Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Центры фиксации

    Наконец, с возрастанием внешней нагрузки увеличивается число слабых мест в системе точек закрепления дислокации. Ясно, что сила, действующая на дислокацию в точке закрепления (например, в точке В на рис. 97) и срывающая ее с примеси, зависит как от равновесного радиуса Я, так и от взаимного расположения соседних центров (фиксации дислокационных линий Л и С. Легко понять, что поскольку закрепление дислокации на примеси характеризуется локальными свойствами системы примесь — дислокация, то его прочность может зависеть лишь от величины угла ф между двумя сегментами, сходящимися на этой примеси (рис. 97). Если этот угол становится меньше некоторого критического ф , то примесь освобождает дислокацию. Угол ф следует рассматривать как параметр взаимодействия примеси с дислокацией (по порядку величины ф  [c.292]


    Необходимо отметить, что возникновение поверхностных гелей происходит в условиях интенсивного протекания диффузионных потоков, которые, согласно работе [138], причесывая молекулы воды, способствуют их ориентационной поляризации. Зарождение пленок геля инициируется активной поверхностью, на которой молекулы воды обычно адсорбируются упорядоченно. К ро.ме того, сильное поляризующее и упрочняющее действие на эти молекулы оказывают окиси кремния и кальция. На упорядочение молекул воды значительно влияют ионы гидроксила, магния, кальция и др. Все эти частицы должны быть центрами фиксации поляризованных молекул воды, анизотропное поле сил которых, в свою очередь, может способствовать полимеризации и возникновению зародышей кристаллизации новообразований. Последние в виде армирующей сетки, очевидно, стабилизируют структуру воды. [c.125]

    А. Начало пузырькового кипения. При увеличении плотности теплового потока температура поверхности превышает температуру насыщения. Для фиксации начала пузырькового кипения необходим критерий образования пузыря в неоднородном температурном поле жидкости, прилегающей к поверхности нагрева. Рассмотрим рис. 2, на котором показан конический активный центр парообразования с полусферическим паровым зародышем радиусом (соответствующим краевому углу ( 1==--90 ), находящимся в устье впадины. При других краевых углах существует простая геометрическая зависимость для высоты пузыря [c.369]

    Для фиксации радиоактивного излучения и измерения его интенсивности пользуются счетчиками Гейгера—Мюллера различной конструкции. Обычно это алюминиевая трубка, внутри которой находится специальная газовая смесь и по центру натянута вольфрамовая нить. К вольфрамовой нити и алюминиевой оболочке счетчика приложена разность потенциалов порядка 2000 В. Когда радиоактивная частица попадает (через тонкую алюминиевую оболочку) внутрь счетчика, она, обладая высокой энергией, ионизирует газ, заполняющий счетчик, как говорят, вызывает ионную лавину . [c.216]

    В самой общей форме характер действия металлических ионов на ферментные системы можно разделить на следующие виды 1) образование специфической структуры активного центра 2) образование структуры в системе активный центр-субстрат 3) поляризация групп активного центра и субстрата. Благодаря этому могут осуществляться процессы 1) воздействия на определенные группы субстрата — атаки молекул воды и других у ферментов типа гидролаз и фосфорилаз 2) процессы переноса (электронов и групп атомов) 3) процессы фиксации и переноса без глубоких изменений в переносимой молекуле (перенос кислорода гемоглобином).  [c.363]


    Другими ионами кальций в этой системе заменить нельзя. Ионы ртути, цинка, кадмия связываются в областях фиксации кальция и вызывают ингибирование ферментной активности этот эффект исчезает при добавлении в смесь ионов кальция. При замещении иона кальция на ион стронция сохраняется активность по отношению к гидролизу ДНК, но замещение ионом бария ведет к полной инактивации, как считают, вследствие геометрических искажений центра связывания кальция, которые передаются и на область связывания нуклеотида. Стерическое соответствие фермент — субстрат при этом утрачивается и активность резко падает. Эти примеры говорят о большом значении геометрической структуры, создаваемой и поддерживаемой ионом в системе фермент—ион—субстрат для правильного протекания ферментативной реакции. [c.364]

    Степень размытости максимумов рассеивающей материи. В отдельно взятом (изолированном) атоме ядро занимает очень небольшой объем даже с учетом тепловых колебаний ядерная плотность представляется весьма острым максимумом. Максимум электронной плотности всей совокупности оболочек атома размыт значительно сильнее. Электростатическое поле ядра и электронов ослабляется при удалении от центра атомов еще медленнее (рис. 59, а). Это различие сохраняется, естественно, и в кристалле. Поэтому конечная точность фиксации координат ядер в нейтронографии, центров тяжести электронного облака в рентгеноструктурном анализе и максимумов силового поля в электронографии существенно разная и понижается в ряду НСА > РСА > ЭСА. [c.170]

    Для Обрезки полотен тарелок по радиусу предусматривается универсальное приспособление к ножницам типа НБ-453. Заготовку устанавливают на направляющие планки по заранее настроенным на необходимый размер выдвижным упорным планкам и закрепляют эксцентриковыми зажимами. Настройку приспособления производят так, чтобы центр, из которого описана радиусная кривая на заготовке, совпадал с вертикальной осью вращения приспособления. В дыропробивном штампе для первичной установки секций паровых патрубков предусмотрена одновременная пробивка и отбортовка 23 отверстий. Для секций с тремя и четырьмя рядами отверстий предусмотрена последующая фиксация по пробитым отверстиям на грибковые ловители. [c.205]

    Действие примесей связано также с образованием комплексных малорастворимых солей и на поверхности кристалла непроницаемых пленок, с отравлением активных центров растущего кристалла ионами примесей, с фиксацией примесей на поверхности граней в процессе зарождения и роста кристаллов [51, 83]. [c.24]

    Молекула, состоящая из N ядер, имеет ЗЫ степеней свободы, так как для фиксации ядер в пространстве требуется ЗМ координат. Три координаты нужны для определения центра масс молекулы, следовательно, существуют ЗЫ—3 внутренних степеней свободы. Двухатомная или линейная многоатомная молекула имеет две вращательные степени свободы, потому что ориентация оси молекулы относительно системы координат определяется двумя углами. У таких молекул число колебательных степеней свободы равно ЗЫ—5. У двухатомной молекулы имеется одно-единственное колебание, а у линейной трехатомной молекулы — четыре (разд. 15.9). Нелинейная многоатомная молекула имеет три вращательные степени свободы, поскольку ориентация молекулы относительно системы координат определяется тремя углами. У такой молекулы число колебательных степеней свободы равно ЗЫ—6. [c.269]

    Между звеньями вала для фиксации скребкового устройства по центру очищаемой трубы устанавливают промежуточные опоры. Длина каждого скребка 545 мм. Соседние по длине вала скребки устанавливают крест-накрест. [c.37]

    Особая сг-субъединица участвует в транскрипции ряда генов, ответственных за метаболизм азота. К ним относятся ген, кодирующий глутаминсинтетазу, и гены, контролирующие фиксацию атмосферного азота. Промоторы этих генов не содержат обычных для других промоторов последовательностей —10 и —35 . Вместо них имеются участки гомологии, центры которых расположены в поло- жениях —И и —21 . Поэтому неудивительно, что эти промоторы ке используются РНК-полимеразой, содержащей главную сигма-субъединицу, а . Транскрипцию этих промоторов обеспечивает одна из минорных а субъединиц, а , кодируемая геном гроМ. Однако для функционирования промотора гена глутаминсинтетазы белка (J недостаточно. Необходим еще ДНК-связывающийся белок, называемый NR[. Перед промотором имеется пять участков его связывания наибольшее сродство NRj проявляет к двум отдаленным участкам. Эти последовательности необходимы для активации промотора при низких концентрациях NRj и не обязательны при высоких. Если эти последовательности отодвинуть на тысячу пар нуклеотидов от промотора, они продолжают обеспечивать активность промотора. Предполагается, что белок NR i взаимодействует с РНК-полимеразой, расположенной на промоторе. Посадка NRi на ДНК облегчает это взаимодействие, сопровождаемое, по-види- [c.153]

    При использовании волокнистых материалов, в частности ваты, небольшой кусочек последней аккуратно подвертывают со всех сторон по направлению к центру с таким расчетом, чтобы получился округлый тампон. Последний подвернутыми краями вниз надевают на кончик стеклянной палочки или на сжатый кончик пинцета и вкладывают в устье воронки. Для надежной фиксации тампона внутреннюю поверхность воронки целесообразно слегка увлажнить. [c.52]


    Предполагается, что центром фиксации гидрид-иона (или двух электронов) из NADH является электрофильный азот N-5 фла-винового ядра. [c.412]

    Угол наклона и ориентация припитых молекул. Существование определенного угла наклона длинноцепочечных алкильных групп в плотноупакованных монослоях вытекает из простейшего геометрического рассмотрения (рис. 5.10). При заданном расстоянии между центрами фиксации Ь) максимальный ван-дер-ваальсов контакт между алкильными цепями будет достигнут при угле (р, удовлетворяющем соотношению tg = пЩ/В, где п — целое число. Угол наклона алкильных цепей от нормали определяется как (р = 90 ° Выбрав в качестве В расстояние, соответствующее ван-дер-ваальсовому контакту между алкильными цепями (0,424 нм [119]), и для Д — расстояние до второго ближайшего атома углерода в алкильной цепи (0,252 нм), получим, что угол наклона алкильных цепей может быть только 0°, 30,7° и 49,9° [120]. Необходимо отметить, что для доменной [c.189]

    Для монослоев алкилтиолов на серебре расстояние между центрами фиксации несколько меньше, чем на золоте [c.190]

    Удобной флуоресцентной меткой является пирен. Если метки расположены достаточно близко друг к другу, то в спектре флуоресценции пирена появляется дополнительная интенсивная полоса, соответствующая эксимерам пирена. Получение и исследование взаимодействия пиренмеченного силана с кремнеземом было проведено в работах С.Лохмюллера с сотр. (143,150,151]. Для пирен-меченного силана, изображенного на рис. 5.15, расстояние между центрами фиксации молекул, при кагором возможно образование эксимеров, составляет 1,12-1,84 нм. [c.199]

    В рассматриваемой модели привитого слоя предполагается, что гилкильные цепи принимают такие конформации, чтобы плотность прививки была максимальной. Для упрощения выкладок будем рассматривать алкильные цепи как цилиндры с высотой к и диаметром й, а конформационные изменения как изменение кий (рис. 5.44, б). Исходя из постоянства объема молекулы, имеем (1 = = у/ Уыол)/ Актг), где У оль — мольный объем привитого соединения. Расстояние между центрами фиксации молекул равно (см. рис. 5.44, б) [c.242]

    В активном центре фермента остаток пиримидинового нуклеотида РНК размещается таким образом, что пиримидиновое основание закрепляется в субстратном центре за счет водородных связей с радикалами тре и сер, занимающими 45-е и 123-е положения в полипептидной цепи и за счет гидрофобного взаимодействия с радикалом фен (120-й аминокислотный остаток). Вследствие этого остаток фосфата, расположенный между З -углеродным атомом рибозы пиримидинового нуклеотида и 5 -углеродным атомом соседнего в цепи РНК нуклеотида, фиксируется между 12-м и 119-м остатками гис каталитического центра. Фиксации межнуклеозидного фосфата в этом положении способствует также радикал лиз. занимающий в молекуле РНКазы 41-е положение, но расположенный в ее активном центре на расстоянии 0,5 нм от вышеупомянутых остатков гис. Вслед за этим наступает непосредственно каталитический акт, осуществляемый в результате согласованной передачи протонов и сводящийся к разрыву межнуклеотидной фосфатной связи, образованию 2, З -циклофосфата рибозы пиримидинового нуклеотида и по- [c.228]

    Изменение природы хлорагента практически не влияло на содержание хлора в образцах катализатора это приводит к заключению, что в состав активных центров поверхности оксида алюминия, ответственных за реакцию изомеризации, входит лишь небольшая частьот обшего содержания хлора в катализаторе. Суммарный баланс хлорирования указьшает на замену ионов кислорода поверхности оксида алюминия ионами хлора. Эта реакция является основной при хлорировании. Определяющее влияние природы хлорорганического соединения на активность катализатора в реакции изомеризации может быть объяснено необходимостью фиксации двух ионов хлора на поверхности оксида алюминия на определенном расстоянии друг от друга. [c.69]

    Ионная полимеризация может характеризоваться значительно большей стереоспецифичностью, чем радикальная. Это обусловливается не только взаимодействием заместителей концевых звеньев растущих полимерных цепей, но и участием в элементарных актах роста других компонентов каталитического комплекса, в частности, противоиона. Если активным центром на конце растущей цепи является ионная пара, то противоион оказывается одним из компонентов переходного комплекса, образующегося в реакции роста цепи. Поэтому он может влиять на фиксацию той или иной пространственной конфигурации, концевого звена растущей цепи. В некоторых случаях влияние противоиона, по-видимому, сводится к чисто стерическим эффектам, т. е. можно рассматривать противоион как своеобразный дополнительный заместитель в концевом звене растущей цепи. Например, при катионной полимеризации винилизобутилового эфира на катализаторе ВРз-НаО (противоион ВРзОН-) при —70°С образуется атактический полимер, при полимеризации в тех же условиях на катализаторе ВРз-(С2Н5)20 противоион ВР3ОС2Н5) образуется изотактический полимер. Увеличение объема противоиона значительно усиливает стереоспеци-фический эффект при росте цепи. [c.26]

    Исключительно высокие скорости и степень селективности ферментативных реакций с давних пор интригуют химиков-органиков. Многочисленные предположения, начиная с более чем столетней давности идеи ключ-замок Э.чи-ля Фишера и до более современной ковдегшии взаимоиндуцированного соответствия Кошланда были выдвинуты для объяснения этих явлений. Каковы бы ни были конкретные подробности различных интерпретаций, все они предполагают тот или иной род фиксации субстрата внутри полости активного центра конформационно подвижной молекулы фермента вблизи его реакционноспособных групп. Возникающее в результате взаимодействие между реакционными центрами фермента и реакционноспособной конформацией субстрата считается одной из главных причин высоких скоростей и селективности, свойственных ферментативным реакциям. Дизайн химических структур, пригодных для экспериментального исследования относительной важности различных факторов, определяющих скорости и селективность органических реакций как моделей определенных аспектов ферментативного катализа, был и остается областью, вызывающей напряженное внимание. [c.486]

    Ферментативный катализ, за редкими искшочениями, строго энантиоспе-цифичен (и по отношению к хиральным субстратам, и в смысле образования хиральных продуктов.). Поэтому хиральные природные соединения продуцируются в виде оптически чистых энантиомеров. Это свойство ферментов объясняется многоцентровым связыванием субстрата при образовании фермент-субстратного комплекса, предшествующем ферментативной реакиии. Такая фиксация ахирального субстрата в активном центре хиральной молекулы фермента обеспечивает возможность его атаки реагентом только с одной стороны, [c.494]

    Фиксация азота остается одной из главных проблем органической химии. Идеальная система для фи1 сации азота должна была бы содержать центры, способные координироваться с азотом (а не с кислородом), и реагенты, способные вести восстановление. Эта система должна легко регенерироваться. Наиболее близка к выполнению этих условий работа ван Тамелена [154]  [c.492]

    При использовании белков в качестве лигандов о выборе точки закрепления в большинстве случаев не может идти речи — таких точек, как правило, на поверхности белка много. К счастью, биологическая, и в частности ферментативная, активность белка нередко сохраняется ири фиксации его в разных точках, если при этом активный центр белковой макромолекулы остается экснонированным. Разумеется, для некоторой доли молекул фермента точка связывания может оказаться в активном центре или вблизи него, что помешает взаимодействию с ним субстрата. Этим, в частности, обусловлено снижение суммарной активности при закреплении ферментов на матрицах. [c.386]

    На практике иммобилизация часто осуществляется одновременно иеск. способами. Так, при фиксации ферментов ковалентными связями между их молекулами н матрицей обычно возникают также нековалентные взаимодействия. Известны способы предварит, хим, модификации молекул фермента низкомол, в-вамн или р-римыми полимерами, имеющими заряженные группировки, что изменяет у таких модифицир. белков электростатич. заряд молекулы и позволяет достаточно прочно сорбировать их на ионообменных смолах. При всех типах иммобилизации матрица, взаимодействуя с ферментом, может инактивировать последний или создавать пространств, затруднения для доступа субстрата к активному центру. При ковалентном связывании фермента для предотвращения отрицат, влияния матрицы между ией и молекулой фермента вводят разобщающую цепь атомов-спейсер (наз. также вставкой или ножкой ). Кроме того, часто стремятся использовать для иммобилизации гидрофильные матрицы, создающие вблизи фермента более естеств, микроокружение. [c.215]

    Фиксацию (закрепление) красителей на активных центрах волокна. Стадия протекает быстро, практически мгновенно. Характер образуемой связи краситель-волокно зависит от вида волокна и природы красителя и определяет гл. обр. устойчивость окраски к стирке и др. мокрым обработкам. Напр., активные красители на целлюлозных волокнах удерживаются в результате образования прочной ковалентной связи (энергия связи 110-630 кДж/моль), на белковых волокнах-ковалентных, ионных (41-82 кДж/моль) и водородных (21 -42 кДж/моль) связей, кислотные красители на белковых волокнах-в результате образования нонных, водородных связей и ван-дер-ваальсовых сил (энергия до 8,5 кДж/моль), прямые и кубовые красители на целлюлозных волокнах - водородных связей и ван-дер-ваальсовых сил. При наличии в молекуле иона тяжелого металла (см., напр.. Протравные красители) краситель с белковыми волокнами образует координац. связи (до 100 кДж/моль), а также ионные и водородные. На хим. (синтетич.) волокнах краситель удерживается благодаря ван-дер-ваальсовым силам и водородным связям (дисперсные красители), ионным связям (кислотные и катионные красители на полиамидном и поли-акрилонитрильном волокнах соотв.), ковалентным связям (активные красители на полиамидном волокне), ионным и координац. связям (кислотные металлсодержащие красители на полиамидном волокне). О механизмах и особенностях К. в. разл. классами красителей см. также Активные красители, Дисперсные красите.ш. Катионные красители. Кислотные красители. Кубовые красители, Прямые красители и др. [c.500]

    И. регулируют практически все ф-ции центр, нервной системы-болевую чувствительность, состояние сон-бодрствование, половое поведение, процессы фиксации информации и др. В частности, энкефалины и эндорфины (см. Опиоидные пептиды) играют важнейшую роль в системе болевых ощущений и участвуют в патогенезе нек-рых психич. расстройств. Кроме того, Н.управляют вегетативными р-циями организма, регулируя т-ру т ла, дыхание, артериальное давление, мышечный тонус и т. д. Предполагают, что в организме существует совокупность пептидных регуляторов, обеспечивающая все необходимые оттенки модуляций процессов жизнедеятельности. Эта совокупность представляет собой систему, в к-рой изменение кол-ва любого пептида приводит к изменению активности других П., а следовательно, к отдаленным по времени эффектам. Именно это определяет исключит, функцион. динамичность Н. [c.204]

    Прививку полимера к пов-сти наполнителя можно осуществить разл. способами. Эффективность прививки определяют после длит, обработки продукта р-рителем по доле нерастворимого полимера, связанного с наполнителем. Наиб, изучена радикальная прививка. Так, привитые полимеры образуются при измельчении минер, наполнителей в присут. жидких или газообразных мономеров, напр, стирола, метилметакрилата (кол-во привитого полимера обычно 1-2% по массе), а также при радиац. обработке смеси наполнителя (напр., целлюлозы) с мономером (образуется также нек-рое кол-во гомополимера). Прививкой к пов-сти наполнителя в-в (в т. ч. инициаторов), содержащих функц. группы, осуществляют фиксацию на частицах наполнителя активных центров, используемых в дальнейшем для получения наполненных полимеров заданного состава. Подобным способом получены наполненные материалы на основе, напр., полистирола, поливинилхлорида, политетрафторэтилена. В случае прививки к минер, наполнителям полиолефинов используют способность катализатора Циглера-Натты, а также катализатора на основе Сг или Zr взаимодействовать с группами ОН, имеющимися на пов-сти таких наполнителей. Сначала наполнитель подвергают термообработке с целью удаления нежелат. примесей, затем обрабатывают катализатором, после чего проводят жидко-или газофазную полимеризацию олефинов. Полученные в этом процессе наполненные материалы обладают необычным комплексом св-в. Напр., высокомол. полиэтилен, содержащий 50-60% по массе минер, наполнителя, обладает высокими износостойкостью и ударной вязкостью, к-рые невозможно достигнуть при мех. смешении полимера с наполнителем фафито- и саженаполненный полипропилен имеет необычно высокую электропроводность. Методом П. на н. можно получить структуры, в к-рых частицы наполнителя окружены равномерными слоями полимеров и сополимеров разл. типа. Особенно перспективен этот метод для получения сверхвысоконаполненных материалов с равномерным распределением наполнителя в матрице полимера. [c.638]

    Многие из фиксаторов, используемых для растровой электронной микроскопии, были заимствованы из просвечивающей электронной микроскопии. Однако имеется много важных принципиальных моментов, которые нужно иметь в виду при выборе фиксатора. Если исследователь собирается изучать естественную поверхность объекта или ткани или поверхность, которая была открыта и очищалась перед фиксацией, тогда важно, чтобы фиксирующий раствор был приблизительно изотоническим жидкостям клетки или ткани. В данном контексте термин фиксирующий раствор относится ко всем другим компонентам, нежели сам фиксатор. Он включает компоненты водного буфера, компенсирующие ионы, электролиты и неэлектролиты, такие, как сахароза. В работе [330] показано, что осмотичность фиксирующего раствора также важна при получении удовлетворительной фиксации, как и реальная концентрация фиксатора. Если образец или блок ткани после фиксации должен разрезаться или разламываться, то фиксирующий раствор должен быть гипертоническим. Время фиксации в первом случае обычно может быть достаточно коротким, но во втором случае оно должно быть достаточно продолжительным, чтобы фиксатор мог проникнуть в центр образца. Более продолжительные вре- [c.228]

    Условный ряд катионных иммобилизованных катализаторов начинается от простейшей Н-кислоты воды. В этой связи заметим, что, хотя концепция нанесенных катализаторов сформировалась как направление для металлокомплексных систем [106], нанесенные катализаторы были известны гораздо раньше. Твердые кислоты минерального происхождения с поверхностными льюисовскими и бренстедовскими центрами, по существу, являются первым примером иммобилизованных систем, на которых была установлена зависимость кислотно-каталитических свойств от природы носителя [40]. Хотя при формировании иммобилизованных катализаторов используются различные способы фиксации кислотного компонента - от пропитки, импрегнирования, интерколяции до химического ковалетного связывания, можно проследить общий характер влияния носителя на поведение катализатора. Являясь основанием или имея в своем составе места разной степени основности, подложка вступает с катализатором в кислотно-основные взаимодействия, зависящие от химической и физической природы компонентов. Благодаря наличию спектра кислотных (основных) свойств компонентов происходит отбор кислотно-основных взаимодействий в соответствии с известной концепцией жестких и мягких кислот и оснований (ЖМКО) [107]. В итоге подложка выступает как макролиганд, увеличивающий размеры ионов и стабилизирующий их. Как следствие, имеет место повышение кислотной силы и каталитической активности систем. [c.55]

    Гем, ответственный за связывание кислорода, находитси в гидрофобном кармане , образованном особыми, для этого предназначенными аминокислотами. Гем представляет собой макроцикл протопорфирина с координационно связанным ионом двухвалентного железа, находящимся в центре молекулы. Ион железа координационно связан с четырьмя расположенными по сфере атомами азота протопорфирина и двумя остатками гистидина (Р8 и Е7), относящимися к глобиновому компоненту. Такая пространственная фиксация гема делает возможным связывание молекулы кислорода в качестве шестого лнганда со стороны гема, повернутой к гистидину Р8. Имидазольное кольцо гистидина Е7 непрямо, через молекулу кислорода, координирует с центральным ионом железа (II) (рис. 3-38). [c.414]


Смотреть страницы где упоминается термин Центры фиксации: [c.296]    [c.347]    [c.419]    [c.240]    [c.342]    [c.47]    [c.335]    [c.341]    [c.126]    [c.453]    [c.203]    [c.69]    [c.107]    [c.40]    [c.248]    [c.279]   
Химия привитых поверхностных соединений (2003) -- [ c.189 , c.190 , c.199 , c.240 , c.242 ]




ПОИСК





Смотрите так же термины и статьи:

Фиксация



© 2024 chem21.info Реклама на сайте