Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионные процессы состояний

    Из приведенных данных следует, что эффективные коэффициенты диффузии изменяются с концентрацией, причем эта зависимость проходит обычно через минимум, положение которого зависит от природы электролита. Уравнения (6.12) и (6.36) передают эту зависимость более или менее верно в области весьма разбавленных растворов в более широкой области концентраций она не может быть сведена к изменению коэффициента активности с концентрацией. По-видимому, такой характер зависимости коэффициента диффузии от концентрации обусловлен тем, что из-за специфики диффузионного процесса силы взаимодействия между частицами проявляются в нем по-иному, чем в состоянии равновесия или при прохождении электрического тока. В отличие от равновесного раствора с его хаотическим движением всех частиц, при котором центральный ион и ионная атмосфера могут перемещаться как в одном и том же, так и в противоположных направлепиях, при диффузии наблюдается направленное перемещение нонов, накладывающееся на их тепловое движение. [c.145]


    Можно предположить, что зоны образуются следующим образом. Потенциал кислорода газовой фазы сырья недостаточен для того, чтобы окислить внутреннюю поверхность печной трубы вследствие этого окисляются хром и до некоторой степени железо, а частицы никеля лишь обогащают сталь. Так, на внутренней поверхности трубы появляется губчатая окалина с металлическими частичками. Данный слой не в состоянии оказывать защитное действие, поэтому диффузионный процесс между газообразной и твердой фазами активно продолжается. Атомы металла диффундируют по направлению к поверхности трубы, а углерод газовой фазы проникает в металл, особенно по границам зерен, тем глубже, чем больше разрыхлена сталь при этом образуются карбиды хрома различного состава. [c.168]

    Поскольку в диффузионной области процесса окисления на границах раздела фаз практически устанавливается состояние, весьма близкое к равновесному, для определения состава фаз на границах раздела можно без большой погрешности непосредственно пользоваться диаграммами состояния. В соответствии с этим на границе раздела сплав—окалина практически должно установиться в диффузионной области процесса состояние, весьма близкое к равновесному. Таким образом, значение величины х (см. рис. 65 и 66) в диффузионной области процесса будет определяться значением величины а, если считать, что окалина, по составу отвечающая отношению Ме М( = х/г, практически находится в равновесии со сплавом, в котором отношение Ме М1 = х . Вероятно, следует также ожидать, что чем больше разница в изменении изобарно-изотермического потенциала при окислении металла Ме и металла М1, тем больше должна быть и разница (а — Хк). [c.99]

    Применительно к диффузионным процессам эта теория предполагает наличие переходного состояния в верхней точке энергетического барьера между начальным и конечным состоянием процесса диффузии, причем переходные состояния находятся в равновесии е начальным..  [c.125]

    Переход экстрагируемых компонентов из исходного раствора в растворитель происходит вследствие разности концентраций, и поэтому данный процесс относится к числу диффузионных. Перемещение молекул целевого компонента происходит до тех пор, пока концентрация не достигнет некоторой предельной величины, которая определяется как состояние физического равновесия. В связи с этим теория процесса экстрагирования основывается на законах, относящихся к явлению растворимости, состоянию межфазного равновесия и диффузии, по аналогии с теоретическим обобщением закономерностей таких известных и широко распространенных диффузионных процессов, как абсорбция и ректификация. [c.9]


    Виктор Вячеславович развил теорию массопередачи, ввел новые критерии подобия с учетом турбулентного переноса и представлений о факторе динамического состояния поверхности, рассмотрел вопрос о моделировании гидродинамических, тепловых и диффузионных процессов в химических реакторах на основе теории подобия (1963 г.) и показал недостаточность этой теории для моделирования химических гфоцессов, обосновал (1960-1970 гг.) системные принципы моделирования химических процессов [c.10]

    Химия веществ в твердом состоянии охватывает все химические процессы, которые протекают с участием веществ в твердой фазе. Частным случаем таких реакций являются реакции твердых веществ с жидкостями и газами. Реакции твердых веществ имеют некоторые особенности по сравнению с реакциями в растворах. В жидкой фазе, как правило, диффузионные процессы протекают довольно быстро, что способствует сильному сближению ингредиентов реакции, находящихся в растворе в виде сольватированных ионов, молекул или комплексных частиц. Протекание суммарной реакции,. [c.430]

    При практическом использовании диаграмм состояния учитывают особенности силикатных систем, которые приводят к отклонениям от равновесных состояний. В силикатных системах вследствие высокой вязкости расплавов и малой скорости диффузионных процессов истинное равновесие устанавливается с большим трудом. Это способствует сохранению различного рода неравновесных состояний, переохлаждению расплавов, возникновению стеклообразного состояния. Наиболее отчетливо неравновесные состояния проявляются при охлаждении, осуществляемом со сравнительно высокой скоростью. Возможность фиксации неравновесных состояний при резком охлаждении используется как положительный фактор в производстве стеклоизделий, материалов, содержащих стекловидную фазу, и др. [c.48]

    При охлаждении аустенит делается термодинамически неустойчивой фазой при температурах ниже 727° С термодинамически устойчив перлит или перлит с избытком феррита или цементита. Чем больше переохлаждение, тем больше разность энергий Гиббса аустенита и перлита, стимулирующая превращение. Но, в то же время, чем больше переохлаждение (т. е. чем ниже температура), тем медленнее протекает диффузия атомов. В результате одновременного действия этих противоположных тенденций скорость превращения аустенита в перлит оказывается максимальной при небольших переохлаждениях, т. е. при медленном понижении температуры. При больших же переохлаждениях, при быстром снижении температуры, скорость диффузионных процессов приближается к нулю и превращение становится невозможным. Однако кристаллическая решетка же,леза перестраивается при любой скорости охлаждения, так что в результате понижения температуры 7-железо превращается в /3- и а-железо. Таким образом, в основе закалки стали лежит превращение аустенита в пересыщенный твердый раствор углерода в а-железе. Эта фаза носит название мартенсита, будучи термодинамически неустойчивой, она не находит отражения на диаграмме состояния. [c.626]

    Таким образом, скорость реакции образования сульфоалюмината кальция, представляющей собой взаимодействие твердых фаз, лимитируется как кинетикой химического взаимодействия, так и скоростью диффузионного процесса на энергию активации этой реакции оказывает влияние реакционная способность реагирующих компонентов, состояние их поверхности, соотношение исходных компонентов. [c.181]

    Вследствие специфики взаимодействия в твердом состоянии между жидкими и твердыми растворами существуют и различия. Последние определяются наличием дальнего порядка и более сильным взаимодействием частиц в твердом состоянии. Поэтому для твердых растворов в еще большей степени характерны отклонения от идеальности и применимо понятие активности. Кроме того, по этим же причинам состояние равновесия в твердых растворах достигается медленнее, со значительными кинетическими затруднениями. Особенно это заметно при образовании твердых растворов в системах, компоненты которых обладают неметаллическими свойствами (например, в системе Ое—8 ). При этом взаимодействие компонентов определяется преимущественно ковалентной составляющей связи, для которой свойственны жесткость и пространственная направленность, затрудняющие диффузионные процессы в твердом состоянии. [c.348]

    Рассчитанные расстояния находятся в пределах 50—100 А, что значительно превышает диаметр соударения. Это свидетельствует о том, что перенос энергии не является диффузионным процессом. Процессы переноса энергии необходимо учитывать при изучении тушения флуоресценции. Если эффективность флуоресценции донора высока, а положение полосы поглощения тушителя благоприятствует переносу энергии, то, чтобы можно было пренебречь его влиянием на интенсивность флуоресценции, необходимо снизить концентрацию тушителя до 10 моль/л или меньше. По резонансному механизму осуществляется синглет-синглет-ный перенос энергии. Для некоторых систем обнаружен резонансный перенос энергии между триплетным состоянием донора и синглетным состоянием акцептора  [c.136]


    Условия химической устойчивости иногда называют условиями устойчивости по отношению к диффузионным процессам, что, вероятно, даже точнее отражает их смысл. Подчеркнем еш,е раз, что условия (1.19)—(1.21) справедливы как для стабильного, так и для метастабильного равновесий. Равенство нулю производных характеризует границы устойчивости относительно непрерывных изменений состояния, границы, которая отделяет метастабильные состояния от лабильных. [c.14]

    Скорость, с которой устанавливается равновесное состояние диффузионных процессов, имеет большое значение при экспериментальном определении эффективности работы диффузионных аппаратов. [c.205]

    В случае ректификации и дистилляции с большим числом тарелок очень важно иметь возможность предсказывать ход изменения состава продукта со временем, так как нередко экономически оказывается наиболее выгодным производить отбор продукта из колонны до установления равновесного состояния, т. е. при переходном режиме. В таких диффузионных процессах, как адсорбция, ионный обмен, а также теплообмен при рекуперации, рассматриваемые явления вообще могут происходить только в условиях переходного режима работы аппаратов. [c.205]

    Степень отклонения от равновесного состояния обусловливает, кроме того, продолжительность цикла диффузионного процесса. [c.205]

    Реологические и диффузионные процессы при приготовлении резиновых смесей. Вышеизложенное относилось главным образом к статистике и реологии систем, состоящих из невзаимодействующих и непроникающих друг в друга различных фаз. Практически очень важными являются также диффузионные закономерности процесса смешения, определяющие скорость или время достижения необходимого состояния смеси с учетом взаимодействия и взаимной растворимости ком понентов. Некоторые экспериментальные и теоретические исследования, затрагивающие этот вопрос с позиций статистики, обсуждены выше. [c.128]

    Проницаемость поврежденной кожи возрастает до уровней, во много раз превышающих наблюдаемые при ее нормальном состоянии. Прохождение активного вещества через кожу, представляющее диффузионный процесс, зависит также и от температуры [4]. [c.752]

    Продолжительность экстракции лимитируется временем, необходимым для достижения равновесного состояния. Она зависит от скорости диффузионных процессов. Это значит, что на продолжительность экстракции влияют свойства сырья, температура, способ экстракции, а также конструкция аппарата. [c.113]

    Миграция нефти представляет собой сложный комплекс фильтрационных и диффузионных процессов, протекающих при разных температурах и давлениях, в различных по составу породах, т.е. в разных литологических, минералогических и геохимических средах. В зависимости от состава, строения и состояния этой среды, а также состава и структуры флюида происходит изменение его состава. Процессы миграции нефти в недрах (так же как и генерации) непосредственно наблюдаемы быть не могут. [c.221]

    При изучении процессов с непрерывным и дискретным временем использовались состояния, определяемые конечной или счетной последовательностью значений параметра, например последовательностью целых (положительных) чисел. Параметр, которым описывались эти состояния, представлял собой дискретно изменяющуюся величину. Возможны также процессы, где изменение состояния описывается непрерьшным параметром. Так можно описать диффузионные процессы. Как правило, аналитические решения таких моделей очень сложны и не всегда возможны. При получении решения с использованием ПЭВМ осуществляется переход к дискретному описанию процесса. Б связи с этим более оправданно такой переход осуществить уже на стадии построения модели, что делает модель достаточно простой и понятной. [c.649]

    Природа агрессивной среды, ее агрегатное состояние, химический состав, размеры и конфигурация молекул в значительной степени влияют на интенсивность сорбционно-диффузионных процессов в полимерах. Сорбция органических жидкостей и их паров в полимерах определяется размерами и конфигурацией ее молекул. Например, коэффициенты диффузии бутана и пентана нормального строения в полиизобутилене в 2 раза больше, чем диффузия этих же углеводородов изо-строения диффузия н-бутана л-пентана в вулканизатах натурального каучука в 1,5 и 2,5 раза больше, чем изобутана и изопентана соответственно [15]. [c.8]

    Диффузионные процессы приводят к тому, что в системе полпмер — растворитель происходит смена растворителя на нерастворитель. Это означает с точки зрения представлений о фазовых равновесиях, что система с заданными параметрами (концентрация полимера, температура) оказывается в области распада на две фазы. Схематически это показано на рис. 111, где на диаграмме а представлено исходное состояние раствора (растворитель Р,), а на диаграмме б — состояние системы после замены растворителя на нерастворитель (Рг). [c.266]

    Аронов и Светлорусова [16] использовали при исследовании спекания угольных смесей метод меченых атомов и установили, что в пластическом состоянии частицы различных углей проникают одна в другую на расстояние 10—15 мм. Следовательно, спекание можно рассматривать как своеобразный диффузионный процесс. Диффузия для всех видов углей оказывается тем слабее, чем больше их поверхность. [c.234]

    С помощью гидродинамических уравнений, составленных из условий движения жидкости в диффузионных ячейках вбли и плоской поверхности, рассчитывали поле скоростей. Из уравнений диффузии вычисляли градиенты концентрации растворенных веществ, которые пропорциональны изменению поверхностного натяжения. На поверхности раздела происходят одновременно гидродинамический и диффузионный процессы, которые могут контролировать механизм массопереноса. В ряде случаев оба процесса идут в одном направлении, скорости движения частиц складываются, и результирующая скорость значительно возрастает. Такое состояние аналогично нестабильности Бенарда (см. стр. 30), что приводит к турбулентности. [c.64]

    Сопоставление этих уравнений показывает, что, во-первых, с увеличением вязкости значения А"р и уменьшаются, а во вторых, значительно более чувствительна к величине эффективной вязкости среды, чем Ар. Отношение с увеличе-. нием степени превращения растет, а следовательно, растет и скорость реакции полимеризации. Значения А р начинают существенно изменяться при > 0,5. Очевидно, что увеличение вязкости приводит к замедлению диффузионных процессов. В реакции роста макрорадикала принимают участие и макро-, и микрочастицы, т. е. макрорадикал и молекула мономера. Вместе с тем обрыв цепи происходит легче всего за счет рекомбинации двух макрорадикалов. Поэтому должна уменьшаться значительно медленнее, чем Л д, а вместе с тем их отношение должно расти, и, следовательно, должна возрастать скорость полимеризации в целом, что и наблюдается как гель-эффект. Диффузионные ограничения с ростом вязкости для малых молекул возрастают в значительно меньшей мере, чем для фомоздких макрорадикалов. Кроме того, макрорадикалы по мере увеличения степени полимеризации, находясь в растворенном состоянии, будут стремиться занять термодинамически наиболее выгодную конформацию статистического клубка. [c.233]

    Круг проблем, решенных физико-химической механикой, свидетельствует о том, что она немыслима без использования основных представлений современной коллоидной химии и физико-химии поверхностно-активных веществ. Большой вклад в ее становление внесли результаты научных достижений по проблеме Поверхностные явления в дисперсных системах . Ведущая роль в развитии исследований по проблеме поверхностных сил и поверхностных явлений принадлежит Б. В. Дерягину и его школе. Ими впервые развита строгая и общая теория электрокинетических явлений с учетом диффузионных процессов, а также теория коагуляции дисперсных систем. Созданы новые направления в изучении устойчивости пен и эмульсий на основе открытия и исследования равновесных состояний свободных и двухсторонних пленок. В развитие проблемы поверхностных явлений значительный вклад внесен также П. А. Ребиндером, А. Б. Таубманом, Ф. Д. Овчаренко, Е. К. Венстрем, Н. Н. Серб-Сербиной, Е. Д. Щукиным, Н. Н. Круглицким и др. Фундаментальные исследования поверхност-но-активных веществ и проблема строения их адсорбционных слоев на поверхности раздела фаз проведены А. Б. Таубманом с сотрудниками. Важные работы осуществлены по изучению физико-химии контактных взаимодействий в дисперсных системах (Г. И. Фукс, И. М. Федорченко, Г. В. Карпенко, Н. Л. Голего, В. Д. Евдокимов, Б. И. Кос-тецкий, Г. В. Самсонов, Ю. В. Найдич, Л. Ф. Колесниченко, А. Д. Па-насюк, В. Н. Еременко и др.). [c.11]

    Диффузия при реакциях в твердом состоянии. Диффузионные процессы, протекающие в твердых телах, отличаются большим разнообразием. Различают самодиффузию и гетеродиффузию в зависимости от того, происходит ли в кристаллической решетке перемещение элементов (атомов) этой же решетки или чужеродных атомов либо ионов. В зависимости от направления перемещения элементов различают объемную диффузию, диффузию вдоль граней или дефектов кристаллов (по внутренним поверхностям кристалла) и поверхностную диффузию (по внешней поверхности). Поверхностная диффузия обычно происходит легче, чем объемная диффузия и диффузия вдоль граней кристаллов. [c.161]

    Поверхность раздела между двумя твердыми фазами сходна пО строению с границами зерен в однокомпонентных твердых телах (см. с. 29). Основное отличие заключается в том, что граница зерна в поликристалле принципиально термодинамически неравновесна, тогда как граница раздела двух разнородных твердых фаз может быть равновесной, хотя из-за кинетических затруднений, связанных с малой скоростью диффузионных процессов в твердых телах, такое равновесное состояние часто не достигается. [c.83]

    При сравнительно низких температурах прокаливания окислы ио.чучаются в высокодпсперсном состоянии. Нх кристаллическая решетка часто бывает искаженной, поэтому некоторые из окислов обладают пирофорными свойствами. Ири повышении температуры и увеличении времепн прокаливания происходит укруппение частиц в результате диффузионных процессов в твердой фазе. [c.108]

    Характер взаимодействия полимеров с газообразными и жидкими средами в значительной мере определяют сорбционные и диффузионные процессы. До настоящего времени не полностью изучены физико-химические процессы, происходящие в деформируемом полимерном теле при одновременном действии жидких сред и механических напряжени11 при различных температурах. Это объясняется сложностью физико-химических процессов и методическими трудностями, связанными с созданием и точным измерением напряженного состояния испытуемых образцов в условиях их контакта с агрессивными жидкостями при одновременной регистрации параметров происходящих процессов. [c.38]

    Пространственные и временньш ограничения метода МД связаны с возможностями используемых ЭВМ, размером и структурой принимаемых мол. моделей. В первых работах (Б. Олдер, Т. Вайнрайт, 1959) расчеты вьшолнялись для двухмерной модели жидкости из неск. десятков частиц, Совр. ЭВМ позволяют рассчитывать фазовую траекторию для систем из 10 -10 атомов за времена 10 с. Даже в рамках этих ограничений метод МД успешно используют для решения мн. вопросов мол. физики конденсир. состояния в-ва. Так, установлено, что диффузионный процесс в простых жидкостях и воде осуществляется не скачкообразными перемещениями отдельных молекул из одного положения относит, равновесия в другое, а благодаря коллективным непрерывным движениям всей совокупности молекул. Метод МД позволяет понять механизм образования кристаллич. дефектов под воздействием ионизирующих излучений, термнч. и мех. нагружения. Этот метод используют для изучения аморфных металлов, стекол, полимеров, белковых молекул, для объяснения адсорбц. понижения прочности (эффекта Ребиндера). [c.111]

    Кинетика Н. определяется сродством жидкости к полимеру и скоростью диффузионных процессов. В пористых полимерах Н. ускоряется в результате капиллярного проникновения в ннх жидкости. В полимерах, сохраняюпщх внутр. напряжения, наблюдается временное превышение степени набухания над ее равновесным значением. Н. в жидкостях, неограниченно совместимых с полимером, приводит к его полному растворению и переходу в вязкотекучее состояние (см. Растворы полимеров). [c.164]

    Жаропрочные Н.с. представляют собой твердые р-ры с включениями интерметаллидных и карбидных фаз, напр. Niз(Ti, А1), №2зСб и др., присутствие к-рых в мелкодисперсном состоянии обеспечивает упрочнение сплавов. Дополнит. упрочнение достигается при легировании твердого р-ра, что способствует замедлению диффузионных процессов и повышению стабильности структуры при высоких т-рах. [c.245]

    В заключение отметим еще один момент. Если дилатометрические изменения при отжиге обусловлены переходом неравновесных границ зерен в более равновесное состояние, то по данным кинетики этих изменений можно судить о кинетике перехода неравновесных границ в равновесные, т. е. о возврате структуры неравновесных границ зерен в ультрамелкозернистом поликристалле. В последние годы для описания этого процесса возврата предложен ряд моделей [148, 149], в согласии с которыми скорость возврата границ зерен контролируется объемной диффузией в тройных стыках. Однако полученные из дилатометрических исследований данные — низкое значение энергии активации, временная стадийность эффекта — позволяют полагать, что возврат границ зерен в поликристалле не является чисто диффузионным процессом и связан с процессом релаксации напряжений в тройных стыках, по-видимому, за счет перераспределения дислокаций в границах. [c.83]

    Очистка без применения поглотителей или каталпзаторов основана на сж ижении примесей или ие))еводе их в твердое состояние (вымораживание). Кроме того, к третьей группе относятся способы, включающие диффузионные процессы (термоди ффузия, разделение через пористую перегородку). [c.213]

    Разработанный Коротовым и Выродовым способ гидролиза изоборнилформиата осуществляется в прямоточном (диафраг-менном) реакторе с 40 диафрагмами при 200°С. Процесс был опробован в производственных условиях. Реактор представляет собой трубу длиной 1,5 м, разделенную на равные участки диафрагмами, снабженными переточными отверстиями. Диаметры переточных отверстий в диафрагмах по ходу движения рабочей смеси составляют 5, 4 и 3 мм. Скорость движения рабочей смеси в переточном отверстии диафрагмы достигает 10 м/с, что вызывает образование высокодисперсной эмульсии реагирующих веществ. Между каждой парой диафрагм имеется емкость, в которой за счет потери скорости потока происходит частичное разрушение эмульсии, а при прохождении рабочей смеси через следующую диафрагму эмульгирование возобновляется. По мнению авторов, такое состояние системы позволило вести реакцию в подвижной эмульсии , что обеспечивает интенсификацию диффузионного процесса. Схема опытного диафрагменного реактора, использованного авторами, приведена на рис. 19. [c.100]

    Класс диффузионных (мсхсообменных) процессов связан с переносом вещества в различных агрегатных состояниях из одной фазы в другую (абсорбция, дистилляция и ректификация, адсорбция, десорбция, растворение, кристаллизация, увлажнение, сушка, сублимация, иЪнный обмен и др.). Скорость диффузионных процессов определяется законами массопереноса. [c.31]

    Метод вторичной ионно-ионной эмиссии позволяет решать следующие задачи идентифицировать и количественно определять молекулярно-адсорбированные и хемосорбированные вещества на поверхности (локальный анализ очень небольшого участка поверхности или анализ большого участка поверхности путем сканирования первичного ионного зонда) изучать адсорбционные процессы, изменение состояния и состава адсорбционного слоя в зависимости от различных параметров изучать гетерогенные химические и изотопнообменные реакции изучать диффузионные процессы проводить анализ состава, анализ примесей и послойный элементный анализ твердого тела. [c.49]

    Единственным реальным способом переработки таких полимеров оказывается перевод их в вязкотекучее состояние путе.ч растворения, формования изделия из полученного раствора и удаления растворителя для фиксации полученной формы. Но удаление растворителя из раствора при любом способе фиксации полученной формы—путем ли испарения растворителя или замены растворителя иа иерастворнтель с последующим его испарением— всегда связано с диффузионными процессами и с возникновением тех искажений формы и тех общих технологических ослол нений, о которых говорилось выше. Таким образом, оказывается возможным формовать из растворов по преимуществу только те изделия, в которых диффузионные процессы не могут существенно влиять на свойства готового материала и форму, г. е. когда эти процессы протекают достаточно быстро и ие обусловливают возникновения больших впутренних напряжений. [c.11]

    Если суммировать в кратком виде все сказанное выше о современном состоянии проблемы растворения полимеров и выделения их из растворов, то оно может быть охарактеризовано следующим образом. Работами [ослсднпх двух-трех десятилетий показано, что растворы полимеров не являются системами, для которых типичны принципиально иные закономерности, чем для низ-комолекуляриых веществ, как это принималось ранее, когда некоторые особенности высокополимеров, и в первую очередь малые скорости диффузионных процессов, считали главной характеристикой этих веществ и ио указанной причине относили системы полимер — растворитель к термодинамически неравновесным коллоидным системам. В действительности же оказалось, что правильнее подходить к классификации полимерных систем с учетом их равновесных состояний, а ие только с точки зрения оцспки кинетических особенностей процесса достижения равновесия. [c.24]


Смотреть страницы где упоминается термин Диффузионные процессы состояний: [c.200]    [c.73]    [c.252]    [c.350]    [c.68]    [c.9]   
Основы математической генетики (1982) -- [ c.337 ]




ПОИСК







© 2025 chem21.info Реклама на сайте