Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детекторы в газожидкостной хроматографи

    В работе [10, с. 60—63] предложено определять фракционный состав реактивных топлив с помощью газожидкостной хроматографии на хроматографе Цвет с пламенно-ионизационным детектором, работающим в дифференциальном режиме. Прибор позволяет работать как в изотермическом режиме, так и с программированием температуры термостата колонок в линейном режиме со скоростью от 1 до 40 °С в мин. Хроматографическая колонка из нержавеющей стали длиной 1 м наполнена 5% силиконового эластомера SE-30 на хромосорбе R. Газом-носителем служит азот. Нагревание от 50 до 180°С запрограммировано на скорость 5°С в 1 мин, скорость диаграммной ленты самописца 600 мм/ч. Для испытания требуется 20—30 мг топлива. Содержание отдельных фракций определяют по площадям пиков. Истинные температуры кипения этих фракций устанавливают по калибровочным кривым, представляющим собой зависимость температур удерживания смесей индивидуальных углеводородов Се—С от истинных температур кипения, полученных в различных условиях хроматографирования. [c.17]


    Прибор содержит несколько блоков, вмонтированных в металлический стенд (рис. 61). Блок колонки состоит из хроматографической колонки, трансформатора, вентилятора, термопары и детектора. Хроматографическую колонку, изготовленную из нержавеющей стали (внутренний диаметр 4 мм, длина 3,5 м), заполняют в зависимости от цели анализа силикагелем или алюмогелем. Рекомендуется в качестве адсорбента для анализа углеводородов до С, включительно применять силикагель, для анализа непредельных углеводородов — алюмогель. Прибор при соответствующей смене адсорбента допускает применение как газожидкостной хроматографии (разделение смеси летучих органических веществ различных типов), так и адсорбционной хроматографии на угле и молекулярных ситах (анализ низкокипящих газов). [c.154]

    Определение содержания органически связанного хлора в соляной кислоте из абгазов производства хлорметанов производится методом газожидкостной хроматографии. Метод заключается в предварительной экстракции органических примесей из соляной кислоты ксилолом с последующим хроматографированием пробы слоя экстракта на хроматографе с детектором ионизации в пламени. В качестве сорбента применяют апиезон , нанесенный на хроматрон М-АУУ . При определении температура термостата - 7 0-80 °С, температура испарителя - 200-250 °С. На рис. 8-2 показана типичная хроматограмма органических примесей в абгазной соляной кислоте производства метилеихлорида. [c.120]

    Сочетание масс-спектрометрии с газожидкостной хроматографией дает превосходный метод анализа смесей. В этом случае требуются очень небольшие количества вещества. Масс-спектрометр используется в качестве детектора в газожидкостной хроматографии, и многочисленные масс-спектры регистрируются по мере поступления компонентов из колонки. Частично разрешенные пики в хроматограмме легко идентифицируют по изменению во времени масс-спектра вещества, соответствующего этому пику. [c.323]

    В этой главе будет уделено внимание методам анализа растворителей, которые из отдельной порции клея или герметика отгоняют и анализируют химическим и газохроматографическим методами. Если композиция растворителей сложна и методом газожидкостной хроматографии по временам удерживания не удается сделать заключение о составе смеси, то идентификацию проводят по ИК-опектрам. Для идентификации методом газожидкостной хроматографии можно применять либо препаративный хроматограф, либо любой хроматограф с детектором по теплопроводно- [c.144]


    Углеводороды С1—С,, содержание Нефть Разделение углеводородов 1—Се, входящих в состав нефти, методом газожидкостной хроматографии с последующей их регистрацией детектором по теплопроводности 13379—82 [c.47]

    Метод отбора проб приходится применять во всех случаях, когда дтя проведения количественного определения каких-либо компонентов необходимо предварительно разделить реакционную смесь. Наиболее эффективными методами разделения явля[отся различные виды хроматографии. Если все анализируемые компоненты обладают достаточной летучестью, их разделяют с помощью газожидкостной хроматографии. Современные газо-жидкостные хроматографы являются высокоавтоматизированными приборами, которые позволяют разделить за короткое время достаточно сложные смеси, идентифицировать компоненты по времени удерживания и измерить количество каждого из них с по.мощью высокочувствительных детекторов. [c.60]

    Жидкостные хроматографы очень часто путают с газожидкостными. Напомним, что газожидкостных хроматографов не бывает - существует газожидкостная хроматография, реализуемая на газовых хроматографах [7]. Такая путаница приводит к тому, что химики ждут хроматограф, в состав которого могут входить, например, электронно-захватный или термоионный детектор (детекторы газовых хроматографов, предназначенные для анализа хлор- и фосфор- органики [8], а получают прибор, укомплектованный спектрофотометрическим детектором. Автору достаточно часто приходилось сталкиваться с ситуацией, когда от него требовали проведения анализа фосфорорганических соединений по методике для газового хроматографа на жидкостном хроматографе. [c.125]

    Н-С5Н12, суммы углеводородов С и выше Хроматография газа с использованием детектора по теплопроводности углеводороды С1—С5, СО2, и Н2 разделяют методом газожидкостной хроматографии Н2, О2, N2, СО, СН4 — газоадсорбционной [c.60]

    Основные параметры газожидкостного хроматографа д. диаметр колонки фазы — подвижная и неподвижная твер ситель детектор температура испарителя, колонки и дет< скорость газа-иосителя и диаграммной ленты. [c.24]

    Компоненты, подлежащие разделению с помощью газожидкостной хроматографии (ГЖХ), пропускаются через колонку с помощью инертного газа, называемого газом-носителем. Анализируемая смесь распределяется между газом-носителем и нелетучим растворителем неподвижная фаза), нанесенным на инертное твердое вещество определенного гранулометрического состава твердый носитель). Растворитель избирательно задерживает отдельные компоненты образца в соответствии с их коэффициентом распределения, пока они не дадут отдельные полосы в газе-носителе. С газовым потоком такие полосы компонентов покидают колонку и регистрируются детектором в зависимости от времени. [c.15]

    Очень небольшая степень превращения, наблюдаемая в дифференциальных реакторах, может вызывать затруднения прп анализе, но современная аналитическая техника снижает эти затруднения. Капиллярные колонки газожидкостной хроматографии и пламенно-ионизационные детекторы позволяют с успехом изучать углеводородные реакции при экстремально низких концентрациях. В циркуляционном реакторе периодического действия каждый проход через катализатор увеличивает общую степень превращения в объеме системы, облегчая анализ. Поскольку степень превращения за проход небольшая, то реак- [c.102]

    Газожидкостная хроматография на приборе с пламенно-ионизационным детектором [c.42]

    Любой хроматографический анализ завершается детектированием разделенных фракций. Однако обычно используемые в хроматографии детекторы — электронно-захватный, пламенноионизационный и катарометр — недостаточно селективны и чувствительны по отношению к разным элементам. Так, метод газожидкостной хроматографии, часто применяемый при контроле содержания соединений кремния в тетрахлориде кремния, дает неудовлетворительные результаты при определении примесей с временем удерживания, близким к времени удерживания основного вещества, из-за недостаточной селективности стандартных детекторов [383]. Применение в таких случаях атомно-абсорбционного детектирования позволяет существенно повысить информативность хроматографического метода. [c.265]

    Изучение термодинамических свойств систем летучее растворенное вещество — малолетучий растворитель методом газожидкостной хроматографии [1—3] основано на точном измерении удельных удерживаемых объемов, по которым можно вычислить коэффициенты распределения и коэффициенты активности растворенных веществ. Благодаря высокой чувствительности детекторов газожидкостная хроматография позволяет проводить прямые измерения этих физико-химических констант в условиях, близких к состоянию бесконечного разбавления. Определение зависимостей коэффициентов распределения и коэффициентов активности от температуры лежит в основе изучения термодинамики растворов, поскольку по этим данным можно вычислять стандартные и избыточные термодинамические функции растворения. С помощью газожидкостной хроматографии могут быть найдены изотерхмы растворимости и соответствующие теплоты так же, как и в случае газоадсорбционной хроматографии (см. гл. 24). [c.366]


    Изучено влияние сероуглерода, аммиака, ионов трехвалентного железа, щелочи (КОН) и соды (МзаСОз).Указанные соединения вводили в сырьевую смесь, аммиак в виде 10%-ной аммиачной воды, / е +в виде РеС/д-бНаО, сероуглерод, КОН —химически чистые. Состав гидрогенизата определяли методом газожидкостной хроматографии на хроматографе У Х-2 с детектором по теплопроводности. В качестве насадки использовался тефлон , обработанный 15%-ным раствором силиконового эластомера марки СКТЭ. [c.127]

    В продуктах определялось содержание общего и основного азота 127, 28]. Сера в концентрате азотистых оснований определялась сожжением в трубке [29], а также методом газожидкостной хроматографии с использованием пламенно-эмиссионного детектора [30]. Интерференционный фильтр имел максимум пропускания на волне 405 нм, ширина полосы пропускания на половине высоты 12 нм. Чувствительность метода 10—3%. Кислород определялся хроматографически [31]. [c.74]

    Газожидкостная хроматография широко применяется для анализа бензольных углеводородов. Метод анализа включен в ГОСТ для оценки качества бензольных углеводородов (ГОСТ 2706.2—74). При этом используют неподвижную фазу ПЭГ-1000 (10%), нанесенную на сферохром-1 (размер частиц 0,3—0,5 мм), либо ПЭГА (15 или 30%) на динохроме-Н (размер частиц 0,25—0,315 мм). Анализ проводят на хроматографе с пламенно-ионизационным детектором при чувствительности не ниже 2,5X10 мг/с в качестве газа-носителя используют азот или аргон. Рекомендуемые условия анализа приведены в табл. 21. [c.135]

    Одним из наиболее эффективных и распространенных видов является, газожидкостная хроматография (ГЖХ). В качестве неподвижной фазы выступает твердый сорбент с развитой поверхностью о нанесенной на него жидкой фазой, а подвижную фазу представляет инертный газ (гелий, азот, водород). При перемещении испаренной смеси веществ потоком инертного газа в,цоль слоя сорбента соединения различной приро.цы перемещаются с различными скоростями, зависящими от сил их взаимодействия с по.цвижной и неподаижной фазами. При достаточной длине слоя сорбента это приводит к образованию в подвижной фазе отдельных зон каждого компонента. Наличие или отсутствие вещества на выходе из колонки, заполненной твердым носите-лем, пропитанным термостабильной нелетучей жидкостью (неподвижная фаза), фиксируется детектором и регистрируется на самопишущем приборе в виде пиков. [c.43]

    Качественный анализ состава бензиновых фракций проводился на газожидкостном хроматографе RUE-105 (Англия), позволяющем исследовать углеводородные смеси с температурой кипения до 300°С. Хроматограф работает с детектором по теплопроводности — катарометром. Хроматографическая колонка диаметром 3 мм имеет длину 2,5 м, в качестве насадки использован сорбент марки РЕС-20М. Газ-носитель — гелий, скорость потока газа-носителя составляла 3 м/ч, температура колонки подл,ер-живалась в интервале температур 100-110°С, сила тока детектора 110 ммА. Относительная ошибка определения площадей основных пиков хроматограммы составляла 1 - 2%. Чувствительность катарометра позволяла определять до 0,01 % содержания компонента в смеси. Воспроизводимость анализов 1%. Для определения ошибки при анализе состава пользовались искусственными углеводородными смесями. К хроматографу был подключен вычислительный интегратор I-100A (ЧССР) с микропроцессором МНВ, который автоматически дает первичную количественную оценку хроматограмме при заранее заданных параметрах. [c.224]

    Температура отмечаемого детектором испарения или деструкции многих жидкостей, используемых в обычной газожидкостной хроматографии, не превышает 150—250°С. Однако при нанесении модифицир ующих веществ на поверхность адсорбента-носителя, например на поверхность графитированной термической сажи, в виде мономолекулярного адсорбционного слоя, сильно взаимодействующего с адсорбентом-носителем, можно значительно повысить верхний предел температуры работы колонны. Сильные межмолекулярные взаимодействия молекул монослоя с адсорбентом-носителем резко снижают давление пара модификатора над поверхностью, в результате чего фоновый ионный ток детектора мало изме- [c.76]

    Требования к выбору газа-носителя, детектора, а также методике проведения опыта для газожидкостной хроматографии такие же, как и для описанных уже методов газоадсорбционной хроматографии. Однако следует иметь в виду, что метод газожидкостной хроматографии позволяет анализировать не только газообразные, но и жидкие вещества. Поэтому в газожидкостной хроматографии для анализа жидких смесей применяются приборы, имеющие приспособления для испарения введенных в колонку жидкостей, а также для поддержания на протяжении всего опыта [c.109]

Таблица 24. Условия проведения газожидкостной хроматографии 1,4-бенздназепинов, извлеченных из биологических жидкостей (детектор по захвату электронов N1) Таблица 24. <a href="/info/29979">Условия проведения</a> <a href="/info/5705">газожидкостной хроматографии</a> 1,4-бенздназепинов, извлеченных из <a href="/info/191554">биологических жидкостей</a> (детектор по захвату электронов N1)
    При газожидкостной хроматографии образец вводят в установку, откуда вещества в виде паров выносятся инертным газом (азот, гелий, аргон) и проходят через стационарную жидкую фазу, нанесенную на твердый носитель (кизельгур, цеолит). Распределение происходит между жидкой и газовой фазами, и компоненты смеси передвигаются только за счет движения газовой фазы. Прн постоянных условиях опыта (давление, температура, носитель, стационарная фаза, скорость потока) время от момента введеиия образца до выхода вещества из колонки, называемое временем удерживания, является характерным для каждого индивидуального вещества. Мерой количества вышедшего соединения служит площадь пика на хроматограмме, которая на современных хроматографах записывается автоматически. В качестве детектора для определения количества выходящего газа применяются приборы, измеряющие теплопроводность смесей элюата и газа-носителя. [c.43]

    Содержание свободного ментола должно быть не менее Методика количественного определения ментола в мятно методом газожидкостной хроматографии. Анализ проводят раторном газовом хроматографе ГХМ-72 на s-образных насг колонках длиной 3 м с внутренним диаметром 4 мм. Тверды тель — хромосорб W (60—80 мет), неподвижная фаза — п ленгликоль, газ-носитель — гелий, в качестве детектора  [c.24]

    В аналитической химии брома применяют газовую и газожидкостную хроматографию. В первой из них пользуются твердыми сорбентами, во второй — нелетучим, так называемым неподвиж-пым, растворителем, нанесенным на поверхность зерен неактивного носителя, заполняющего колонку. Анализируемую смесь в количестве нескольких микролитров вводят через самоуплотняющуюся диафрагму в обогреваемый испаритель, и образовавшиеся пары переносятся потоком инертного газа-носителя (Аг, Не, Hj, Ng) в верхнюю часть колонки с сорбентом. Перемещаясь по высоте слоя, смесь делится па компоненты, которые попадают в детектор, преобразующий изменения концентрации в потоке в электрические сигналы, регистрируемые самопишущим потенциометром. Узлы хроматографа, соприкасающиеся с анализируемой смесью в случае непосредственного определения галогенов или их водородных соединений, должны быть изготовлены из коррозионноустойчивого материала, чаще всего из стекла. Это требование отпадает, если анализ ведут методами реакционной хроматографии, сочетающими химическое превращение этих компонентов реакционной смеси с хроматографическим разделением полученных менее активных продуктов. Органические бромпроизводные обычно определяют непосредственно в типовой хроматографической аппаратуре, но иногда они подвергаются химическим изменениям до или после разделения на колонке. [c.141]

    Газовая хроматография представляет собой метод разделения, а также качественного и количественного определения летучих веществ. Пробу, вводимую в газовый хроматограф, переводят в летучее состояние (если она уже не находилась в нем) и вводят в поток инертного газа (газа-носителя), текущего с постоянной скоростью через трубку с насадкой (колонку). Наиболее часто (газожидкостная хроматографйя) насадка представляет собой твердый носитель с частицами примерно одинакового размера, покрытый слоем неподвижной жидкой фазы. Компоненты пробы распределяются между газовой и жидкой фазами и движутся в колонке с разными скоростями, главным образом за счет того, что они имеют разные значения коэффициента распределения. По выходе компонентов из колонки они попадают в детектор, сигнал которого регистрируется самописцем. Компоненты, которые не разделяются на данной колонке, часто удается разделить на другой колонке с другой жидкой фазой. Насадка может представлять собой и твердый адсорбент (газоадсорбционная хроматография) без жидкой фазы. [c.419]

    Примечание. 1. Условия хроматографирования газожидкостный хроматограф Хром-4 (ЧССР) с пламенно-ионизационным детектором колон ка стеклянная 1200 мм с внутренним диаметром 3 мм заполнена хромасорбом WAW 60—80 меш с нанесенным на него 0,6 % раствором полиэтиленгликоль-адината. Температура колонки, программируемая от 100 до 150 С со скоростью 5 С в 1 мин температура испарения 180 С газ-носитель — азот. Расход газов азота — 60 мл/мин, водорода —40 мл/мин, воздуха — 400 мл/мин скорость протяжки диаграммной ленты самописца — 10 мм/мин. Возможно использование других типов хроматографов, имеющих аналогичные параметры колонки, носителей и жидких фаз, обеспечивающих необходимый критерий разделения ледола и палюстрола. [c.229]

    В токсикологическом, клиническом и фармакологическом анализах 1,4-бенздиазепинов используют хроматографы с пламенноионизационным детектором [263, 266, 281] либо о детектором по захвату электронов [26, 184, 195, 262,266, 272, 2751. Пламенно-ионизационный детектор обладает невысокой чувствительностью (10— 100 мкг/мл пробы) и не имеет преимуществ перед тонкослойной хроматографией, спектрофотометрией и полярографией. Применение детектора по захвату электронов позволяет повысить чувствительность метода до 1—10 нг/мл, а предварительный кислотный гидролиз веществ — еще на порядок [26, 267]. В табл. 24 представлены наиболее часто встречающиеся условия проведения газожидкостной хроматографии 1,4-бенздиазепинов. [c.225]

    Величину называют приведенным временем удерживания. Экспериментально она получается как.разность между временем удерживания данного и несорбирующегося компонента. Последнее можно определить, дозируя в хроматограф компоненты, сорбция которых пренебрежимо мала условиях проведения эксперимента. Например, в газожидкостной хроматографии в качестве таких компонентов часто применяют воздух (при работе с детектором по теплопроводности) или метан (при работе с пламенно-ионизационным детектором). Имеются также экстраполяционные и расчетные методы нахождения о- [c.49]

    Селективное определение меркаптанов в воздухе возможно с помошью метода газожидкостной хроматографии с использованием пламенно-фотометрического детектора. [c.76]

    Наиболее подробно изучались и разрабатывались методики определения в нефтях ванадия. Для этой цели применялись метод рентгеновской флуоресценции с предварительным концентрированием ванадия (а также никеля и железа) с дитио-карбаматом метод газожидкостной хроматографии (до 0,1 м на 1 г нефти) с пламенно-ионизационным детектором хелатов оксида ванадия с фторированными дикетона-ми (с одновременным определением меди и никеля), а также хелатов ванадия (III) и различных фторированных дикетонов метод спектрофотометрии в видимом свете (на волне 500 нм) метод атомно-абсорбционной спектроскопии пирокатехиповый метод каталитический метод, основанный на спектрофотометрическом определении продукта реакции окисления галловой кислоты бромат-ионом, катализируемой ионами ванадия (другие элементы, присутствующие в нефтях, не мешают определению ванадия этим методом). [c.85]

    Газожидкостная хроматография на приборе с пламенпо-ноннзационным детектором. Отбор проб без концентрирования и с концентрированием. [c.24]

    Газожидкостная хроматография на приборе с пламенно-ионизациопным детекторам. Отбор проб без концентрирования. [c.26]

    Цель настоящей работы — исследование каталитических свойств гидридов щелочноземельных металлов кальция и бария в реакциях изомеризации, гидрирования и дегидрирования углеводородов. Каталитические свойства гидридов изучали в импульсном нехроматографическом режиме. Жидкие и газообразные продукты реакции анализировали методом газожидкостной хроматографии с применением пламенно-ионизационного детектора. [c.161]

    Катализаты гексана, циклогексана и гексена анализировали на газожидкостном хроматографе системы СКВ ИОХ с детектором-катарометром, причем гексановые катализаты хроматографировали на 14-метровой ко-.понке с диоктилсебацинатом, а гексеповые — на 8-метровой с дибутира-том триэтиленгликоля на диатомитовом кирпиче (0,25—0,5 мм). Октановые катализаты анализировали на капиллярном хроматографе с пламенно-ионизационным детектором на 35-метровой капиллярной колонке с дибутиратом триэтиленгликоля [2]. [c.230]


Смотреть страницы где упоминается термин Детекторы в газожидкостной хроматографи: [c.17]    [c.121]    [c.125]    [c.43]    [c.7]    [c.225]    [c.596]    [c.642]    [c.24]    [c.21]    [c.321]    [c.40]   
Физическая Биохимия (1980) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Газожидкостная хроматография детекторы

Хроматография газожидкостная

Хроматографы газожидкостные



© 2025 chem21.info Реклама на сайте