Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия связи в реакциях, протекающих

    В ходе химической реакции разрушаются одни и возникают другие молекулы и соединения, происходит изменение химических связей, т.е. перераспределение электронной плотности. Если бы старые химические связи в ходе реакции сразу полностью разрушались, то на это потребовалось бы большое количество энергии и реакция протекала крайне медленно. Как показали исследования, в ходе реакции система проходит через переходное состояние, через образование так называемого активированного комплекса. Например, ход реакции [c.179]


    Несколько сложнее обстоит дело в случае родия, никеля и платины. На поверхности этих катализаторов водород значительно различается по энергиям связи. Реакция гидрирования производных ацетилена протекает двумя путями  [c.471]

    При жидкофазном нитровании парафинов энергия, необходимая для ионного разрыва химических связей, сообщается растворителем, который благодаря своему полярному характеру сольватирует ионы. Как отмечает Бахман с соавторами [2] и Уотерс [62], большинство газовых реакций протекает по радикальным механизмам. Бахман с соавторами 2] в недавно опубликованных статьях привел много экспериментальных данных в пользу свободно радикального механизма реакций, идущих при парофазном нитровании пропана и бутана при 420—425°. Они показали, что прибавление ограниченных количеств кислорода или галоида, которые, как известно, увеличивают концентрации свободных радикалов в паровой фазе, также повышает степень нитрования тетраэтилсвинец, образующий при нагревании этильные радикалы, также благоприятствует нитрованию, Существенно также, что факторы, понижающие концентрацию своб.дных алкильных радикалов в паровой фазе, например присутствие окиси азота или чрезмерные количества кислорода или галоидов, снижают и степень нитрования. [c.81]

    О веществе, которое теряет электроны, говорят, что оно окисляется, а электрод, на котором это происходит, называется анодом. Вещество, поглощающее электроны, восстанавливается на катоде. Давление , которое создают электроны между анодом и катодом, называется напряжением гальванического элемента, или его электродвижущей силой (э.д.с.). Если напряжение элемента положительно, это означает, что происходящая в нем реакция протекает самопроизвольно, причем электроны поступают с анода на катод. Отрицательное напряжение элемента означает, что самопроизвольно протекает обратная реакция. Напряжение элемента связано со свободной энергией протекающей в нем реакции соотношением [c.193]

    Рекомбинация радикалов протекает с энергией активации, близкой к нулю прямая реакция — образование радикалов — протекает с энергией активации, близкой к теплоте разрыва (энергии) связи R—R (известно, что разность энергий активации прямой и обратной реакций равна теплоте реакции = ДЯ- [c.228]

    Диапазону световых волн от 700 до 200 нм соответствует энергия фотонов от 170 до 580 кДж/моль. Эта энергия сравнима с энергией связей органических соединений. Энергия простых С- С-связи составляет примерно 346 кДж/моль, О-0-связи-около 358 кДж/моль, С-Н-связи-около 408 кДж/моль и -N-связи-около 304 кДж/моль. Поэтому под действием света могут протекать реакции, в которых происходит разрыв ковалентных связей внутримолекулярные фотореакции, фотовосстановление и др. [12]. 177 [c.177]


    Это очень важный момент, если рассматривать, скажем, изменение энтальпии в процессе гидрогазификации. Как правило, эта реакция протекает с выделением тепла, но получение водорода связано со значительными затратами тепловой энергии. [c.96]

    Так как эффективность процесса определяется прежде всего состоянием катализатора, то можно легко представить ситуацию при которой это состояние в нестационарном режиме обеспечивает большую активность и, что особенно важно, селективность катализатора. Очевидно, в искусственно создаваемом нестационарном режиме можно добиться состава катализатора, в принципе невозможного при неизменных условиях в газовой фазе. Это хорошо видно на примере раздельного механизма окислительновосстановительных реакпий, когда при повышенных температурах протекают полное окисление водорода, окиси углерода, углеводородов и многих других органических веш,еств, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя раздельно взаимодействие кислорода с восстановленным катализатором, выведенным каким-либо образом из-зоны реакции, и затем взаимодействие реагирующего компонента с вводимым в зону реакции окисленным катализатором, можно значительно увеличить активность и избирательность процесса за счет того, что в таком нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. [c.17]

    Изменения эффективности каталитических процессов, осуществляемых при искусственно создаваемом нестационарном состоянии катализатора, можно, по-видимому, ожидать всегда, если эти процессы протекают по раздельному механизму. В частности, по такому пути протекают такие окислительно-восстановительные реакции, как полное окисление водорода, СО, углеводородов и многих других органических веществ при повышенных температурах, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя каким-либо образом взаимодействие окислителя с восстановленным катализатором й затем — взаимодействие исходного вещества (в присутствии окислителя или без него) с вводимым в зону реакции окисленным катализатором, можно часто увеличить активность и (или) избирательность за счет того, что в нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. Примером этого, кроме уже названных процессов, может служить окисление нафталина во фталевый ангидрид на ванадиевом катализаторе [30]. Для этого процесса активность катализатора становится тем большей, чем больше степень окисленности 0, а избирательность процесса практически не зависит от величины 0 нри [c.40]

    Промотированном различными металлами в присутствии гомогенной добавки Ва(0Н)2 (0,1 моль на 1 моль глюкозы). Эксперименты проводились в автоклаве с интенсивным перемешиванием (2800 об/мин). Было установлено, что в интервале 40—120 С (при давлении водорода 12 МПа) протекает преимущественно гидрогенизация глюкозы с образованием сорбита. Выход глицерина и гликолей не превышает 10%. В интервале температур от 160 до 220°С начинает интенсивно идти гидрогенолиз связей С—С глюкозы с образованием все большего количества глицерина и гликолей. С ростом температуры происходит не только повышение энергии молекул реагирующих веществ, но и изменение их соотношения на поверхности катализатора, о чем свидетельствует величина смещения потенциала катализатора. При небольших смещениях потенциала (Дф 50—60 мВ) и, следовательно, при достаточно большом заполнении поверхности катализатора водородом идет в основном гидрирование глюкозы. Не исключено, что при большом заполнении поверхности катализатора водородом молекулы глюкозы имеют возможность контактировать с поверхностью только одним концом, вероятно карбонильной группой. С увеличением температуры поверхность катализатора все больше освобождается от водорода и при больших значениях Дф (200—250 мВ) наряду с указанной реакцией протекает гидрогенолиз связей С—С глюкозы, т. е. при меньших заполнениях поверхности катализатора водородом молекула глюкозы (имеющая по предварительным расчетам длину в 1 нм) может расположиться вдоль поверхности катализатора. Это способствует протеканию реакции гидрогеиолиза глюкозы. При больших смешениях потенциала (Дф>250 мВ) происходит дега- [c.83]

    Энергия связи С—Н превышает энергии большинства других простых связей в молекулах углеводородов и гетеросоединений. Поэтому при неселективном подводе энергии извне, например при нагревании до 500—600 °С, преобладают реакции расщепления связей С—С, С—ОН и т. п., а реакции дегидрирования протекают с весьма незначительной глубиной. Лишь при очень высоких температурах (700—800 °С и выше) дегидрирование углеводородов происходит и в отсутствие катализаторов, однако в этих условиях интенсивно развиваются также реакции глубокого крекинга, приводящие к практически полному разложению всех неароматических углеводородов с числом атомов С больше 5. По этой же причине сравнительно редкими являются процессы дегидрирования соединений с гетероатомами в молекуле. [c.51]


    Схема потоков для реактора с рециклом представлена на рис. 1Х-1. Из него следует, что связи, накладываемые на переменные процесса должны учитывать подачу на вход реактора смеси из рецикла одновременно со свежим начальным потоком. В предположении, что в линии рецикла химическая реакция протекает слабо, а теплопотери отсутствуют, уравнения сохранения количества вещества и энергии можно записать следующим образом  [c.219]

    В связи с более высокой энергией активации реакции (1) по сравнению с энергией активации (2) при температурах <1000 °С процесс взаимодействия углерода с кислородом протекает в диффузионной области, а реакции (1) - в области реагирования, близкой к кинетической. Так как реакция СО2 + С 2С0 позволяет устранить влияние второстепенных факторов и выбрать усло- [c.35]

    В растворах гомогенно-каталитические реакции протекают обычно по механизму молекулярных реакций с образованием сложных, активных комплексов или промежуточных соединений с участием катализатора, который снижает энергию активации реакции. Это объясняется тем, что в сложном активном комплексе с участием катализатора уменьшается энергия связей и облегчается их разрыв. Особенно выгодным является образование циклических активных комплексов, так как чередование рвущихся и возникающих химических связей, а также перемещение электронов, образующих химическую связь, по циклическому активному комплексу (миграция связей в молекуле) способствует снижению энергии активации при разрыве химических связей. Кроме того, энтропия активации при образовании в растворе сложных активных комплексов может увеличиться за счет освобождения некоторого числа молекул растворителя, связанных с молекулами исходных веществ и с катализатором. [c.414]

    Эта реакция протекает по механизму реакции (б) (см. стр. 441). Подставляя значения энергий связи в выражения (IX, 88) и (IX, 90), получим [c.445]

    НОВ и обладает наиболее высоким потенциальным барьером, что проявляется в высокой энергии активации большинства органических реакций. Однако всякое смеш,ение электронов в сторону одного или другого атома поляризует атом и тем самым снижает величину энергии активации. В пределе такой деформации ковалентной связи образуется истинно полярная, или ионная, связь, при которой энергия активации становится равной нулю, и реакции протекают моментально. [c.34]

    Реакция 4 этой схемы приводит путем распада по О—0-связи к образованию свободных радикалов. Этот акт при температурах газофазного окисления углеводородов протекает с большой легкостью, так как энергия связи О—О в перкислотах, по-видимому, значительно меньше, чем в гидроперекисях алкилов. Если теперь предположить, что с ростом тем- [c.349]

    Поскольку энергия диссоциации связи С—Вг (285 кДж/ /моль) меньше, чем энергия связи С—С1 (338 кДж/моль), генерируемый из пероксида радикал К- на первой стадии вызывает избирательный гомолиз связи С—Вг. Далее реакция протекает по механизму, аналогичному рассмотренному выше механизму присоединения водорода в момент выделения  [c.68]

    Характернейшей особенностью этих реакций является то, что они часто идут не в сторону понижения химического потенциала, как обычные реакции, а в сторону ее повышения. Но это не удивительно, потому что все они предопределяются поглощением фотонов, т. е. притоком энергии извне. Во многих случаях фотохимические реакции протекают при участии твердого вещества или в самом твердом веществе. В связи с этим рассмотрим в общих чертах роль последнего в крайне важных процессах зрительного восприятия и фотосинтеза. Выше мы познакомились с некоторыми особенностями природы фоточувствительного вещества его состав сложен и включает атомы элементов, сравнительно легко меняющих свое валентное состояние, а структура имеет вид матрицы — остова, образованного атомами, связанными прочными межатомными связями, к которому сравнительно более слабыми связями присоединены атомы или группы атомов — функциональные груп- [c.134]

    При этом связь между углеродом и галогеном приобретает в известной степени характер двойной связи, ее длина укорачивается (от 1,78 до 1,72 А). Все это приводит к повыщению энергии связи С—X, уменьшению ее поляризации и понижению реакционной способности атома галогена при химических реакциях. Например, труднее протекают реакции элиминирования. В этом случае необходимо присутствие более сильных оснований вместо этилат-иона применяют амид-ион, т. е. в качестве растворителя используют не спирт, а аммиак. [c.101]

    Фотохимические реакции протекают п соответствии с законами фотохимии. Согласно им, для расщепления молекулы на свободные радикалы необходимо воздействовать на нее импульсом света с определенной длиной волны Х, энергия е фотона которого равна энергии Е разрушаемой связи рассматриваемой молекулы  [c.133]

    Следовательно, если химическая реакция протекает при постоянном объеме, то выделение или поглощение теплоты связано с изменением внутренней энергии системы. [c.195]

    При обычной температуре и на рассеянном свету реакция протекает крайне медленно, тогда как нагревание смеси газов или освещение ее прямым солнечным светом сопровождается взрывом. Начало реакции связано с тем, что молекула хлора за счет поглощения кванта энергии hv) ультрафиолетовых лучей (или за счет нагревания) диссоциирует на свободные радикалы — атомы хлора  [c.150]

    Если плоская конформация (являющаяся переходным состоянием при рацемизации) обладает меиьшей энергие] , то реакция протекает быстрее. И наоборот, если резонанс но может снизить энергию п,[юской конформации бифенила, то он не сможет также укоротить межкольцсвую связь. Приведенные выше выводы сделаны па основе ггредположения, что в скрученной (нормальной) молекуле бифенила межкольцевой резонанс и пространственное отталкивание невелики ио-видимому, это предположение, хотя и не доказанное, вполне вероятно. [c.556]

    Перефосфорилирование с другими высокоэргическимн соединениями, например с фосфокреатином, происходит без сопряженного окисления и связано с переносом энергии, аккумулированной в богатой энергией связи. Аналогично протекает перефосфорилирование адениловой системы (АТФ) с другими нуклеотидами — гуанидин-, уридин- и цитидинполифосфатами. АТФ, АДФ и АМФ легко переходят друг в друга в реакциях пе-рефосфорилирования и обычно рассматриваются как единая адениловая система. АМФ, таким образом, постоянно фосфорилируется в АДФ и АТФ, а АДФ и АТФ дефосфорилируются, отдавая свободную энергию. [c.241]

    При изохорном процессе (V = onst), поскольку изменения объема системы не происходит, Л = 0. Тогда переходу системы из состояния 1 в состояние 2 отвечает равенство = U2 — 1 = = At/. Таким образом, если химическая реакция протекает при постоянном объеме, то выделение или поглощение теплоты Qv связано с изменением внутренней энергии системы. [c.159]

    Как показывает последний пример, скорость химической реакции очень сильно возрастает при повышении температуры. Это связано с тем, что элементарный акт химической реакции протекает не прп всяком столкповептг реагирующих молекул реагируют только те молекулы активные молекулы), которые обладают достаточной энергией, чтобы разорвать или ослабить связи в исходных частицах и тем самым создать возможность образования новых молек л. Поэтому калсдая реакция характеризуется определенным энергетическим барьером для его преодоления необходима энергия активации — некоторая избыточная энергия (по сравнению со средней энергией молекул при данной температуре), которой должны обладать [c.91]

    При гидроочистке дистиллятных почти количественную деструкцию затрагивая связей С—С, т. е. без заметной деструкции сырья Удаление азота протекает много труднее. В работе с модельными соединениями — дибензтиофеном и 3-метплхинолином, добавляемыми к лигроину, — показано, что в обычных условиях гидроочистки (Со Мо на AI2O3, 380 °С, 114 кгс/см ) энергия активации реакций обессеривания составляла только 3,8 ккал/моль, а энергия активации реакции удаления азота 20,0 ккал/моль. При удалении 90% серы, удалялось только 40% азота, при удалении 99,5% серы — 75% азота В другой работе показано, что азот удалялся не только труднее серы, но и труднее кислорода, диенов и олефинов [c.280]

    Исключительная химическая активность фтора обусловлена, с одной стороны, большой прочностью образуемых им связей, так, энергия связи (Н—Р) == 566, (51—Р)= 582 кДж/моль, с другой стороны, низкой энергией связи в молекуле Ра [ (Р—Р) = 151 кДж/моль, ср. для СЬ = 238 кДж/моль]. Большая энергия связей Э-—Р является следствием значительной электроотрицательности фтора и малого размера его атома. Низкое значение энергии связи в молекуле Ра, по-видимому, объясняется сильным отталкиванием электронных пар,, находящихся на л-орбиталях, обусловленным малой длиной связи Р—Р. Благодаря малой энергии связи молекулы фтора легко диссоциируют на атомы и энергия активации реакций с элементным фтором обычно невелика, поэтому процессы с участием Ра протекают очень быстро. Известно много прочных фторндных комплексов ([Вр4] , [81Рб] ", [А1Рб] и др.). Большое значение АО/ обусловливает малую реакционную способность координационно насыщенных соединений фтора (5Рб, Ср4, перфторалканы и др.). [c.469]

    Если реакция протекает через образование комплекса AD , энергии связи которого положительна по отношению к распаду на фрагменты АВ С и А -Ь ВС, то поверхность потенциальной энергии такой системы в принципе аналогична поверхности потенциальной энергии устойчипой трехатомпой молекулы AB , способной диссоциировать по двум каналам.  [c.66]

    Чтобы каталитическая реакция протекала быстрее гомогенной некаталитической, необходимо, чтобы катализатор повышал степень компенсации энергии разрывающихся связей энергией образую1цихся. На рис. 4.2 показано изменение энергии на различных стадиях простой экзотермической реакции. .ом> - адс> де это энергия активации гомогенной реакции, адсорбции реагентов на катализаторе, образования активированного комплекса и десорбции продуктов соответственно и Чдес - экзотермическая теплота адсорбции и эндотермическая теплота десорбции А Я - общее изменение энергии в реакции, ко- [c.86]

    С повышением температуры реакции гидрокрекинга усиливаются, при этом происходит разрыв связей С—С, например при деалкилировании, яри разрыве цепей и колец. Бели парциальное давление водорода недостаточно высоко, то одновременно разрываются и связи С—Н, что сопровождается выделением водорода и образованием олефиновых и ароматических углеводородов. Это объясняется также тем, что связь С—С менее прочна и реакционноспособна, чем связь С—Н. Энергия связи С—С составляет от 247 до 263,8 кДж/моль (от 59 до 63 -ккал/моль). В цепях н-алканов связи СНз—СНа несколько слабее неконцевых связей СНг— СН2. Циклопарафиновые кольца устойчивы, и их гидрогенолиз протекает в малой степени. Циклогексаны СюНго и выше распадаются с образованием в основном изобутана и циклопарафина, имеющего на 4 атома углерода меньше, чем исходный. Образующиеся циклопарафины представлены в основном циклопентанами. При невысоких температурах эта реакция, особенно характерная для гидрокрекинга, проходит с довольно высокой селективностью. [c.209]

    С повышением скорости газа в слое наиболее резко увеличивается коэффициент массообмена, так как величина скорости входит в формулу (11) в степени, близкой к единице. В процессе горения наряду с реакцией (7) протекает реакция (8) и другие сло кные физико-химические процессы. В связи с более высокой энергией активации реакции (8) по сравненшо с энергией активации реакции (7) при одной н той же температуре (1000—1100 °С), взаимодействие углерода с кислородом протекает в диффузионной области реакция восстановления двуокиси углерода ири тех же условиях находится в области реагирования, близкой к кииетическ(л"1. Восстановительная реакция может перейти из ки-нетичсско11 области в диффузионную при высокой температуре и небол1>ших скоростях потока (в соответствии с (5). [c.127]

    С повышением скорости газа в слое наиболее резко увеличивается коэффициент массообмена, так как величина скорости входит в формулу (12) в степени, близкой к единице. В процессе горения наряду с реакцией (1) протекает реакция (2) и другие сложные физико-химические процессы. В связи с более высокой энергией активации реакции (2), по сравнению с энергией активации реакции (1) при одной и той же температуре (1000—1100°С), процесс взаимодействия углерода с кислородом протекает в диффузионной области, а при тех же условиях реакция восстаповлеиия двуокиси углерола находится в области реагирования, близкой к кинетической. Переход восстановительной реакции нз кинетической области в диффузионную возможен при высокой температуре и небольших скоростях потока. [c.168]

    Уже нз самого факта такого течения процесса ангндризации можно сделать заключение, что образование окисей алкиленов связано с определенными затруднениями и реакция протекает в другом направлении, уклоняется . Подобные явления часто наблюдаются в тех случаях, когда синтезируемые соединения неустойчивы и обладают большим запасом энергии. [c.302]

    В переходном состоянии (которое характеризуется наибольшим содержанием энергии за все время реакции) атакующий атом, вытесняемый атом п атом, у которого происходит замещение, лежат на одной прямой остальные заместители располагаются вокруг центрального атома в плоскости, перпендикулярной этой прямой. Связи атакующего и вытесняемого заместителей с центральным атомом удлинены. Если реакция протекает слева направо, то три остающихся заместителя отклоняются вправо, образуя новый тетраэдр молекула инвертируется. То же справедливо и для взаимодействия 2-тозилоксиоктана с ацетат-ионом. [c.371]

    Для получения незамещенного циклоалкана можно подВ( рг-нуть электролизу соль двухосновной кислоты, а затем нро-гидрировать кратную связь. Полагают, что реакция протекает по следующему механизму. Водные растворы солей карбоновых кислот практически нацело диссоциированы на ионы. При электролизе анион рассматриваемой кислоты теряет два электрона, а образовавшийся бирадикал разлагается с выделением двух бедных энергией молекул СОг- Реакция завершается образованием кратной углерод-углеродной связи за счет двух неспаренных электронов  [c.492]

    Заметим, что энергетика процесса химического осаждения, на пример, проходящего путем обычной поликонденсации, также складывается очень благоприятно. И здесь межатомные связи раз рываются за счет энергии экзотермических реакций, которые протекают при обычном давлении и невысоких температурах Но химическое осаждение приводит к получению, как мы видели выше, вещества неопределенного состава и строения. [c.213]

    Стандартные восстановительные потенциалы называют просто стандар1ными электродными потенциалами их значения табулированы для большого числа восстановительных полуреакций. Окислительный потенциал какой-либо окислительной полуреакции должен быть равен по величине, но противоположен по знаку электродному потенциалу обратного восстановительного процесса. Чем положительнее потенциал некоторой полуреакции, тем больше тенденция этой реакции протекать в записанном направлении. С помощью электродных потенциалов можно определить максимальное напряжение, создаваемое гальваническим элементом, или минимальное напряжение, необходимое для работы электролитической ванны. С их помощью можно также определить, является ли самопроизвольной конкретная окислительно-восстановительная реакция (э.д.с. реакции должна быть положительной). Э.д.с. окислительно-восстановительной реакции связана с изменением свободной энергии этой реакции уравнением ДС = — и , где -постоянная, называемая числом Фарадея и равная 96 500 Дж/(В моль). [c.234]


Смотреть страницы где упоминается термин Энергия связи в реакциях, протекающих: [c.9]    [c.463]    [c.134]    [c.401]    [c.292]    [c.150]    [c.284]    [c.136]    [c.137]    [c.88]    [c.226]    [c.355]   
Электронные представления в органической химии (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции энергия реакций

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи



© 2025 chem21.info Реклама на сайте