Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки сложность

    Следует учесть возможность агрегации молекул красителей, поэтому, как правило, необходим независимый контроль размеров их частиц. Ряд методических сложностей может возникнуть и в случае оценки размеров пор с помощью растворов белков. Так, белок может частично забивать поры мембраны, снижая ее пористость. В связи с этим поиск модельных систем, в частности органозолей, для калибровки мембран представляет собой и в настоящее время актуальную задачу. Органозоли получают диспергированием металлов в органическом растворителе [114]. [c.94]


    Об исключительной сложности строения белков можно судить прежде всего по величине молекулярных весов некоторых протеинов и протеидов (табл. 53). [c.539]

    Действительно, успехи современной теории биологического катализа и теоретической химии показали, что ферментативные реакции при всей их сложности протекают в полном соответствии с общими закономерностями обычных химических превращений. Объяснение огромных преимуществ, которыми ферментативный катализ отличается от небиологического гетеро- и гомогенного катализа, заложено фактически лишь в исключительно сложной структуре макромолекул белка. [c.7]

    Недостатком электронной микроскопии является сложность подготовки объектов для исследования и необходимость поддерживать в микроскопе высокий вакуум. Кроме того, поскольку при наблюдении объект находится в вакууме, в электронном микроскопе нельзя наблюдать коллоидную систему как таковую, а можно видеть лишь частицы, содержащиеся в ее сухом остатке. Однако электронный микроскоп получает все более широкое применение в науке и технике, поскольку с его помощью можно видеть мельчайшие частицы со всеми особенностями их формы и строения. Благодаря его огромной разрешающей способности можно наблюдать даже отдельные большие молекулы (молекулы белков), вирусы. [c.49]

    Главными продуктами полного гидролиза белков являются смеси а-аминокислот, но процесс протекает ступенчато в определенных условиях, особенно при действии ферментов, белки, расщепляясь, вначале образуют более простые, но близкие к ним по свойствам вещества — пептоны. Они являются продуктами неполного гидролиза белков и, как оказалось, представляют собой смеси различных по сложности полипептидов (стр. 285). При дальнейшем гидролизе из пептонов образуются еще более простые полипептиды, дипептиды и, наконец, а-аминокислоты. [c.289]

    Биологические мембраны состоят не только из фосфолипидов, они содержат в среднем 60% белков и 40% липидов липидная составляющая включает переменные количества стероидов, преимущественно холестерин (разд. 22.2). Несмотря на сложность состава биологических мембран, простые рисунки, приведенные выше, все еще имеют силу, поскольку белковые [c.339]

    Вследствие разнообразия белковых веществ и сложности их состава в приведенной формуле указано только наличие амино- и карбоксильных групп, но не обозначены ни число этих групп, ни состав радикала К, ни его величина. Наличие в молекуле групп NH2 и —СООН сообщает белкам ам-фотерный характер — способность реагировать с кислотами и щелочами с образованием двоякого рода соединений, например  [c.229]


    Для определения атомной структуры средней сложности (50-100 атомов в элементарной ячейке) необходимо измерить интенсивность неск. тысяч рефлексов. Чем больше отражений промерено, тем лучше разрешение ф-ции р(г) и тем лучше выявляются атомы (особенно легкие, напр. Н). При исследовании более сложных соед., в т.ч. белков, необходимое число отражений возрастает до десятков и сотен тысяч. Разрешение ф-ции р(г) м.б. все равно недостаточным для установления атомной структуры тогда определяют только распределение плотности рассеивающего в-ва в кристалле (с разрешением 0,2-0,5 нм). [c.241]

    Коэффициент активности кальция в сыворотке крови значительно ниже, чем в стандартном растворе равной ионной силы и концентрации, вследствие связывания большой части ионов этого элемента белком и образования недиссоциированных комплексов в растворе. В основном Са + связывают три аниона — бикарбонат, фосфат, цитрат. В физиологических растворах уменьшение активности Са + обусловлено в основном бикарбонатом. Распределение кальция во внеклеточной и внутриклеточной средах очень неоднородно. Во внеклеточной жидкости помимо ионизированного кальция имеется кальций, связанный белком и находящийся в виде хелатов. На внешней поверхности клетки кальций связан с функциональными группами мембраны и мукопротеинами — в общей сложности в этих компонентах сосредоточено около 90% общего кальция клетки. [c.496]

    Гидролиз белков ферментами пищеварительного тракта применяет-1СЯ главным образом для Проведения неполного ступенчатого расщепления. Полученный тем или иным способом гидролизат содержит смесь аминокислот и аммиак, образовавшийся в -результате расщепления аспарагина и глутамина и частичного дезаминирования пептидов и аминокислот. После предварительного удаления основной массы кислоты или щелочи гидролизат подвергают фракционному разделению на аминокислоты. В течение первых двух десятилетий текущего столетия аминокислоты разделяли в виде их эфиров, которые подвергали перегонке в вакууме (метод Э. Фишера). Позднее этот метод потерял свое значение из-за сложности выполнения и необходимости применения большого количества белка. В настоящее время благодаря появлению метода газовой хроматографии, применение эфиров аминокислот, возможно, вновь окажется интересным. [c.479]

    В самом деле, эти работы, выявляя определенные аналогии состава и структуры глобулинов бобовых, позволяют, в частности, изучить филогению внутри этого очень крупного ботанического семейства. С другой стороны, сложность их четвертичной структуры, их способность к ассоциации и диссоциации делают интересными моделями для лучшего познания взаимосвязей между физико-химическими и функциональными свойствами белков. [c.168]

    Взаимодействия белков с нативными или деградированными липидами обнаруживают большую сложность, обусловленную множественностью присутствующих молекул. Эти взаимодействия, однако, весьма хорошо изучены, так как они чрезвычайно важны в организации и функционировании живых клеток. [c.285]

    Из-за трудности регидратации белков, необходимости концентрировать изоляты и сложности поддержания отрицательных температур с точки зрения промышленного производства сушка предпочтительнее замораживания. [c.450]

    Самые впечатляющие и смелые технические решения, обеспечивающие производство какого-то вида продовольствия с использованием растительных белков, могут стать совершенно бесполезными, если этот пищевой продукт не находит признания у потребителя. Поэтому такой продукт питания должен обладать по сравнению с традиционной пищей определенным набором качеств, которые по достоинству может оценить потребитель с точки зрения своих привычек питания. Новые продукты по гигиеническим качествам должны быть равноценны традиционной пище, что само по себе не вызывает каких-либо технических сложностей. Важнее обеспечить продуктам требуемые органолептические качества, чтобы параметры текстуры были приемлемы и даже признаны потребителем. [c.632]

    Ничем подобным, как по ширине функционального спектра, так и специфичности и эффективности реализации любой функции этого спектра, не обладает ни один класс искусственных, синтезированных человеком соединений. Таким образом, из всего того, что составляет молекулярный уровень биосистем, только белки (или прежде всего белки) могут быть ответственны за фундаментальные особенности живого - великое разнообразие органического мира, избирательность и эффективность процессов жизнедеятельности, наличие активного начала и удивительной целесообразности в организации живой материи. Количество различных белков, участвующих в функционировании организма, определяет его морфологическую и физиологическую сложность, а следовательно, и положение в иерархической организации живой природы. Чем же могут быть обусловлены столь необычные как по своему характеру, так и разно- [c.50]


    Итак, можно констатировать, что у всех исследований, направленных на разработку эмпирических предсказательных алгоритмов трехмерных структур белка, неадекватными изучаемому явлению оказываются и положенные в их основу спиральная концепция Полинга-Кори, и гидрофобная концепция Козмана об организации нативной конформации, и используемые методы, и выбранная стратегия решения задачи. Такой путь следует считать бесперспективным, так как он в принципе, а не из-за сложности проблемы или недостатка экспериментального материала, не может привести к конечной цели - априорному количественному описанию геометрии и конформационных возможностей остатков в белковой глобуле. Не может играть он и вспомогательную роль, например, в получении промежуточных данных о структуре или ее отдельных частей, которые были бы полезны в последующем уточнении. Бесперспективность эмпирического подхода подтверждают результаты всех предпринятых за последние три десятилетия попыток следовать ему. [c.81]

    Разработка правильной теории, доказательство применимости механической модели к природным макромолекулам и создание соответствующего метода исследования все еще не гарантируют решения структурной проблемы белков. Расчет пространственного строения беспрецедентных по своей сложности белковых молекул, исходя только из знания их химического строения, может оказаться несостоятельным по чисто физическим и математическим причинам. Воздвигаемое здание может рухнуть из-за несовершенства потенциальных функций и параметризации методов Минимизации энергии многоатомных систем по многим переменным, алгоритмов и профамм счета на ЭВМ, накопления ошибок и многих других вопросов, не предполагаемых в начале поиска решения, а возникаю-.Щих, как правило, неожиданно. Особенность рассматриваемой проблемы структурной организации белка заключается еще и в том, что все [c.107]

    Ферментативный синтез пептидов и белков. Сложность и трудоемкость синтеза пептидов с помощью химических методов настоятельно побуждают искать принципиально иные подходы к синтезу пептидно-белковых веществ. Одним из таких подходов является синтез пептидов с использованием в качестве катализаторов ферментов. Еще в 1937 г. М. бергманн. Г. Френкель-Конрат и Дж. Фру-тон впервые сообщили о возможности обращения протеолитической реакции в сторону образования пептидной связи, однако лишь недавно были проведены пераые исследования по ферментативному синтезу пептидов. [c.149]

    Проведенный в последние десятилетия анализ возможных факторов устойчивости растений в контексте проблем сопряженной эволюции с фитофагами привлек внимание исследователей к разнообразнейшим вторичным соединениям и метаболитам. Эти синтезируемые растениями соединения играют роль пищевых аттрактантов, стимулянтов или же пищевых репеллентов для многих насекомых. Для самих же растений они не столь необходимы, как первичные соединения, включаемые в основной метаболизм углеводов, жиров и белков. Сложность существующих здесь взаимодействий можно проиллюстрировать следующим примером обычный для крестоцветных (капустных) растений синигрин — токсин и пищевой репеллент для многих насекомых, приобретает значение необходимого пищевого стимулянта для капустной тли или капустной белянки. Гусеницы последней предпочитают голодать и гибнут в присутствии всех необходимых для поддержания жизни субстратов, лишенных, однако, не имеющего пищевой ценности синигрина. [c.113]

    Новейшие работы показали, что белковые молекулы, несмотря на их исключительную сложность, состоят из комбинаций сравнительно небольшого числа а-аминокислот. Тем не менее и. это количество уводит нас в теорию больших чисел. Известно, что в образовании белковых молекул участвует до 28 а-а-минокислот. Если допустить, что в состав белков входит лишь 10 различных аминокислот, из которых каждая встречается только один раз, то можно получить 401=3 628 800 изомерных молекул, в случае 15 различных аминокислот 15 = 1 307 947 368 ООО изомерных молекул, не считая таутомерных, скрученных, циклических и обладаклцих водородными связями форм. [c.540]

    Вместе с тем атомные соединения любой сложности с совершенной точностью воспроизводятся в организмах. Заметим также, что существуют способы выделения сложных атомных соединений, в частности индивидуальных белков. Мало того, осуществлен матричный синтез полипептидов. Как мы видели выше, атомные соединения довольно просто синтезируются путем химической сборки соответствующих структурных единиц на подходящих матрицах. Следовательно, не может быть и речи о принципиальной невос-производимости твердых атомных соединений, в том числе полимеров. Каждое из йих может быть получено надлежащим способом в чистом виде, но именно надлежащим, особым способом. В чем заключается особенность синтеза атомных твердых соединений  [c.241]

    Именно с помощью полипептидной связи идет дальнейщее образование полимеров белков любой сложности. По мере увеличения числа аминокислотных звеньев в молекулах полипептидов возрастает и количество возможных изомеров. Так, английский биохимик Ричард Синдж подсчитал, что белок с молекулярной массой 3400 (сравнительно короткоцепочечный), в каждой молекуле которого содержится 288 аминокислотных остатков, а в состав входит лищь 12 аминокислот, может иметь соверщенно астрономическое число изомеров—10 . Если бы можно было собрать воедино ли1иь по одной молекуле каждого нз возможных изомеров этого гипотетического белка, то общая масса этих молекул составила бы 10 кг. Поскольку масса Земли исчисляется значительно меныпей цифрой— Ю кг,— совер- [c.337]

    Молекулы белков состоят из аминокислот, содержат ионогенные группы —СООН, —NHзOH) и обладают амфотерными свойствами. Белки растворимы в растворах щелочей, некоторые из них растворимы в воде и разбавленных растворах солей и кислот. Растворы белков очень нестойки к действию температур при нагревании происходит денатурация многих белков и переход их в нерастворимую форму. Белки осаждаются из растворов электролитами, спиртом и ацетоном. До сих пор многие белки из-за сложности строения не получены синтетическим путем. [c.418]

    Живые огранизмы выделяют огромное количество органических соединений, которые более века привлекают внимание химиков-органиков. Некоторые из этих соединений являются небольшими молекулами (сахара, гидроксикислоты), тогда как другие представляют собой очень большие частицы (белки, полисахариды, нуклеиновые кислоты). Соединения и той и другой группы характерны для всех живых систем. Между этими крайними случаями находятся вещества, молекулы которых имеют средний размер и степень сложности. Некоторые из них обладают сильным физиологическим действием, например витамины. Довольно часто соединения такого типа являются основой для исследований, нацеленных на получение лекарственных препаратов в этих препаратах необходимое физиологическое действие, которым обладает природное соединение, проявляется с большей силой и специфичностью за счет синтетических соединений родственного строения. Такого рода исследования базируются на том факте, что физиологическая активность соединения однозначно связана с его молекулярной структурой. Сравнение взаимосвязи структура — активность внутри больши> групп органических соединений позволяет постепенно пoзнaт молекулярную топографию некоторых рецепторных центров живых тканях, которые взаимодействуют и с природными со динениями, и с их синтетическими аналогами. [c.352]

    Сильноосновные белки связываются с сильнокислыми нуклеиновыми кислотами (молекула нуклеиновой кислоты по сложности строения аналогична белку и является чем-то вроде апопротеина). Неизвестно, связаны ли эти два типа веществ в основном солевой связью или также и ковалентной. Белковая часть может быть отделена от нуклеиновой действием трипсина или в ряде случаев обработкой раствором хлористого натрия соответствующей концентрации. Остающаяся нуклеиновая кислота представляет собой цепь из повторяющихся единиц, каждая яз которых состоит из остатков углевода, фосфорной кислоты и пуринового или пиримидинового основания. Углевод представлен D-рибозой или 2-дезокси- )-рибозой. Известные в настоящее время нуклеиновые кислоты содержат каждая только один вид сахара, но не оба вместе. Из дрожжей была впервые выделена нукле1Шовая кислота, содержа- [c.733]

    Для потребления органического азота (аминокислот, амидов) многим дрожжам необходимы витамины (биотин, пантотеновая кислота, тиамин, пиридоксин и др.). Такие азотистые соеднненля, как белки, бетаин, холин, пурины и амины в виде этиламина, про-пил- и бутиламина, дрожжи не усваивают. Пептиды занимают среднее положение между аминокислотами и белками. Потребление пептидов снижается с повышением их сложности. Присутствие некоторого количества пептидов в среде наряду с другими формами азота способствует потреблению амннокнслот. [c.201]

    Р. а. позволяет исследовать структуры практически любых кристаллов хим. соед., в т. ч. белков, нуклеиновых к-т и др. биополимеров. Расшифровка структуры с 50—100 атомами в элем, ячейке представляет задачу средней сложности. Возможности Р. а., в частности для исследования биол. объектов, возрастают с применением интенсивного рентгеновского синхротронного излучения. См. также Рентгенография. [c.506]

    Представляется, что наиболее существенными факторами, пре-пятствупцими решении этой проблемы, являются сложность структу-рвсй организации глобулярных белков и недостаточная мощность современных ЭВМ для точного расчета низкоэнергетических конформаций белковых молекул. [c.168]

    История исследований белков, по сравнению с другими классами природных соединений, наиболее богата событиями и открытиями, поскольку эти вещества вездесущи в живой природе, очень многообразны и наиболее сложны по структуре. Кроме того, их сложность и большие молекулярные размеры сочетаются с низкой устойчивостью и трудностью индивидуального выделения. Но к настоящему времени многие барьеры на этом пути преодолены. Достаточно быстро и надежно хроматографически определяется аминокислотный состав белков и последовательность их соединения между собой рентгеноструктурный анализ позволяет установить пространственную структуру тех белковых молекул, которые удается получить в виде кристаллов различными вариантами метода ЯМР успешно исследуется поведение белков в растворах, в процессах комплексообразования, т.е. в ситуации, близкой к той, которая имеет место в живой клетке. В настоящее время принято различать четыре структурных уровня в архитектуре белковых молекул первичная,вторичная,третичная и четвертичная структуры белков. [c.94]

    В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов. Высокая химическая специфичность ферментов связана отчасти с уникальной макроструктурой этих полимеров. Сложность общей структуры белков можно оценить на примере фермента рибоиуклеазы (рис. 25-12). В то время как вторичная структура белков определяется только водородными связями, многочисленные изгибы полипептидной цепи, придающие глобулярным белкам третичную структуру, зависят не только от пептидных связей и водородных связей между амидными группами, но и от других типов связей, а именно а) дисульфидных связей в цистине б) ионных связей, в которых участвуют дополнительные аминогруппы или карбоксильные группы в) водородных связей и г) гидрофобных взаимодействий (рис. 25-13). [c.410]

    Ввиду больших размеров и сложности строения объектов конформац. св-ва биополимеров носят очень сложный характер. Так, разл. белки и полипептиды могут существовать в виде р-структур (параллельные мол. цепочки), а-спиралей, глобул и т. п., причем мн. макромолекулы [c.461]

    Самые важные проблемы (тепловая конвекция и сложность детектирования) были преодолены с введением капиллярного электрофореза. Как высокоэффективный метод КЭ обеспечивает основу для большинства анализов смесей аминокислот пептидов, белков, нуклеинових кислот и других биополимеров. [c.307]

    Совершенно ясно, что трудности, с которыми сталкивается экспериментатор при работе с гетерополисахаридами, очень велики. Они начинаются при разрешении вопросов о выделении, 1шдивидуализации и очистке гетерополисахаридов, так как ввиду сложности их состава наличие нри.месей. может привести к роковым ошибка.м, влияющим на весь дальнейший ход исследования. В связи с этим так часты противоречивые результаты, с которы.ми можно встретиться н литературе. Противоречия, естественно, объясняются различными методами очистки природных гетерополпсахаридов. Еще большие, для сегодняшнего дня часто не разрешимые, трудности представляет собою установление строения гетерополпсахаридов ввиду пх структурной сложности. Подход к решению этого вопроса в общих чертах напоминает подход к решению вопроса о строении пептидов и белка с топ разницей,, что химия самих мономеров— моносахаридов — сложнее, че,м химия аминокислот. [c.162]

    Наиболее тщательно изучена структура низкомолекулярной тРНК. Во всех этих молекулах существуют двухцепочечные участки, стабилизированные водородными связями с образованием трех шпилек, к которым иногда добавляется четвертая. ( клеверный лист ). Структура одной из тРНК установлена методом рентгеноструктурного анализа [72—74] (рис. 2-24). Нерегулярность и сложность формы молекулы ставит ее в один ряд с молекулами глобулярных белков. Обратите внимание на расположенный в нижней части рисунка антикодон (триплет оснований), структура которого обеспечивает спаривание с тремя основаниями кодона, детерминирующего определенную аминокислоту, в данном случае фенилаланин. [c.134]

    Реально применяемых в клинической практике полимерных препаратов в настоящее время недостаточно, сложности химического, физиологического, токсикологического характера пока не преодолены. Многие лекарственные вещества представляют собой биополимеры -белки, пептиды и полисахариды. Развитие химии полимеров за последние десятилетия привело к тому, что высокомолекулярные соединения с успехом используются в медицине как конструкционные материалы искусственные органы и ткани, покрытия. В фармацевтической практике полимеры нашли применение в технологии лекарств в качестве вспомогательных веществ - пролонгаторов, эмульгаторов при получении покрытий для таблеток, основ для мазей и т.д. [c.363]

    Говоря о возможности определить наследуемость содержания белков количественно, наверняка не учитывается вся сложность этого явления и имеется мало средств воздействия на данный признак. Ввиду этого, а также благодаря впечатляющему развитию техники электрофореза за последнее десятилетие у многих растений изучен генетический детерминизм белков и ферментов. Тредставляется более полезным разложить сложный признак содержания белков на сумму свойств, каждое из которых определяется геном. Таким путем переходят от количественной наследственности (наследуемости признака) к наследственности полименделевской . [c.48]

    В клубнях и корнеплодах промышленного назначения реально использовали и подробно исследовали только углеводную часть (свыше 80% сухого вещества). Побочные продукты экстракции этих углеводов использовали для откорма скота (жом) или сливали вместе с технологическими стоками (красные воды крахмальных заводов, пена сахарных заводов). Были проведены исследования питательной ценности жомов, например, при обработке целых клубней, но физико-химические свойства белков, содержание которых невелико, подробно не изучались. Наоборот, что касается жидких стоков, массированная борьба с загрязнением окружающей среды выдвинула для изучения вопросы утилизации азотсодержащих компонентов, В первую очередь это растворимые белки картофеля в стоках крахмальных заводов. Однако во многих случаях разбавление среды бывает таким, что перспективы полезного использования путем экстрагирования белков незначительны в связи с этим исследования ориентировались на их энергетическое использование (переработка в метан) и/или для агрономических целей (разбрасывание в виде удобрения). Такой подход к использованию отходов нередко сдерживался сложностью проблемы рекуперации. Кроме того, если в клубне содержатся антипитательные и ядовитые вещества, они рассредоточены во всей массе, как бы разбавлены, и их относительная значимость снижена иная ситуация, когда эти белки сконцентрированы. [c.269]

    Перед рассмотрением результатов, полученных здесь за последние годы, по-видимому, целесообразно обратить внимание на заведомую Обреченность исследований такого плана. Она обусловлена отсутствием у Проблемы множественности естественной основы и ее принадлежностью к нерешаемым в принципе псевдопроблемам. Столь неутешительный вывод Неизбежно следует из соображений общего порядка о невозможности ни по ходу биосинтеза белковой цепи, ни в процессе ее ренатурации, ни, тем более, при компьютерном поиске всех мыслимых конформационных вариантов. Сдерживает разработку подхода к априорному расчету механизма свертывания белка и его нативной структуры отнюдь не громоздкость задачи, ее математические и алгоритмические сложности. Проблема свертывания белка десятилетиями остается нерешенной исключительно из-за отсутствия понимания того, каким образом флуктуирующей белковой цепи при спонтанно протекающем случайно-поисковом Механизме удается избегать перебора всех конформационных состояний и ввертываться за считанные секунды. Выход из этой ситуации дает бифуркационная теория самоорганизации белка (см. разд. 2.1 и 16.3). А теперь обратимся к анализу литературы. [c.239]


Смотреть страницы где упоминается термин Белки сложность: [c.327]    [c.105]    [c.154]    [c.430]    [c.198]    [c.332]    [c.251]    [c.413]    [c.103]    [c.82]    [c.240]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.39 , c.40 , c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Сложность ХТС



© 2024 chem21.info Реклама на сайте