Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жизнь субстрат

    Время жизни образовавшегося дихлоркарбена всегда крайне мало. В отсутствие реагирующего олефина он выдыхается . Например, хорошо изучены многостадийные и сложные реак-ци с дихлоркарбеном, полученным из трихлорацетата натрия [614]. Однако в случае реакции Макоши весь дихлоркарбен не образуется одновременно. Побочные реакции и гидролиз идут медленно, и система остается реакционноспособной в течение длительного времени даже в отсутствие хорошего акцептора карбена. Таким образом, находящийся в равновесии с исходным реагентом ССЬ может ждать субстрат, и поэтому становится возможной реакция даже с очень дезактивированными субстратами. На практике применяют 50%-ный (концентрированный) водный раствор гидроксида натрия в присутствии ТЭБА как катализатора и хлороформа в качестве растворителя. Общие тенденции к образованию, присоединению и гидролизу ССЬ приведены в табл. 3.18. В отсутствие олефина медленный гидролиз хлороформа ускоряется примерно в 6 раз под действием ТЭБА. Добавление олефина приводит к повышению расхода хлороформа, величина ускорения зависит от природы олефина. Гораздо большее значение имеет то, что соотношение скоростей присоединения карбена и гидролиза хлороформа зависит от нуклеофильности олефина и может изменяться в очень широких пределах [384]. Поэтому малореакционноспособные субстраты следует перемешивать с большим избытком основания и хлороформа длительное время. Из данных, приведенных в табл. 3.18, видно, что условий, оптимальных для всех олефинов, не существует. Тем не менее была проделана большая и успешная работа по оптимизации условий реакции [c.291]


    Одним из характерных проявлений жизни является удивительная способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, pH среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента. [c.134]

    Если две различные молекулы расположены достаточно близко, они могут влиять на флуоресценцию друг друга. Одна из них, например, может поглощать излучение флуоресценции другой, свидетельствуя о довольно эффективной миграции энергии от одной молекулы к другой при облучении молекулярного комплекса. Такое взаимодействие может происходить между ароматическими аминокислотами, в ферментах и флуоресцирующих коферментах. Следовательно, можно определять и расстояние между этими молекулами. Кроме того, излучаемый отдельными молекулами данного вещества поток энергии определенным образом ориентирован по отношению к излучающей молекуле. Поэтому флуоресценция твердых тел сильно поляризована. В жидких невязких растворителях поляризация флуоресценции небольших молекул обычно мала, так как вследствие броуновского движения молекулы быстро меняют свое положение. Однако у больших молекул, таких, как белки, даже в жидких растворителях наблюдается менее интенсивное броуновское движение за время жизни возбужденного состояния они мало меняют свое положение, и поэтому их флуоресценция сильно поляризована. У флуоресцирующих групп, находящихся внутри белковой молекулы или соединенных с белком в виде комплексов фермент — кофермент или фермент — субстрат, также обнаруживается поляризация флуоресценции. Степень поляризации флуоресценции таких комплексов и влияние на нее различных факторов дают информацию о механизме действия фермента. Все это представляет ценность для анализа не только собственно ферментов, но и вообще всех белков. [c.178]

    Можно утверждать, что без катализа вообще была бы невозможна жизнь. Достаточно сказать, что лежащий в основе жизнедеятельности процесс ассимиляции двуокиси углерода хлорофиллом растений является фотохимическим и каталитическим процессом. Простейшие органические вещества, полученные в результате ассимиляции, претерпевают затем ряд сложных превращений. В химические функции живых клеток входит разложение и синтез белка, жиров, углеводов, синтез различных, часто весьма сложных молекул. Таким образом, клетка является своеобразной и весьма совершенной химической лабораторией, а если учесть, что все эти процессы каталитические — лабораторией каталитической. Катализаторами биологических процессов являются особые вещества —ферменты. Если сравнивать известные нам неорганические катализаторы с ферментами, то прежде всего поражает колоссальная каталитическая активность последних. Так, 1 моль фермента алкогольдегидрогеназа в 1 сек при комнатной температуре превращает 720 моль спирта в уксусный альдегид, в то время как промышленные катализаторы того же процесса (в частности, мeдь)J при 200° С в 1 сек превращают не больше 0,1 — 1 моль на один грамм-атом катализатора. Или, например, 1 моль фермента каталазы при 0°С разлагает в одну секунду 200 000 моль перекиси водорода. Наиболее же активные неорганические катализаторы (платиновая чернь) при 20° С разлагают 10—80 моль перекиси в 1 сек на одном грамм-атоме катализатора. Приведенные примеры показывают, что природные биологические катализаторы во много раз превосходят по активности синтетические неорганические катализаторы. Высокая специфичность и направленность действия, а также способность перерабатывать огромное количество молекул субстрата за короткое время при температуре существования живого организма и позволяет ферментам в достаточном количестве давать необходимые для жизнедеятельности соединения или уничтожать накапливающиеся в процессе жизнедеятельности бесполезные, а иногда и вредные продукты. [c.274]


    Время жизни свободного радикала, как будет показано в данном разделе, в гораздо большей степени зависит не от степени делокализации неспаренного электрона, а от стерического экранирования радикального центра объемистыми заместителями, препятствующими реакциям радикалов между собой, с растворителем, кислородом воздуха или другими субстратами с заполненной или незаполненной электронной оболочкой. Важность стерических препятствий свидетельствует о том, что понятие стабильность радикала относится главным образом не к термодинамическим (например, энергия разрыва связи С-Н), а к кинетическим свойствам, т.е. к скорости реакций, в которых радикал гибнет. [c.502]

    В случае специфических субстратов промежуточный ацилфермент — весьма нестабильное соединение (время жизни - 0,01 с) [26, которое гидролизуется под действием воды с образованием кислоты и регенерацией свободного фермента. [c.129]

    Для практического применения данного подхода при расчете параметров множественной атаки требуется экспериментальное определение средней степени полимеризации продуктов ферментативного гидролиза Пр, максимального числа связей, расщепляемых за время жизни фермент-субстратного комплекса Гтах, числа сайтов в активном центре фермента т и положения каталитического участка (число сайтов слева и справа от каталитического участка). Используя эти данные, с помощью выражения (72) можно рассчитать максимальную длину цепи 2, продвигающейся через активный центр путем периодического проскальзывания. Имея величины г и Пр, можно рассчитать сумму единичных продвижений субстрата 8р вдоль активного центра для всех возможных способов связывания и, далее, с помощью соотношения (73) — среднее число этих единичных продвижений т] за время жизни фермент-субстратного комплекса для субстрата с любой степенью полимеризации. Наконец, с помощью выражения (77) можно вычислить эффективность ферментативного гидролиза полимерного субстрата, а с помощью уравнений (78—79) — время, требуемое для единичного проскальзывания вдоль активного центра. [c.101]

    При поедании животными крахмал, а в некоторых случаях также целлюлоза разрушаются, давая снова исходную (+)-глюкозу. Последняя с током крови переносится в печень и там превращается в гликоген, или животный крахмал в случае необходимости гликоген снова может быть разрушен до (+)-глюкозы. (-Ь)-Глюкоза переносится током крови в ткани, где она окисляется в конце концов в двуокись углерода и воду с выделением энергии, полученной первоначально с солнечным светом. Некоторое количество (- -)-глю-козы превращается в жиры, а некоторое реагирует с азотсодержащими соединениями с образованием аминокислот, которые, соединяясь друг с другом, дают белки, являющиеся субстратом всех известных нам форм жизни. [c.931]

    Фотохимический механизм с образованием бирадикала отличается от своего термического аналога. В термической реакции первоначально образующийся бирадикал должен быть синглетным, а в фотохимическом процессе происходит присоединение молекулы в триплетном возбужденном состоянии к субстрату, находящемуся в основном состоянии (которое, естественно, представляет собой синглет). Поэтому для сохранения спина [746] первоначально образующийся бирадикал должен быть триплетным, т. е. два электрона должны иметь одинаковый спин. Следовательно, вторая стадия этого механизма — стадия циклизации — не может осуществляться сразу же, так как новая связь не мол<ет образоваться ири участии двух электронов с параллельными спинами, и время жизни бирадикала должно быть достаточно велико, чтобы в результате столкновений с окружающими молекулами произошла инверсия спина, после чего бирадикал циклизуется. Согласно этой схеме, реакция должна быть нестереоспецифична, что и обнаружено (см., например, [747]). По крайней мере некоторые из фотохимических реакций [2 + 2]-циклоприсоединения идут через образование эксиплексных интермедиатов [748] [эксиплекс [749]—это возбужденный донорно-акцепторный комплекс (т. 1, разд. 3.1), который диссоциирует в основном состоянии в этом случае один олефин является донором, а другой — акцептором]. [c.261]

    В прошлом существовало убеждение в том, что тайна жизни будет раскрыта при помощи изучения химии элементов органогенов теперь следует склониться к новой истине для настоящего оживления мертвого субстрата жизни оказалось необходимым участие коферментов, содержащих самые разнообразные элементы старших периодов Системы — элементов — биогенов в высоком смысле этого слова. Атомы более тяжелых элементов, скопляясь в большом количестве, порождают земную кору — силикаты, металлические руды и т. п., будучи же рассеяны как микроэлементы или во всяком случае составляя не главную весовую часть живого вещества, они не играют все же роль второстепенных примесей, но весьма важны. В этом свете совершенно ясно, что образование современного биохимика становится неполным, если им не постигнуты известные и совершенно специфические сведения об электронной сущности самых разнообразных атомов в зависимости от положения их в Системе. [c.371]


    Характерной особенностью асинхронного механизма реакций нуклеинофильного замещения является то, что процесс может идти через промежуточную стадию с образованием аддукта, приводящую затем к продуктам реакции. Механизм будет асинхронным, если время жизни аддукта превосходит время, необходимое для одного колебания зарождающейся связи ( Ю с). В этом случае аддукт можно идентифицировать с помощью ЭПР. Природа промежуточного продукта может быть различной в зависимости от типа реакционного центра субстрата [104, 224]. Одна из существенных задач теоретической химии сводится к установлению корреляций между типом реак- [c.143]

    Постепенное приспособление организмов к молекулам О 2 оказалось выгодным для развития жизни, так как процессы дыхания, использующие свободный кислород для получения энергии, были количественно более эффективны, чем реакции анаэробного брожения в особенности при использовании в качестве топлива органического субстрата. В самом деле, окисление глю- [c.377]

    Может показаться, что эффект фиксации субстрата просто эквивалентен эффекту сближения реагентов. Однако первый фактор прежде всего учитывает продолжительность такого сближения. Как было показано в работе [1], увеличение времени жизни комплексов приводит к ускорениям порядка 10 — 10 раз. Очевидно, что аналогично можно объяснить ускорение химических реакций при переводе их из межмолекулярного во внутримолекулярный режим. [c.299]

    Проведенный в последние десятилетия анализ возможных факторов устойчивости растений в контексте проблем сопряженной эволюции с фитофагами привлек внимание исследователей к разнообразнейшим вторичным соединениям и метаболитам. Эти синтезируемые растениями соединения играют роль пищевых аттрактантов, стимулянтов или же пищевых репеллентов для многих насекомых. Для самих же растений они не столь необходимы, как первичные соединения, включаемые в основной метаболизм углеводов, жиров и белков. Сложность существующих здесь взаимодействий можно проиллюстрировать следующим примером обычный для крестоцветных (капустных) растений синигрин — токсин и пищевой репеллент для многих насекомых, приобретает значение необходимого пищевого стимулянта для капустной тли или капустной белянки. Гусеницы последней предпочитают голодать и гибнут в присутствии всех необходимых для поддержания жизни субстратов, лишенных, однако, не имеющего пищевой ценности синигрина. [c.113]

    Здесь Пр — степень полимеризации продукта, определяемая экспериментально р, — число сайтов слева от каталитического участка (см., например, рис. 8), если продвижение субстрата идет в сторону восстанавливающего конца. Вводя термин единичное продвижение субстрата, означающий проскальзывание субстрата в активном центре на одно мономерное звено, можно рассчитать сумму единичных продвижений 5р для всех возможных способов свя ывания субстрата с активным центром в ходе множественной атаки [14]. Зная величину 5р для конкретного субстрата, можно вычислить среднее число единичных продвижений т] за время жизни фермент-субстратного комплекса  [c.99]

    Отсюда видно, что скорость ферментативной деструкции полимера при малой концентрации субстрата зависит от обоих показателей множественной атаки — эффективности гидролиза, г/ , или доли расщепленных связей за продвижение субстата на одну мономерную единицу, и среднего числа единичных продвижений за время жизни фермент-субстратного комплекса, т1 . В то же время максимальная скорость ферментативной деструкции (при насыщающей концентрации субстрата) определяется только эффективностью гидролиза, так как величина ta., предполагается постоянной. Левая часть выражения (77) в соответствии с уравнением Михаэлиса — Ментен (при [5]о<С/(т) равна йкат [5]о//Ст, а выражения (78) — кат) СЛСДОВЗТбЛЬНО  [c.100]

    Иначе говоря, время жизни карбокатнона в активном центре фермента должно быть столь большим, чтобы успели пройти процессы десорбции отщепившегося агликона, связывания подходящего акцептора гликоновой части субстрата и атака акцептором карбокатиона с образованием соответствующего продукта переноса. Вместе с тем исходя из известных данных об исключительно высокой реакционной способности карбокатионов такое большое время жизни для них маловероятно, даже при учете стабилизирующих факторов в активном центре фермента. Так,- по данным работы [103] время жизни гликознльных карбониевых [c.173]

    Даже если время жизни карбаниона невелико, ионы Юн 11 примут наиболее благоприятные конформации до атаки частицы Ш. Наиболее благоприятная конформация для обоих этих карбанионов одинакова, поэтому при атаке из них получается один и тот же продукт. Этим продуктом будет один из двух возможных диастереомеров, поэтому реакция оказывается стереоселективной, но поскольку из цис- и грамс-форм не получаются различные изомеры, то реакция не будет стереоспецифичной. К сожалению, это предсказание не проверено на олефинах с открытой цепью. За исключением субстратов Михаэля стереохимия нуклеофильного присоединения к двойным связям изучалась только на циклических системах, для которых существует только цис-изоие]). Для этих случаев показано, что реакция протекает стереоселективно, причем в одних случаях сообщается о сын-присоединении (см., например, [35]), [c.142]

    Почти все реакции фотосенбилизированного окисления протекают через триплетное состояние сенсибилизатора, возможно, из-за гораздо большего времени его жизни по сравнению с синглетом. Первой стадией реакции триплета сенсибилизатора может быть его взаимодействие либо с субстратом, либо с кислородом. Эффективность реакции триплетов многих красителей с кислородом столь велика, что она преобладает даже при самых низких концентрациях кислорода. Будет ли присутствие кислорода только ингибировать реакцию с субстратом или продукты первоначальной реакции с Ог будут участвовать в дальнейших реакциях, зависит от природы субстрата. Вещества, которые мы рассматривали как способные к окислению реагенты (алкены, диены, диеноидные гетероциклы и полицик- [c.173]

    Органическая химия создала широчайшую базу понимания сложного материального субстрата жизни во всем величии многообразий его строения, главным образом из легких атомов первого, второго и третьего периодов Системы физическая химия проникла уже довольно глубоко в природу водных растворов — этой колыбели жизни и средоточия тайн алхимического алькагеста (всеобщего растворителя) она дала и некоторые подходы к пониманию реакционной и каталитической способности атомов и молекул. [c.353]

    Все сказанное позволяет назвать углерод родоначальником органических веществ, т. е. образователем структурной базы удивительного по многообразию молекулярных скелетов мертвого субстрата, на котором могла зародиться жизнь с ее своеобразными и многочисленными требованиями к веществу. Решающее значение для подготовки этого субстрата, кроме углерода и водорода, играли еще азот и кислород. Биогенные характеристики, например, водорода или углерода, даваемые в виде списка коротких, пронумерованных тезисов, представляют собой пример того дисциплинирующего разум человека влияния, которое оказывает на современную химию сосредоточение внимания на проблеме биогенности, в высшей степени полезное для неорганика. [c.359]

    Если в реакции образуется некий интермедиат, то механизм реакции зависнт от времени его жизни. Если интермедиат разлагается мономолекулярно со скоростью большей, чем с-1 (предельное значение частоты колебаний), или бимолекулярно со скоростью большей, чем 5-10 л/(моль-с) (предел скорости диффузии), то фактически его не существует, и реакцию нужно рассматривать как согласованный процесс с одновременньш разрьшом старых и образованием новых связей. Если рштермедиат имеет большое время жизни, то он может существовать, но вопрос о том, пойдет ли реакция через него или найдет другой, более легкий, согласованный путь, зависит от строения субстрата, второго реагента, среды, присутствия катализаторов и т.п. [c.290]

    Понятие синхронность означает бесконечно малое время жизни интермедиата (гл. 3). В таком слу чае можно нредноложить, что в реакциях одноэлектронного сдвига времена жизни радикальных частиц Nu и (R—Z) очень малы, а скорости распада (R—Z) R + Z" и рекомбинации Nu и R очень велики. В противоиоложность этому в ЖГ-реакциях времена жизни радикальных частиц достаточно велики для того, чтобы их можно бьшо зарегистрировать. Времена жизни зависят от иртфоды нуклеофила и субстрата. Например, натрий реагирует с алкилгалогенидами (реакция Вюрца) по SET- механизму, поскольку в образующемся в результате электронного переноса ионе Na" все снины снарены, и он не может рекомбинировать с радикалом R.  [c.742]

    Возбужденная молекула кислородна может вернуться в осиозте триплетное состояние, если она не встретит подходящий для реакции олефин. Было показано, что скорость этого процесса сильно заоисит от природы растворителя [132]. Измеренные времена жизни варьируют от примерно 700 мкс (в четыреххлористом углероде) до 2 мкс (в воде). Из зтого следует, что растворитель может оказывать четко выраженное влияиие на эффективность окисления чем больше время жизни молекулы кислорода в возбужденном состоянии, тем более вероятна продуктивная встреча ее с алкеповьш субстратом. [c.337]

    В рамках общего О.в. изучение энергетич. обмена у фототрофов состоит в определении энергетич. параметров фотосинтеза, у хемотрофов - в исследовании баланса между энергией, вьщеляемой при расщеплении субстратов О.в., и энергией, расходуемой на биосинтез конечных продуктов О.в., ва совершение мех. работы, а также рассеиваемой в виде тепла. В общем энергетич. обмене животных выделяют осн. об мен-миним. кол-во энергии, необходимое для поддержания жизни организма в состоянии покоя. У взрослого человека он составляет 1600-1700 ккал/сут (6700-7100 кДж/сут). Кол-во тепла, выделяемое теплокровными животными при осн. обмене, пропорционально пов-сти их тела (правило Рубнера). Более точно теплопродукция (в ккал/сут) организма животных выражается ф-лой У = = 70 (М-масса тела в кг). Данные об общем энер- [c.316]

    Большие времена жизни IVlg -нyклeoтид,ныx комплексов могут объяснить их широкую распространенность в качестве субстратов. Для ответа на вопрос, почему физиологическим субстратом АТРазы миозина и многих других ферментов является Mg-ATP, а не Са-АТР, [c.287]

    Устойчивость и реакционная способность радикалов, так же как карбениевых ионов и карбанионов, зависит от структуры и изменяется в широких пределах. С одной стороны, известны устойчивые, выделяемые частицы, например радикал Кёльша (3), а также (4), затем следуют долгоживущие частицы, обычно с низкой реакционной способностью, такие как триарилметильные радикалы, например (1), и затрудненные третичные алкильные радикалы, например (5) [10]. С другой стороны, известны такие радикалы, как СНз , РЬ-, отличающиеся высокой реакционной способностью в отношении большинства органических субстратов, время жизни которых при обычных условиях реакции исключительно мало. Эту последнюю группу радикалов часто называют неустойчивыми или короткоживущими радикалами, но поскольку радикалы обычно разрушаются в бимолекулярных процессах, то, естественно, время их жизни зависит от окружения. Например, даже метильный радикал может существовать неопределенное время, если выделить его на инертной матрице. Однако следует отметить, что некоторые [c.569]

    Близость синглетного и триплетного состояний и возможность их взаимных превращений представляют особый интерес в химии карбенов [42]. Спиновое состояние карбена в момент реакции зависит не только от состояния в момент образования или от природы основного состояния, но также и от относительных скоростей процессов перехода внутри системы (кпер) [схема (34)] и реакций образования продукта (Кпр). Например, многие карбены, обычно находящиеся в триплетном основном состоянии (например, -.СНг), при регенерации в растворе образуются в синглетном состоянии (см. разд. 2.8.2.1) и так быстро реагируют с большинством субстратов, что не успевают перейти в основное состояние Кпер)- Для таких случаев разработано несколько методик, позволяющих наблюдать реакции в другом спиновом состоянии [38]. Обычная методика основана на увеличении времени жизни карбена так, чтобы стал возможным переход между состояниями внутри системы до момента реакции. Время жизни карбена мол<но увеличить разбавлением реакционной смеси инертным растворителем или, что реже, генерацией карбенов с замораживанием на матрице [43]. Например, на схеме (35) разбавление приводит к падению стереоспецифичности реакции, что указывает на увеличение выхода продукта, за счет триплетного (основное состояние) карбена [44]. Однако этот эффект не всегда достигается при использовании растворителей. Например, в случае присоединения ди-фенилметилена РЬгС разбавление циклогексаном не изменяет соотношения цис1транс-продуктов. Это обусловлено настолько близкими [c.587]

    Метод остановленного потока (з1орре(1-Г1ош) [13] может дать информацию о процессах с временами жизни порядка миллисекунд, которые лимитируются лишь временем смешения реагентов в сосуде. Это позволяет использовать большие концентрации фермента (до 10 моль-л ) и изучать предстационарную стадию реакции, т. е. события, происходящие, когда субстрат первый раз сталкивается с ферментом. Таким образом, становится возможным изучение стадии связывания, а также других процессов, предшествующих стадии, определяющей скорость процесса. [c.455]

    Реализация указанного подхода требует длительного времени, однако он весьма ценен, так как дает информацию о связывании субстрата в условиях нормального функционирования фермента. Этот подход все же не может дать детальных сведений о взаимодействии групп, участвующих в связывании, подобных тем, какие стали доступными в последние годы благодаря рентгеноструктурным данным. Рентгеноструктурные исследования обычно неприменимы к фермент-субстратным комплексам, поскольку времена жизни последних слишком малы, и должны поэтому проводиться на неработающих ферментах. Однако рентгеноструктурные данные, полученные для комплексов ферментов с ингибиторами или плохими субстратами, дали большой объем информации о деталях связывания малых и больших молекул ферментами, который в удачных случаях можно безусловно перенести на связывание субстрата. Структура комплексов химотрипсина с Л -формилтриптофаном и Л -формилфенилаланином (60) и (61) (Х = ОН, продукты гидролиза специфических субстратов) почти наверняка близка к соответствующим фермент-субстратным комплексам (60), (61) (X —NHR), так как фермент катализирует обмен 0 с карбоксильной группы Л -ацильных производных этих соединений в растворитель — воду [99]. [c.512]

    Продуцентами этих кислот могут быть бактерии, плесневые грибы или дрожжи. Микроорганизмы, продуцирующие молочную кислоту, а также вызывающие спиртовое брожение, в ходе эволюции приспособились к анаэробному образу жизни. Уксусная и лимонная кислоты в свою очередь образуются в аэробных условиях. По-видимому, кислоты играют определенную роль в борьбе с конкурирующей микрофлорой, а также являются резервными источниками углерода. Так, Aspergillus niger после использования сахара могут использовать в качестве субстрата лимонную кислоту. В свою очередь уксуснокислые бактерии при отсутствии спирта в среде ассимилируют уксусную кислоту, окисляя ее до воды и СО2. [c.143]

    Свободное окисление. Одна из задач свободного (несопряженного) окис-лен1тя—превращения природных или неприродных субстратов, называемых в этом случае ксенобиотиками (ксено—несовместимый, биос—жизнь). Они осуществляются ферментами диоксигеназами и монооксигеназами. Окисление протекает при участии специализированных цитохромов, локализованных чаще всего в эндоплазматическом ретикулуме, поэтому иногда этот процесс называют микросомальным окислением [Арчаков А.И., 1975]. [c.313]

    Одним ИЗ сравнительно новых способов обработки поверхности является механохимический [64]. Он основан на образовании свободных радикалов, возникающих при механической обработке поверхности в среде клея. При механической обработке поверхности полимера происходит разрыв макромолекул, что приводит к образованию микрорадикалов, время жизни которых составляет 10- —10- с. Образование радикалов, генерируемых в среде клея, предохраняет их от контакта с воздухом и друг с другом. По-видимому, в этом случае увеличение прочности соединений, склеенных эпоксидными клеями, происходит за счет радикальных процессов в зоне контакта и образования химических связей между макромолекулами субстрата и клея, В качестве подтверждения этого механизма в [78] приводятся данные о стабильности свойств соединений, подвергнутых такой обработке в условиях длительного хранения. [c.126]

    Известно, что убранный урожай, т. е. сорванные яблоки, копанный картофель и т. д. не умирает, а живет, подготавли себя к дальнейшему воспроизводству. Жизнь собранных про тов возможна благодаря энергии, образуемой при дыхании, новным, но не единственным субстратом для дыхания являк сахара, главным образом, глюкоза и фруктоза. Фермент системы, необходимые для дыхания, в собранном урожае г ностью сохранились. Они и превращают сахара с выделен СОг, воды и большого количества тепла. Схематически дыхе растительных продуктов может быть представлено следую уравнением  [c.136]


Смотреть страницы где упоминается термин Жизнь субстрат: [c.137]    [c.88]    [c.88]    [c.98]    [c.98]    [c.99]    [c.200]    [c.128]    [c.170]    [c.173]    [c.196]    [c.345]    [c.170]    [c.633]    [c.126]    [c.128]   
Биология с общей генетикой (2006) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Субстрат



© 2024 chem21.info Реклама на сайте