Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение удерживания

    Количественной характеристикой степени разделения может служить достигнутое разрещение двух соседних хроматографических пиков, которое в свою очередь можно выразить через три основные характеристики разделения удерживание, селективность и эффективность. Ниже мы обсудим влияние каждой из них на разрещение. [c.8]

    Удерживание по классам соединений (групповое разделение) Удерживание возрастает с увеличением числа атомов углерода в молекуле [c.254]


    Характер аналитических задач, решаемых с помощью важнейшего из этих методов — инструментальной или регистрационной колоночной ЖХ,— определяется природой используемых стационарной и подвижной фаз, а также принципом детектирования элюатов. Универсальные детекторы (рефрактометрический, диэлькометрический, транспортные и др. [109, 111, 2541) использовались для количественного анализа самых различных ГАС (аминов [255, 256], порфиринов [257], жирных кислот [258, 259], фенолов [260], сернистых соединений [261 ]) в условиях адсорбционной или координационной хроматографии, а также для определения молекулярно-массового распределения высокомолекулярных веществ [69, 109, 262, 2631 при эксклюзионном фракционировании или разделении на адсорбентах с неполярной поверхностью, например, на графитирован-ных углях. Качественная идентификация элюируемых веществ в этих случаях проводится по заранее установленным параметрам удерживания стандартных соединений и при изучении смесей неизвестного состава часто затруднена из-за отсутствия таких стандартов. Групповая идентификация ГАС отдельных типов существенно облегчается при использовании специфических селективных детекторов спектрофотометрических (УФ или ИК), флю-орометрического [109, 111, 254 и др.], пламенно-эмиссионного [264], полярографического [111], электронозахватного [265] и др. [c.33]

    Анализ с помощью плоскостной (тонкослойной, бумажной) Ш X технически осуществляется почти так же, как и препаративное разделение, и отличается от последнего лишь малым объемом разделяемой пробы. Пятна разделенных ГАС выявляются сравнительно просто визуальным наблюдением их свечения при УФ облучении или окрашивании после опрыскивания слоя специфическими реагентами [267, 268]. В аналитических работах метод ТСХ чаще всего применяется для качественной идентификации отдельных групп соединений по характеру окрашивания (свечения) и параметрам удерживания (величинам И ). Получение точных количественных данных о составе разделяемой смеси с помощью ТСХ обычно связано с определенными трудностями. Некоторые перспективы улучшения разделения и облегчения количественного анализа кроются в применении уже упоминавшейся высокоэффективной круговой тонкослойной ЖХ и сканирующих устройств, фотометрирующих интенсивность спектров рассеяния или флуоресценции разделенных соединений [156]. [c.34]

    Параметры хроматограммы. Если на выходе нз слоя сорбента регистрировать изменение во времени (или объеме подвижной фазы) какого-либо свойства потока подвижной фазы, то на лепте регистратора запишется выходная хроматографическая кривая— хроматограмма (рис. 3.1). Параметры выходной кривой, называемые параметрами удерживания, могут служить средством выражения результатов хроматографического разделения смеси веществ. [c.187]


    Критерии оценки разделения. Для количественной оценки хроматографического разделения используют критерии, характеризующие качество разделения в зависимости от параметров опыта — природы сорбента, температуры хроматографирования и т. д. К ним относят степень (фактор) разделения а, критерий селективности Кс, критерий разделения Д. Степень разделения а характеризует относительное удерживание компонентов разделяемой смеси и селективность выбранной неподвижной фазы, а рассчитывают ио формуле [c.188]

    Ряд монографий и обзоров посвящены истории развития газовой хроматографии [4—6], в том числе истории хроматографического анализа нефти и нефтепродуктов [7], основам хроматографического разделения [8—11], качественного [12, 13] и количественного [14, 15] газохроматографического анализ-а, капиллярной хроматографии [16—18], приборам для хроматографии [19—20], автоматизации обработки хроматографической информации и использованию ЭВМ [21—23]. Приведены сведения о хроматографических материалах-носителях и стационарных жидкостях [24— 27], об относительных объемах и индексах удерживания углеводородов на различных неподвижных фазах [12, 28]. Применению газовой хроматографии для анализа нефти, нефтепродуктов, углеводородных смесей посвящены работы [29—33], а в нефтехимии — [34]. [c.115]

    Основными характеристиками, с помощью которых можно сделать заключение о качестве разделения компонентов смеси, является время удерживания Туд и объем Ууц удерживания. Время удерживания — время от момента ввода пробы до момента регистрации максимума пика на хроматограмме. Объем удерживания— объем элюента (газа-носителя), прошедший через хроматографическую колонку за время удерживания. В соответствии с определениями [c.181]

    Для двух разделяемых компонентов / и 2 разделение можно характеризовать или отношением времен удерживания  [c.181]

    Из уравнений (ПГ 152) следует, что отношение времен удерживания определяет константу разделения, а разность времен удерживания характеризует степень разделения с учетом многократных [c.181]

    В [19] исследован механизм удерживания СбО и С70 и высших фуллеренов при разделении методом жидкостной хроматографии с использованием модифицированных хроматографических неподвижных фаз с различными химически связанными алкильными группами. Показано важное значение поверхностной структуры связанных фаз. [c.39]

    Четкость разделения прелюде всего определяется целью хроматографического процесса. Так, в качественном анализе, который основан на использовании величин, удерживания, основным требованием является отсутствие искажения удерживаемого объема исследуемого вещества за счет соседнего компонента. [c.37]

    Функция колонки в газовой хроматографии сводится лишь к разделению смеси на индивидуальные компоненты. Определение их качественного состава может быть выполнено за пределами колонки. Существует два способа качественного анализа разделенной в хроматографической колонке смеси по характеристикам удерживания и с использованием других аналитических приемов. В первом случае на выходе из хроматографической колонки ком- [c.48]

    Возможность применения фронтального способа для определения количественного состава, как уже говорилось, ограничивается из-за неполноты разделения. Правда, шведский ученый Классом, разработавший теорию способа, предложил ряд формул для расчета количественного состава сложной смеси однако практическое применение этих формул затрудняется необходимостью точного предварительного определения объемов удерживания и изотермы адсорбции отдельных компонентов. Необходимо также отметить, что этот способ может быть эффективен лишь в случае выпуклой формы изотермы адсорбции компонентов исследуемой смеси, так как лишь тогда получаются четкие крутые ступени на выходной кривой. Из этого следует, что для осуществления фронтального способа наиболее подходящими должны быть высокоактивные адсорбенты, например березовый уголь, силикагель. [c.16]

    Сравнительно низкие коэффициенты распределения и, следовательно, малое время удерживания. Это позволяет разделять быстро даже высококипящие соединения при хорошем качестве разделения (если только правильно выбрана НЖФ). [c.105]

    Полнота разделения 1/ , спр)/ г(испр). как это вытекает из ( 01.243), практически полностью зависит от разности энтропийных констант Д В, т. е. от разности энтропий сорбции обоих компонентов. Данный случай является весьма благоприятным в газовой хроматографии по двум причинам во-первых, есть возможность четко разделять вещества с близкими температурами кипения, так как последние линейно связаны с теплотами растворения во-вторых, увеличение температуры хроматографической колонки, ускоряющее разделение (поскольку уменьшается объем удерживания), не влияет на полноту разделения, как видно из (УП1.24а) Т отсутствует). [c.197]


    Четвертый случай характеризуется различием как теплот, так и энтропий сорбции, но прямые графика уравнения (VIИ.20) пересекаются в области рабочего интервала температур колонки. Это означает, что при температуре колонки, соответствующей точке пересечения прямых, логарифмы объемов удерживания хроматографируемых веществ становятся одинаковыми, и разделения произойти не может. С другой стороны, справа от этой точки вещества из колонки должны выходить в одной последовательности, [c.198]

    Для разделения веществ с сильнополярными ионогенными группами предназначены иониты. Так как при использовании полимерных и силикагелевых ионитов пока еще встречаются с определенными затруднениями, хроматографию ионогенных веществ чаще проводят на неполярных сорбентах, в частности на октадецилпроизводных силикагеля. При использовании обычных подвижных фаз удерживание ионизированных веществ бывает настолько слабым, что оно оказывается недостаточным для разделения. Удерживание слабых кислот или оснований можно повысить, если подавить их ионизацию изменением рН под-вижной фазы. Для разделения сильных кислот и оснований или солей были разработаны специальные методы, так называемая хроматография ионных нар. В этом случае в подвижную фазу добавляют гидрофобные тетраалкиламмониевые соли или соли алкансульфоновых кислот с достаточно длинной гидрофобной алкильной цепью. Механизм разделения при хроматографии ионных пар не совсем еще выяснен. Некоторые авторы считают, что гидрофобные ионные добавки из подвижной фазы сорбируются на неполярном сорбенте. При этом возникает как бы динамический ионит, на котором ионизированные определяемые вещества разделяются подобным способом, как на нормальных ионитах по принципу различия ионных взаимодействий. Согласно другой теории, наоборот, в подвижной фазе при взаимодействии ионов вещества с гидрофобными противоионами образуются нейтральные ионные пары, которые уже способны удерживаться. Современ- [c.243]

    Применение газоадсорбционной хроматографии (ГАХ) для разделения неуглеводородных соединений, как правило, затруднено из-за высокой адсорбируемости ГАС и необходимости использования недбнустимо больших температур для их десорбции. В связи с зтим в анализе компонентов нефти наиболее часто используются методы газо-жидкостной хроматографии (ГЖХ). Благодаря выпуску обширного лабора стационарных фаз, созданию высокочувствительных универсальных и специфических селективных детекторов [163], легкости варьирования условий проведения процесса эти методы позволяют четко разделять соединения различной химической природы. При этом используются самые малые различия в их свойствах, даже обусловленные оптической изомерией [164, 165]. Подбирая соответствующие стационарные фазы в газохроматографических колонках, можно реализовать любые принципы удерживания (сорбции). [c.21]

    Удерживающая способность (УС) колонны, т. е. удерживание некоторого количества жидкости в колонне, является необходимым условием для проведения ректификации (см. разд. 4.10.5). УС определяет время, требуемое для проведения процесса (см. разд. 4.10.5). Если число теоретических ступеней разделения и флегмЬвое число увеличиваются пропорционально 1/lg а, то время разгонки, обусловленное соотношением количеств удерживаемой и загруженной жидкости, возрастает в квадрате. Таким образом, время разгонки однозначно характеризует степень трудности разделения. Если составить отношение [c.127]

    Однако несдютря на попытку стандартизации методики определения относительных времен удерживания (учет времени удерживания несорбирующегося компонента — метана, использование в качестве реперов доступных углеводородов, близких по строению и телшературам кипения к анализируемым углеводородам, и пр.), автор заранее предупреждает об опасности использования отдельно взятых величин в целях качественной идентификации углеводородов на хроматограммах. Дело в том, что точность воспроизведения значений относительных времен удерживания несколько ниже точности разделения углеводородов, которая достигается в современных высокоэффективных капиллярных колонках. Поэтому, как уже указывалось, единственно надежным методом (причем необходимым, но, к сожалению, далеко не всегда достаточным) качественной идентификации пиков на хроматограммах является использование добавок индивидуальных углеводородов. [c.338]

    Высокоэффективная жидкостная хроматография в нормальнофазовом варианте (полярный сорбент — неполярный элюент) рекомендуется для разделения изомеров. Изомеры имеют различное время удерживания на силикагеле благодаря разному расположению полярных групп. Идентификацию пиков на хроматограмме проводят методом добавок индивидуальных изомеров. Количественное определение одного из изомеров проводят методом абсолютной калибровки. [c.206]

    Разделение бензола, нафталина и фенантрена методом жидкостной хроматографии — типичный пример разделения высококипящих органических веществ, трудно разделяемых методом газовой хроматографии. Разделение методом ВЭЖХ проходит за 5 мин, время удерживания возрастает с увеличением числа ароматических колец. Ароматические вещества хорошо детектируются при А, = 254 нм. [c.209]

    Интересным адсорбентом для ГАХ является графитированная сажа. Адсорбция на ней осуществляется за счет неспецифических дисперсионных сил, и при разделении смесей определяющую роль играет число контактов звеньев молекулы с плоской поверхностью частиц сажи. Например, время удерживания углеводородов Сб в соответствии с уменьшением поверхности контакта изменяется в следующем ряду гексан>бензол>циклогексан. Графптпрован-ную сажу применяют и для анализа изомеров и изотопов. [c.89]

    Анализ сложных смесей на одной неподвижной фазе при различных температурах щироко применяется для разделения и идентификации углеводородов. Особенно существенные различия величин индексов удерживания (сН/с1Т) для углеводородов не только различных классов, но и подклассов, получаются при использовании в качестве неподвижной фазы дибутилтетрахлорфталата [74]. [c.119]

    Отсюда следует практическая невозможность полной идентификации компонентов МСС традиционными элюэнтными хроматографическими методами, так как отдельные фракции МСС перекрываются по временам удерживания. Это доказано для нефтяных фракций [14] по специально разработанной методике, использующую информацию по хроматографическим временам удерживания температурам кипения модельных соединений. Установлено, что при разделении углеводородных смесей на силикагеле алкилнафтеновые и ароматические фракции перекрываются с парафино-нафтеновыми. Еще более сильное перекрывание внутри отдельных классов opгaничe кIix соединений. [c.25]

    Б качестве эталонных веществ для получения сопоставительных величин удерживания в области фракционирования использовались полистирол с ММ=300000 (для фиксирования свободного объема колонки и нижней границы удерживания на колонке с гелем) и сквалан с Ш=423 (как метка для верхней границы удерживания). Разделяемые компоненты будут иметь объемы удерживания между этими двумя метками. Наличие меток позволяет проводить корректировку на неучитываемое изменение условий разделения, связанное с изменением скорости элюента (проницаемости колонки), температуры окружаицей среды и т.п. Приведенные к сдинаковш условиям хроматограммы исследованных продуктов и эт<злонов приведены на рис.З. [c.55]

    Улавливание и отбор продуктов разделения. Важным и сложным процессом в препаративной хроматографии является сбор продуктов разделения смеси в чистом виде. Трудности связаны прежде всего с тем, что концентрация извлекаемого продукта в газе-носителе мала, а линейная скорость газа велика. В то же время продолжительность пребывания вещества в улавливающем устройстве мала, особенно если различие в величинах удерживания двух соседних компонентов разделяемой смеси незначительно. Трудность улавливания усугубляется еще образованием туманов при резком охлаждении смеси на выходе из колонки. [c.206]

    V — коэффициент извлечения в препаративной хроматографии П — площадь хроматографического пика р — плотность жидкой фазы р,, — плотность газа 2/1 — показатель асимметрии а — ширина зоны, занимаемая веществом на сорбенте Сет —среднее стандартное отклонение т — время блуждания молекулы Тд — время удерживания Тд — постоянная времени детектора Ро — пороговая чувствительность г з — степень разделения ш — объемная скорость газа-носителя [c.6]

    Элюентный способ получил наиболее широкое применение, причем как в жидкофазной, так и в газовой хроматографии и не только с аналитической, но и с препаративной целью. Это объясняется тем, что при правильном выборе условий разделения (сербента, температуры колонки, скорости потока проявителя, количества исследуемой смеси, вводимой в колонку, и др.) из колонки компоненты смеси выходят практически в чистом виде, и их можно уловить для исследования другими методами, а качественный и количественный состав можно определить простым измерением объемов удерживания и площадей пиков. Более подробно экспериментальные и теоретические основы этого способа см. далее. [c.17]

    Величина т тоже называется степенью разделения, ио отличается от а.21 тем, что в ней не учтено удерживание несорбирующегося вещества (Уг (о>, tr (о)> (о>)- В случае больших значений адсорбируемости, когда удерживанием несорбирующегося вещества можно пренебречь, [c.64]

    Отсутствие зернистого носителя дает возможность увеличить длину капиллярной колонки от нескольких десятков до нескольких сотен метров. Столь значительное удлинение колонки резко улучшает разделение анализируемой смеси и позволяет разделять вещества с очень близкими коэффициентами Генри, например орто-, мета-, пара-изомеры и изотопные соединения. Уменьшение диаметра колонки до 0,02 см позволяет работать с очень малыми дозами (порядка 0,1 —10 мкг), т. е. капиллярная хроматография является тонким микрометодом анализа. При малых дозах и соответственно малых количествах жидкой фазы на единицу объема капиллярной колонки объемы удерживания и время удерживания компонентов значительно меньше, чем в газо-жидкостной хроматографии в заполненных колонках. Это намного сокращает время анализа, а также позволяет работать при более низких температурах. Объемная скорость потока газа-носителя очень-мала, что очень важно при использовании дорогостоящих газов-носителей, таких, например, как гелий и аргон. Отметим, однако, что указанные достоинства в полной мере проявляются лишь при высокочувстви- [c.73]

    Газовая хроматография с программированием температуры (ГХПТ) представляет собой единственный метод достижения оптимальных условий разделения почти любой сложной смеси, выкипающей в широком интервале температур. Температура колонки, при которой пик достигает максимума, называется температурой удерживания. Приближенно определить скорость программирования температуры для данной конкретной смеси можно из значений удерживаемых объемов веществ в рассматриваемой температурной области. Мы предлагаем следующий упрощенный метод определения режима программирования температуры. [c.152]

    Отношение объемов удерживания И",испр)/1 аиспр) — основная характеристика полцоты разделения. Это отношение численно [c.195]


Смотреть страницы где упоминается термин Разделение удерживания: [c.61]    [c.61]    [c.61]    [c.37]    [c.84]    [c.305]    [c.257]    [c.55]    [c.7]    [c.172]    [c.174]    [c.64]    [c.41]    [c.75]   
Руководство по газовой хроматографии (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Варианты хроматографических методов разделения в зависимости от агрегатного состояния фаз и механизма удерживания разделяемых веществ стационарной фазой

Величина разделения удерживания

Величина связь с разностью индексов удерживания А при достаточном разделении

Идентификация продуктов разделения но величинам удерживания

Идентификация продуктов разделения по времени удерживания

Использование справочных данных по удерживанию идентифицируемых соединений различными неподвижными фазами. Хроматографические спектры Многоступенчатые методы разделения

Объем удерживания при препаративном хроматографическом разделении

Относительное удерживание разделения

Разделение связь с удерживанием

Разрешение, его связь с относительным удерживанием, коэффициентом разделения и числом тарелок

Степень разделения с относительным удерживанием

Удерживание

Удерживание относительное связь с внутренней степенью разделения

Хроматографический процесс удерживание, размывание, разделение

Число разделений индекса удерживания



© 2025 chem21.info Реклама на сайте