с одной стороны, образование надмолекулярных структур в полимерах и, с другой сторон, , возможность в ряде случаев независимого поведения отдельных частей (сегментов) полимерной цепи. В сущности многообразие свойств полимеров определяется этими явлениями. Такой вывод подтверждают и результаты работ, включенных в настоящий сборник, хотя далеко не всегда за своеобразием экспериментального проявления видна структурная обусловленность эффекта. [c.5]

    Химич. С. резин осуществляется с помощью сшивающих (присадочных) агентов — перекисей, диаминов, диазосоединений и др., способных быстро реагировать с функциональными группами макромолекул каучука (двойными связями, водородом а-мстиленовых Г1)упп и др.). На соединяемые поверхности наносят обычно р-ры этих агентов в инертных (ацетон, хлороформ) и,пи активных (напр., стирол) растворителях. Благодаря этому достигается более равномерное распределение сшивающего агента и упрощается ого дозирование. Резины из хлоропренового каучука, содержащего в макромолекуле подвижные атомы хлора, могут свариваться без применения сшивающих агентов. Важное значение при С. резин имеет подготовка соединяемых поверхностей, в частности очистка их от ингибиторов и др. ингредиентов, мигрирующих на поверхпость резины ири ее хранении. Темп-ра химич. С. резин определяется реакционной способностью сшивающих агентов. Давление С., зависящее от упруго-релаксационных свойств материала и от количества летучих продуктов в зоне соединения, составляет 1,0—2,5 Мн/м (10—-25 кгс/см ). Продолжительность процесса изменяется в тех л е пределах, что и при С. реактопластов. [c.191]

    Ряд исследований наполнителей с развитой поверхностью (удельная поверхность 100 м /г) свидетельствует о заметном увеличении Tg или о других изменениях релаксационных свойств. Например, Пейн [719] наблюдал влияние наполнителя на форму релаксационных спектров в саженаполненных каучуках и отметил небольшое, но заметное смещение области перехода в сторону более высоких частот, соответствующее повышение Тд примерно на 5 °С. Краус и Грувер [498] сообщили об умеренном возрастании Тд бутадиен-стирольного каучука, наполненного сажей, Роэ и др. [771] и Волдроп и Краус [973] наблюдали смещение вре мени Т спин-решеточной релаксации (при исследовании методом ЯМР) в сторону более высоких температур в саженаполненных полибутадиене н бутадиен-стирольном каучуке. Роэ и др. [771] смогли разложить сигналы ЯМР на две составляющие, соответствующие релаксации двух различных областей с различной подвижностью протонов Б аналогичной работе по исследованию [c.374]

    В случае систем, отверждающихся без нагревания (при комнатной температуре), реакция этерификации протекать не может. Вместе с тем мы можем предварительно провести реакцию этерификации при повышенных температурах, после чего отверждать композицию при комнатной температуре. Это позволяет выявить влияние по крайней мере одного из указанных факторов, а именно химического связывания, на свойства модифицированных ЭП. В связи с этим проведено [64] исследование влияния способов введения модифицирующих добавок жидкого карбоксилатного каучука на физико-механические и релаксационные свойства ЭП. [c.88]

    Аналогично действие введенных в каучук полярных групп. Так, карбоксилатный каучук СКН-26-1, вулканизованный окисью магния, слабо или совсем не растрескивается под действием кислот, несмотря на сильную деструкцию, о которой свидетельствует резкое увеличение скорости ползучести нагруженного образца. Одной из причин замедления озонного растрескивания резин при переходе от НК к хлоропреповому каучуку также, по-видимому, является уменьшение подвижности молекул. Вследствие сильной зависимости способности к растрескиванию от релаксационных свойств температура существенно влияет на этот процесс (гл. VI.4.2). Например, это подтверждается тем, что скорость разрастания озонной трещины в зависимости от температуры в области, не слишком отдаленной от Гс, подчиняется уравнению Вильямса — Ланделла — Ферри как в случае БСК, когда скорость изменяется сравнительно мало, так и для бутилкаучука, когда скорость изменяется на несколько порядков [c.90]

    Необходимо отметить, что вулканизаты на основе маточных смесей каучук — лигнин проявляют отличную стойкость к действию кислорода и озона, хорошее сопротивление истиранию, низкое теплообразование и имеют небольшую массу однако для того чтобы лигнин iMoг успешно конкурировать с сажей, необходимы дальнейшие исследования, направленные на уменьшение твердости и улучшение упруго-релаксационных свойств вулканизатов. [c.430]

    Высокоэластический модуль резины Е, определяемый комплексом релаксационных свойств, состоит из двух частей Е оо рЗВ" новесной и El — неравновесной, соответственно определяющих доли высокоэластических сил и внутреннего трения в сопротивлении резины деформированию. Равновесный модуль Е зависит, главным образом, от степени поперечного сшивания молекул (вулканизации). Неравновесная часть модуля Ei существенно зависит от числа полярных групп в цепи каучука и количества активного наполнителя, т. е. от характера и величины межмолекулярного взаимодействия. [c.16]

    Недавно была предпринята попытка оценить релаксационные свойства рвущегося образца по скорости самопроизвольного сокращения . С помощью скоростных киносъемок (см. стр. 98) исследовалось самопроизвольное сокращение образцов ненаполненных вулканизатов из бутадиен-нитрильных каучуков СКН-18, СКН-26, СКН-40 равной степени сшивания. При проведении исследования использовались образцы разной формы /— пластины размером 60x50 X 1 мм с надрезом длиной 2,5 и 1 мм на середине большей кромки И—узкие полоски размером 60x10x1 мм без надреза. Образцы деформировались вдоль большего размера. [c.180]

    В исходном невулканизованном каучуке имеет место флюк-туационная сетка зацеплений макромолекул, ответственная за механические и релаксационные свойства несшитого полимера. Если в процессе вулканизации такие зацепления оказываются между химическими узлами сетки, то они из временных становятся постоянными. Макромолекулы уже не могут выйти из зацепления, и оно в определенном интервале напряжений проявляет свойства стабильного узла сетки, не учитываемого теорией. [c.61]

    Недостаточность рассмотренной модели для описания механических свойств каучука прежде всего связана с тем, что не учитывается релаксационная природа высокоэластической деформируемости Фактически развитие высокоэластической деформации после приложения внешней силы, так же как и ее изчезновение после разгрузки, будет происходить во времени. [c.31]

    В настоящее время нет общепринятых рекомендаций по количественному описанию релаксационных свойств резины. В качестве первого, хотя и весьма грубого, приближения и здесь может быть применен модельный метод, использованный уже выше при описании упруго-вязких свойств каучуков и сырых резиновых с.месей. [c.101]

    Наполнение активней канальной сажей сопровождается улучшением релаксационных свойств вулканизатов. Если наполнение термической сажей до 40 объемн. ч. на 100 вес. ч. каучука не сопровождается заметным увеличением у акс. "у- соответствующее наполнение канальной сажей приводит к увеличению "у 24 раза, а —в 2 раза по сравнению с ненаполненньш вулка- [c.208]

    В настоящее время считается общепризнанным, что вязко-упругие свойства полимеров целиком зависят от их релаксационного спектра [19]. С другой стороны, релаксационный спектр линейных полимеров однозначно связан с характером их ММР. Отсюда вытекает важный принцип молекулярного подхода к оценке технологических свойств резиновых смесей — технологические свойства резиновых смесей на основе непластицирую-щихся каучуков практически полностью определяются молекулярно-массовым распределением исходного полимера, т. е. в первом приближении, ето средней молекулярной массой и индексом поли-дисперсности, М /М . К этой группе каучуков относятся титановый цис-полибутадиен (СКД), двойной сополимер этилена с пропиленом (СКЭП), гранс-полипентенамер (ТПП), а также полимеры литиевой полимеризации и некоторые другие эластомеры. [c.79]


Библиография для Релаксационные свойства каучука: [c.95]    [c.190]   
Смотреть страницы где упоминается термин Релаксационные свойства каучука: [c.401]    [c.39]    [c.138]    [c.71]    [c.90]   
Механические испытания каучука и резины (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Каучуки свойства



© 2024 chem21.info Реклама на сайте