Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции частиц-диполей

    Реакции частиц-диполей [c.100]

    В этом уравнении г — радиусы рассматриваемых частиц, а ь1 — их дипольные моменты. Уравнение (37) переходит в (25) в случае, когда дипольные моменты равны нулю. Для реакции между ионами последний член выражения (37), в который входят дипольные моменты, обычно значительно меньше члена, содержащего величины зарядов, поэтому им можно пренебречь. В реакциях между диполями, имеющими не пренебрежимо малые заряды, второй член в уравнении (37) также исчезает, и влияние растворителя целиком определяется оставшимся членом. Для реакции между ионом и диполем нужно учитывать оба члена однако второй член часто существенно меньше первого, и эффект растворителя также описывается первым членом. [c.237]


    Если короткоживущей частицей в реакции двух диполей [c.165]

    Не следует забывать, применяя уравнения (У.92) и (У.93), что они строго справедливы только при больших расстояниях между частицами. При малых расстояниях, особенно для случая реакции двух диполей, возникает ошибка в вычислении энергии (см. гл.П, 1). [c.223]

    К наиболее сильным взаимодействиям между частицами в растворе относятся взаимодействия между ионами, между ионами и диполями, а также между диполями. Поэтому при взаимодействии полярных или заряженных частиц наблюдается наиболее резкое влияние растворителя на скорость реакции. Значение константы скорости реакции между ионами зависит от ионной силы раствора (первичный солевой эффект). С увеличением ионной силы раствора [c.350]

    Описанные выше разновидности реакции вряд ли мыслимы в среде, обладающей высокой проводимостью, которая наблюдается в водном растворе. Между тем в среде, проводимость которой уступает проводимости частиц, линии силы проходят непосредственно через частицы, которые, являясь диполями, группируются вдоль этих линий. [c.102]

    В этой теории не учитывалось строение металла и структура растворителя. Игнорирование роли полярного растворителя в свою очередь затрудняло теоретическую интерпретацию элементарного акта разряда для электрохимических реакций, не сопровождающихся разрывом или образованием химических связей, например Fe( N) + + е -> Fe( N)g . Поэтому в теории реорганизации растворителя определяющая роль в элементарном акте разряда отводится распределению диполей растворителя вблизи реагирующих частиц. Именно распределение диполей воды по этой теории позволяет осуществиться стадии разряда — ионизации. [c.296]

    Реакция переноса протона является более сложной, так как при этом происходит разрыв и образование химических связей, т. е. изменение химической структуры реагирующих частиц. Данная реакция включает стадию сближения и определенной ориентации реагирующих частиц друг относительно друга. Затем должны произойти переориентация диполей среды и изменение конфигурации внутримолекулярных классических степеней свободы реагентов, после чего одновременно изменяется электронное состояние реагирующих частиц, происходит туннелирование протона и соответствующее изменение квантовых внутримолекулярных степеней свободы реагентов. Наконец, диполи среды приобретают конфигурацию, соответствующую конечному состоянию реакции, и реагирующие частицы расходятся. [c.87]


    В то же время любая электрохимическая реакция приводит к изменению заряда реагирующих частиц и, следовательно, вызывает перераспределение диполей растворителя, окружающих эти частицы. Такая реорганизация растворителя, как показывают теоретические расчеты, также сопровождается значительным изменением потенциальной энергии, а потому может служить основой для построения кривых потенциальной энергии, в которых путь реакции представляет собой некоторую обобщенную координату (у), характеризующую распределение диполей растворителя. По современным представлениям реорганизация растворителя является определяющим фактором в ходе элементарного акта разряда, хотя в общем случае необходимо рассматривать также энергию растяжения химических связей в реагирующих частицах. Концепция реорганизации растворителя приводит к следующему механизму элементарного акта в стадии разряда — ионизации. Согласно принципу Франка — Кондона, переход электрона без излучения или поглощения квантов энергии возможен лишь при условии, что полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Выравнивание электронных уровней начального и конечного состояний происходит под действием тепловых флуктуаций растворителя. Когда в результате этих флуктуаций распределение диполей растворителя в зоне реакции оказывается таким, что оно одновременно соответствует и начальному, и конечному состояниям (см. точку А на рис. 79), то появляется вероятность квантовомеханического (туннельного) перехода электрона из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на потенциальную кривую конечного состояния и релаксирует по ней до равновесной координаты г/у. Таким образом, в наиболее простых электродных процессах энергия активации обусловлена реорганизацией диполей растворителя, необходимой для квантовомеханического перехода электрона из начального в конечное состояние. Напомним, что точно такой же механизм имеют и простейшие ионные реакции в объеме раствора (см. гл. IV). Характерной особенностью электродных процессов является то, что в них начальный уровень [c.186]

    Причины медленного протекания стадии разряда — ионизации связаны с квантово-механической природой перехода заряженных частиц через границу раздела электрод/раствор. В самом деле, согласно принципу Франка — Кондона, безызлучательный процесс перехода электрона с металла на частицу Ох в реакции (А) или обратно с частицы Red на металл возможен лишь при условии, если полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Для реализации этого условия необходимо изменить ориентацию диполей растворителя вблизи реагирующей частицы, что требует затраты определенной энергии активации. Кроме того, вероятность элементарного акта разряда—ионизации при выполнении принципа Франка—Кондона в общем случае не равна единице она зависит от перекрывания волновых функций начального и конечного состояний, а потому резко убывает с удалением реагирующей частицы от поверхности электрода. В результате принимают (или отдают) электроны только адсорбированные на электроде частицы Ох (или Red). [c.215]

    Рассмотренные ион-дипольное и ион-ионное взаимодействия относятся к равновесным условиям, когда макроскопическое состояние системы, характеризуемое термодинамическими функциями, не изменяется во времени. Однако равновесие в растворах электролитов всегда является динамическим, усредненным по времени и по объему. Частицы раствора (ионы и диполи растворителя) все время совершают хаотические движения, которые осуществляются периодическими перескоками с одного места на другое. Но в среднем эти перемещения частиц скомпенсированы, так что направленного макроскопического перехода ионов и диполей в условиях равновесия не происходит. Если в растворе электролита наблюдаются ионные равновесия, то они также имеют динамический характер. Например, реакция [c.60]

    В то же время любая электрохимическая реакция приводит к изменению заряда реагирующих частиц и, следовательно, вызывает перераспределение диполей растворителя, окружающих эти частицы. Такая [c.220]

    Концепция реорганизации растворителя приводит к следующему механизму элементарного акта в стадии разряда — ионизации. Согласно принципу Франка — Кондона, переход электрона без излучения или поглощения квантов энергии возможен лишь при условии, что полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Выравнивание электронных уровней начального и конечного состояний происходит под действием тепловых флуктуаций растворителя. Когда в результате этих флуктуаций распределение диполей растворителя в зоне реакции оказывается таким, что оно одновременно соответствует и начальному, и конечному состояниям (см. рис. УП1.10, точка А), то появляется вероятность квантово-меха-нического (туннельного) перехода электрона из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на потенциальную кривую конечного состояния и релаксирует по ней до равновесной координаты у . Таким образом, в наиболее простых электродных процессах энергия активации обусловлена реорганизацией диполей растворителя, необходимой для квантово-механического перехода электрона из начального в конечное состояние. Напомним, что точно такой же механизм имеют и простейшие ионные реакции в объеме раствора (см. гл. IV). Характерной особенностью электродных процессов является то, что в них начальный уровень электрона можно варьировать в широком интервале, изменяя потенциал электрода. [c.220]


    Дипольные молекулы воды — очень деятельные частицы. Их малый размер и большая напряженность электрического поля позволяют им активно вступать в разнообразные реакции. Когда, например, в водной среде растворяются кристаллы соли, дипольные молекулы воды притягиваются к ионам, находящимся на поверхности кристаллов. Энергия взаимодействия ионов и диполей воды настолько велика, что ионы, окруженные молекулами воды, покидают свои места в кристаллической решетке и уходят в водную среду. [c.245]

    При гетеролитических реакциях происходит перераспределение электрических зарядов между реагирующими частицами. Изменение зарядов ионов вызывает изменение ориентирующего и поляризующего действия электромагнитных полей ионов или диполей на молекулы растворителя, что приводит к существенной перестройке сольватных оболочек реагирующих ча- [c.162]

    Тот факт, что величина А5° для диссоциации большинства слабых кислот отрицательна, кажется на первый взгляд удивительным. Поскольку продукты диссоциации имеют больше свободы в движении, чем исходная молекула или ион, можно ожидать, что энтропия продуктов будет больше, чем энтропия недиссоциированного вещества, и, следовательно, величина А5° будет положительной. Однако, согласно экспериментальным данным, в результате диссоциации энтропия уменьшается и соответственно увеличивается порядок . Это объясняется участием в реакции молекул воды, которые не входят в стехиометрическое уравнение (7.1). Молекулы воды, обладая диполями, стремятся ориентироваться по отношению к ближайшему иону. Таким образом, диссоциация кислоты сопровождается ориентацией определенного количества молекул воды, и соответствующее уменьшение 5° перекрывает возрастание этой величины за счет образования двух частиц из одной. Явления, приводящие к тому, что величина AS° становится отрицательной, стремятся воспрепятствовать диссоциации. Для некоторых слабых кислот величина ДЯ° очень мала (табл. 7.1), и, таким образом, изменение стандартной энтропии в значительной степени определяет величину р/С в соответствии с уравнением [c.220]

    Несколько неожиданное наличие двух минимумов на диаграмме реакций в газовой фазе можно объяснить следующим образом. При сближении реагирующих частиц сначала в результате взаимодействия типа диполь — диполь или диполь — индуцированный диполь образуются непрочные ионно-молеку- [c.195]

    Наблюдаемая Рейзипгом различная реакция частиц, приводит к очевидному выводу, что частицы, находящиеся в неводной среде, нередко являются диполями. Если заряды не уравновешены, то частицы устремляются к противоположным полюсам, где заряды нейтрализуются. Остающиеся после этого заряды противоположного знака принуждают частицы передвигаться к другому электроду. В тех же случаях, когда заряды в достаточной степени уравновешены или же, если заряды слабы, частицы не передвигаются, а лишь группируются в электрическом поле. [c.101]

    Это могут быть молекулы, молекула и ион, радикал и молекула, разнозарядные сольватированные ионы и т.п. Комплексы часто образуются в качестве промежуточных веществ на пути от реагентов к продуктам в сложных реакциях. Частицы в комплексах связаны силами электростатического — ион-ионного, ион-дипольного, диполь-дипольного — взаимодействия, водородными связями и др. [c.41]

    На расстоянии 2,5 KU r) = 20,4 ккал/молъ, и пренебрегая взаимодействием молекул воды, которое достаточно мало, можно подсчитать энергию гидратации одновалентного иона в газовой фазе шестью молекулами воды. На расстоянии около 2,5 А эта величина оказывается равной 122 ккал/моль. Энергии этих взаимодействий того же порядка, что и теплоты большинства химических реакций. Поэтому такого рода сольваты следовало бы относить к числу комплексных ионов, а не агрегатов частиц, довольно слабо связанных между собой . Энергию взаимодействия между двумя диполями можно подсчитать, исходя из уравнения (XV.6.5). Если расстояние г измеряется вдоль линии центров диполей и 0 — азимутальной угол между каждым из диполей и линией центров, то энергия взаимодействия равна [c.445]

    В этом случае взаимодействия внутри растворителя становятся величиной порядка ван-дер-ваальсовых сил, и, по всей вероятности, нельзя пренебрегать последними при рассмотрении взаимодействий диполь — растворитель и приписывать все изменение скорости диэлектрической проницаемости. Уравнение (XV.И.2) может применяться также для реакций между полярными молекулами в растворе [64]. Однако до сих пор не ясно, смогут ли эти уравнения быть использованы для изучения строения активированного комплекса или для дальнейшего развития теории растворов. (Автору кажется, что более детальная молекулярная модель раствора, учитывающая только взаимодействия между ближайшими соседними частицами, не так уж сложна, и она дала бы, вероятно, более интересные и полезные сведения. Параметрами в таком случае служили бы только дипольные моменты и радиусы молекул растворителя и растворенных частиц.) [c.458]

    Для случая реакций между ионом и полярной молекулой использовались различные приближения. Простейшее из них состоит в подсчете куло-новской энергии активированного комплекса, образованного ионом с зарядом 2а8 и диполем гв [65]. Используя уравнение (XV.6.6) и пренебрегая поляризацией частиц, получаем [c.458]

    В тории Гориути — Поляни не учитывались строение металла и структура растворителя. Игнорирование роли полярного растворителя в свою очередь затрудняло теоретическую интерпретацию эле-ментатного акта разряда для электрохимических реакций, не сопровождающихся разрывом или образованием химических связей, например Ре ( N) -e Fe ( N)< . Поэтому в теории реорганизации растворителя определяющая роль в элементарном акте разряда отводится распределению диполей растворителя вблизи реагирующих частиц. Именно перераспределение диполей воды по этой теории позволяет осуществиться стадии разряда — ионизации. Теория реорганизации растворителя основана на некоторых определенных моделях металла и растворителя. Поэтому, чтобы познакомиться с основами этой теории, необходимо предпослать ей краткое описание принятых моделей двух соприкасающихся фаз электрода и полярного растворителя. [c.279]

    Необходимость выполнения принципа Франка — Кондона для перехода электрона обусловливает следующий механизм элементарного акта разряда. Благодаря флуктуациям растворителя распределение его диполей в зоне реакции может оказаться таким, что электронные энергии начального и конечного состояний станут одинаковыми (точка пересечения термов). В этих условиях оказывается возможным квантовомеханический (туннельный) переход электронов из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на конечный терм и релаксирует по нему в равновесное состояние. Точка пересечения термов может быть реализована лищь при классическом поведении медленной подсистемы. В противном случае уровень энергии, отвечающий точке пересечения, может оказаться запрещенным. Таким образом, при делении системы на быструю и медленную подсистемы необходимо выполнять условие, по которому медленная подсистема должна одновременно являться и классической подсистемой. Границей такого деления является величина 4-101 частицы с частотами колебаний Т/А относят к медленной подсистеме, а с частотами — к быстрой. Рассмотренное разде- [c.286]

    Необходимость выполнения принципа Франка — Кондона для перехода электрона обусловливает следующий механизм элементарного акта разряда. Благодаря флуктуациям растворителя распределение его диполей в зоне реакции может оказаться таким, что электронные энергии начального и конечного состояний станут одинаковыми (точка пересечения термов). В этих условиях оказывается возможным квантовомеханический (туннельный) переход электронов из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на конечный терм и релаксирует по нему в равновесное состояние. [c.304]

    Многие органические вещества практически полностью десорбируются при Е,= , - , 2 В, а другие, если и не десорбируются (гексанол, бензол, афталин, фумаровая кислота и др.), то проявляют тенденцию к уменьшению заполнений с дальнейшим ростом Ег. Это способствовало формированию мнения о том, что при высоких анодных Ег ( под таковыми обычно имеют в виду потенциалы выше обратимого кислородного г=1,23 В, 25°С) должна наблюдаться практически полная десорбция органических веществ. Теоретически это обосновывалось либо вытеснением адсорбированных органических частиц хемосорбированным кислородом, диполями воды, адсорбированными анионами, либо окислением этих частиц промежуточными или конечными продуктами реакции выделения кислорода. Вместе с тем в литературе, посвященной реакции выделения кислорода и электросинтезу Кольбе, высказывалось иногда предположение об адсорбции добавок органических веществ (Л. И. Антропов, В. Л. Хейфец и сотр.) и промежуточных продуктов превращения карбоксилатов (М. Флей-шман и сотр. Б. Е. Конвей и сотр.) при высоких анодных потенциалах, но без прямых доказательств.  [c.117]

    Механизм элементарного акта ионных реакций можно трактовать при помощи поверхностей потенциальной энергии системы в начальном и конечном состояниях. Для простейших реакций электронного переноса, не сопровождающихся изменением структуры иона, в качестве координаты реакции (т. е. того параметра, который претерпевает изменение в ходе процесса) следует выбрать некоторую обобщенную координату у, характеризующую конфигурацию диполей среды. На рис. IV. 14 представлены одномерные потенциальные кривые начального и конечного состояний системы для таких реакций. Исходной равновесной конфигурации диполей растворителя отвечает координата уи а конечной— У/. Координата у характеризует ориентацию диполей растворителя в переходном состоянии реакции. Кривая 1 получена суммированием потенциальной энергии системы растворитель+заряженные частицы и полной энергии электрона при различных значениях обобщенной координаты у в исходном состоянии. Сумму указанных величин называют также электронным термом. Кривая 2 представляет электронный терм конечного состояния. Так как в первом приближении термы можно аппроксимировать параболами, то для энергии активации а на основе простых геометрических соотношений получаем следующее уравнение  [c.97]

    В растворе помимо частиц, претерпевающих химическое превращение, в элементарном акте участвуют окружающие молекулы растворителя. Например, реакция H3I - -ОН СН3ОН Н-1 сопровождается сильной перестройкой сольватных оболочек. Действительно в исходном состоянии диполи молекул растворителя ориентированы своими положительными концами к иону 0Н в то время как ориентация их вокруг H3I может быть более или менее хаотичной. В конце элементарного акта, наоборот, формируется сольватная оболочка из ориентированных диполей вокруг иона 1 , а оболочка вокруг ОН- группы метилового спирта будет существенно менее упорядочена (рис. 94). [c.344]

    Механизм блокирующего действия адсорбционных поверхностных слоев, составленных из органических соединений, объясняют по-разному. Так, А. Г, Стромберг считает, что действие это-определяется изменением 1 ]1-потенциала, вызванным зарядами ионов или диполями адсорбирующихся молекул. По М. А. Лошкареву, основное значение имеет заполнение поверхности адсорбированными частицами. Снижение предельного тока объясняется не диффузионными ограничениями, но чисто активационным торможением катодной реакции. А. Н. Ф румкин считает,, что действие адсорбированных слоев при высоком заполнении поверхности не может быть сведено к изменению тргпотенциала. Он полагает неправильным также совершенно не учитывать электростатические факторы в случае слоев со значительным [c.350]

    Большинство реакций замещения у алифатического атома углерода представляют собой реакции нуклеофильного замещения. Для ароматических систем ситуация обратная, поскольку вследствие высокой электронной плотности ароматического кольца ОНО притягивает положительные, а не отрицательные частицы. В реакциях электрофильного замещения атакующей частицей является положительный ион или положительная часть диполя или индуцированного диполя. Уходящая группа (электрофуг) обязательно должна отщепляться без своей электронной пары. В реакциях нуклеофильного замещения уходящими группами в основном выступают те, которые более всего склонны нести электронную пару Вг , Н2О, ОТз и т. д., т. е. наиболее слабые основания. В реакциях электрофильного замещения важнейшие уходящие группы — это те, которые наиболее устойчивы без пары электронов, необходимой для заполнения внешней оболочки, т. е. самые слабые кислоты Льиса. Наиболее часто в реакциях ароматического электрофильного замещения уходящей группой служит протон. [c.304]

    Разнообразие структур является также, скорее, правилом, чем исключением, для соедипепнй, которые могут реагировать как 1,3-диполи. Изменение структуры ,3-ли1Юляриой молекулы и диполярофила делают эту реакцию очень разнообразной и полезной, особенно для синтеза гетероциклических соединений. Наиболее существенной структурной особенностью 1,3-днполяр 1ы. соединений является то, что онн имеют четыре я-электрона, распределенные между тремя атомами, и изоэлек-тронны аллильному аниону. Некоторые типичные 1,3-диполярные частицы приведены на схеме 10,1. [c.405]

    Как видно, чем выше Ь.Н°, т. е. чем эндотермичнее процесс, тем больше вклад диполь-дипольного взаимодействия ъЛС. Видимо, это связано с тем, что чем эндотермичнее реакция, тем ближе структура переходного состояния к таковой конечного продукта, полярного по своей природе, и тем бoJJьшe энергия взаимодействия диполя атакующей частицы с остальными диполями. [c.222]


Смотреть страницы где упоминается термин Реакции частиц-диполей: [c.72]    [c.137]    [c.53]    [c.86]    [c.95]    [c.220]    [c.306]    [c.133]    [c.79]    [c.253]    [c.195]   
Смотреть главы в:

Кинетика гомогенных химических реакций 1978 -> Реакции частиц-диполей

Кинетика гомогенных химических реакций 1988 -> Реакции частиц-диполей




ПОИСК





Смотрите так же термины и статьи:

Диполь



© 2025 chem21.info Реклама на сайте