Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стандарты для спектрального анализа

    Расчеты при выполнении массовых анализов целесообразно производить на электронной цифровой вычислительной машине, если, конечно, ЭВМ не является составной частью анализатора. Это не только экономит время, но и позволяет исключать субъективную погрешность построения градуировочных графиков. Например, в случае расчетов по эмиссионному спектральному анализу значения почернений фиксируются на перфоленте. В вычислительную машину вводят программу значения концентраций стандартов и табулированную характеристическую кривую, а затем перфоленту, содержащую цифровой материал по спектрам стандартов и анализируемых проб. Вычислительная машина считает 2 мин и печатает на ленте значения концентраций в пробах и стандартных образцах. Аналитику остается только наклеить ленту в журнал. [c.21]


    Интенсивность спектральной линии зависит от температуры источника света пропорционально фактору (1—л )ехр(—Е кТ)]. Поэтому в атомно-эмиссионном спектральном анализе принято измерять интенсивность аналитической линии относительно интенсивности некоторой линии сравнения (внутренний стандарт). Чаще всего — это линия, принадлежащая основному компоненту пробы. Иногда компонент, играющий роль внутреннего стандарта, специально вводят в анализируемую пробу. [c.55]

    СТАНДАРТЫ В СПЕКТРАЛЬНОМ АНАЛИЗЕ. МЕТОДЫ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИЙ ВЕЩЕСТВА В ПРОБЕ [c.89]

    В связи с изменением терминологии в аналитической химии старый и установившийся термин эталон заменен на термин вещество сравнения , не имеющий официального статуса. Этим он отличается от аттестованного и, следовательно, имеющего официальный статус термина стандартный образец (СО). В литературе последних лет по спектральному анализу употребляется также термин стандарт — синоним терминов эталон и вещество сравнения . В этом разделе и далее мы будем пользоваться терминами стандарт ( вещество сравнения ) н стандартный образец . [c.90]

    Благодаря применению внутреннего стандарта полностью или частично устраняется влияние температуры источника, изменения общей скорости испарения образца и других причин. Измерение относительной интенсивности при эмиссионном спектральном анализе стало в настоящее время общепринятым методом и только в очень редких случаях количественный анализ проводят по абсолютной интенсивности линий. Другие приемы, которые разбираются в этом разделе, не являются столь общими и применяются гораздо реже. [c.241]

    Метод просыпки позволяет вводить в разряд пробы большого веса. В пробу вводят внутренний стандарт и другие добавки. Метод обеспечивает хорошую чувствительность и воспроизводимость анализа, но далеко не всегда позволяет устранить влияние молекулярного состава пробы. Метод просыпки стал сейчас основным при спектральном анализе руд и минералов. [c.254]

    В большинстве случаев в количественном спектральном анализе используют прием, основанный на измерении относительной интенсивности, т. е. отношения интенсивности спектральных линий определяемого элемента /, и элемента сравнения /2, которые составляют аналитическую пару линий. Линия определяемого элемента должна быть концентрационно чувствительна, на линии аналитической пары не должны накладываться линии других элементов, присутствующих в пробе. Обе линии аналитической пары должны быть гомологичны, т. е. принадлежать либо возбужденным атомам, либо ионам, иметь близкие потенциалы возбуждения и находиться близко в одной спектральной области. В качестве линии сравнения обычно используют слабую линию элемента основы анализируемого металла, не реагирующую на колебание его содержания в пробе. При анализе горных пород, промышленных растворов используют линию специально вводимого во все пробы точного количества элемента, который не содержится в анализируемом материале (внутренний стандарт). [c.674]


    Определение содержания конкретного элемента можно проводить методом лазерно-индуцированного спектрального анализа, описанного в последующих главах, с использованием углерода в качестве внутреннего стандарта. Поскольку содержание всех элементов в пробе равно 100 %, для определения содержания углерода нужно приблизительно знать содержание остальных элементов, например О, Н, С1. По измеренному соотношению интенсивностей с помощью калибров- [c.38]

    Спектральный анализ концентрата проводят с помош,ью спектрографа средней дисперсии ИСП-22 или Ри-24. Источник света — конденсированная искра (генератор ИГ-2, С=0,012 мкф, 1 — 0,15 мгн). В качестве внутреннего стандарта авторы применяют раствор хлористого золота, вводимый в концентрат после обогащения в виде 0,01% -ного раствора в количестве 2 мкг на каждый электрод. [c.368]

    Для проведения спектрального анализа концентрата р.з.э. последний наносят на торец графитового электрода, пропитанного 2%-ным раствором полистирола в бензоле. Источником спектра служит дуга переменного тока или искра. При искровом возбуждении спектра используется генератор ИГ-2 с параметрами контура 1=0,15 мгн, С=0,01 мкф. При дуговом возбуждении спектра используется генератор ПС-39, при силе тока 8—9 а. Дуговой промежуток — 2 мм. Лантан служит внутренним стандартом. Аналитические линии приведены в табл. 51. [c.370]

    Интенсивность линий зависит также от режима работы источника возбуждения, скорости испарения пробы, освещения щели спектрального прибора и других причин. При случайных изменениях этих условий меняется интенсивность линий, в связи с чем количественный анализ, основанный на измерении абсолютной интенсивности, недостаточно точен. Для получения количественных определений с меньшей ошибкой пользуются отношением интенсивности линий определяемого элемента и элемента сравнения (внутреннего стандарта), вводимого специально в анализируемую пробу в определенном количестве. Пару линий, используемую в количественном спектральном анализе, — линию определяемого элемента и линию элемента сравнения — называют гомологической или аналитической парой. Для измерения относительной интенсивности линий аналитической пары спектр исследуемой пробы фотографируют на пластинку. При этом получают ряд линий, степень почернения которых на фотопластинке зависит от их интенсивности. Количественно почернение фотопластинки принято измерять величиной плотности почернения (5), которую вычисляют по, формуле [c.324]

    В связи с анализом ультрачистых веществ п биологических объектов большое внимание уделяется и анализу растворов, полученных после соответствующей химической обработки анализируемых проб. Спектральный анализ растворов исключает ошибки, связанные с влиянием структуры, тепловой истории образца и с неравномерным распределением в нем элементов. Устраняется также фракционирование элементов, уменьшается влияние матрицы и третьих элементов на результаты анализа. Например, основа не влияет на точность спектрального определения Мп, Сг, N1 в стандартных образцах стали, бронзы и шлака (растворы шлака анализировали без кремневой кислоты) [440]. Сравнительно просто решается вопрос о приготовлении стандартов. Из существующих методов спектрального анализа растворов наибольшей абсолютной чувствительностью обладает метод сухого остатка с применением импрегнированных угольных электродов [48, 182]. [c.75]

    Примеси А1, А", Bi, d, Сг, Си, Fe, In, Mg, Md, Ni, Pb, Sb, Ti и Zn определяют методом спектрального анализа путем измерения относительной интенсивности аналитических линий элементов-примесей и внутреннего стандарта (Со) в дуговом спектре остатка, полученного после выпаривания определенного объема анализируемой жидкости [178]. [c.213]

    Определение в агломератах. При анализе агломератов также используются различные приемы введения образца в атмосферу разряда. Спектральный анализ Ъп — РЬ-агломерата производят [911] после сплавления образца при 1050° С со смесью тетрабората лития, тетрабората стронция и окиси кобальта. Кобальт служит внутренним стандартом. Рекомендуют также сплавлять образец со смесью буры и соды при 950—980° С [410]. Полученный расплав втягивают в графитовую трубку, которая после охлаждения служит одним из электродов. В этом случае анализ агломерата производят с помощью искры от генератора ИГ-3 на квантометре ДФС-10 или спектрографе. Сравниваются пары линий Са 3158,8 и и 4378,2 А. [c.117]

    Определение в стекле. Спектральный анализ стекол в основном аналогичен анализу шлаков и агломератов. Широко используется разбавление образца спектральным буфером (порошкообразный уголь, окись меди) [472, 1329]. Внутренними стандартами могут служить добавки карбоната, хлорида и других солей стронция. Для сравнения с линиями кальция используют линии стронция [c.118]


    Имеются методы спектрального анализа силикатов без переведения пробы в раствор [100, 116, 1311]. По одному из них [100] пробы спекают при 950° С с перекисью натрия п бурой в присутствии угольного порошка, содержащего карбонаты кобальта и бария (внутренние стандарты). Пек растирают с графитовым порошком и анализируют на приборе ИСП-28 или квантометре ДФС-10. Использование квантометра сокращает в 2 раза продолжительность анализа. [c.134]

    Спектры кадмия регистрируют на фотопластинках, чувствительных к ультрафиолетовой области (тип СП I, СП П1) с помощью спектрографов средней дисперсии (ИСП-28). Применение диф-фракционных приборов (ДСФ-8, ДФС-13) на порядок повышает чувствительность определения [156]. При непосредственном спектральном анализе порошкообразных проб (минералы, руды, продукты их переработки) 30 мг образца в большинстве случаев вводят в плазму дуги испарением из канала угольного электрода. Для стабилизации температуры к пробам и стандартным образцам добавляют буферные смеси (в основном соли щелочных металлов). Внутренним стандартом служат Ag, Мп, ЗЬ, Zn и некоторые другие элементы. Этим путем можно анализировать пробы, содержащие 3-10-3 - 1.10-2% Сс1. [c.128]

    Пламя как источник света для эмиссионного спектрального анализа, еще десять лет назад использовавшееся для определения лишь щелочных металлов, в настоящее время превратилось в один из наиболее эффективных источников при анализе растворов. Одним из существенных преимуществ метода фотометрии пламени является использование эталонных растворов, приготовление которых значительно проще, чем эталонов металлов, сплавов и порошков. Пламя дает также значительные преимущества по сравнению с электрическими источниками в воспроизводимости результатов определений, позволяя снизить случайную ошибку измерения абсолютной интенсивности спектральных линий до десятых долей процента при оптимальном выборе параметров, определяющих режим работы горелки и распылителя. Это позволяет вести количественный анализ по измерению абсолютной интенсивности линий методом пламенной фотометрии точнее, чем при использовании электрических источников света, даже если в последнем случае анализ ведут по относительной интенсивности линий с использованием внутреннего стандарта. Отрицательным свойством пламени, однако, является малая чувствительность определения трудновозбудимых элементов, связанная с относительной низкой температурой (3000—3500° С). Несмотря на это, возможно определение фосфора пламенно-фотометрическим методом с чувствительностью 5—10 мкг мл [206, 207, 337, 567, 643, 992, 1027, 1059, 1097, 1110]. [c.78]

    Уран определяют стандартными колориметрическими или объемными методами в зависимости от его содержания в исследуемом образце, торий — весовым путем после прокаливания оксалата, либо спектральным методом, если количество его <0,2% [1204]. В последнем случае торий соосаждают на лантане, который в то же время служит внутренним стандартом. При анализе более сложных руд и минералов, содержащих значительное количество различных примесей, наблюдается частичное экстрагирование тория (вместе с ураном) эфиром, 1%-ным по НЫОз. В таких случаях предварительно экстрагируют уран вместе с торием эфиром, 12,5%-ным по НЫОз, а затем повторяют процесс хроматографической экстракции, отделяя уран описанным выше способом. [c.197]

    Применяют как аналоговую, так и цифровую обработку информации. Последнюю используют для спектрального анализа сигналов (быстрое преобразование Фурье) и вычисления количественного критерия метода SWF для оценки результатов контроля (см. разд. 2.3.8). Выбор вида критерия SWF определяется особенностями ОК и подлежащими оценке его параметрами. Стандарт Е 1498-94 содержит следующие рекомендации по применению разновидностей критерия SWF. [c.509]

    В настоящее время уже имеются методы спектрального анализа для определения ароматических углеводородов до g (ГОСТ 10997—64), а также бициклических ароматических (нафталиновых) углеводородов методы для определения последних предписаны стандартами на реактивные топлива в нашей стране (ГОСТ 17749—72) и за рубежом (ASTMD 1840). Эти методы основаны на резком различии светопоглощения нафталиновых и моноциклических ароматических углеводородов в УФ-области с длиной волны 2850 А (насыщенные углеводороды в этой области прозрачны). Метод предназначен для определения суммарного содержания нафталиновых углеводородов в топливах с концом кипеник до 315 °С, Он заключается в измерении поглощения топлива при длине волны 2850 А (применяя в качестве эталона изо- [c.144]

    Для анализа металлов и сплавов, минерального сырья практически Е1евозможно приготовление стандартов в лабораторных условиях. В этом случае используют образцы, состав которых был ранее установлен с помощью разных методов анализа, или стандартные образцы (СО). Строго говоря, стандартные образцы для спектрального анализа должны быть аттестованы как по химическому составу, так и по физически.м свойствам. [c.91]

    К особенностям спектрального анализа металлов и сплавов можио отнести сложности приготовле1гия стандартов, связанные с необходимостью соблюдения идентичности химического состава и физических свойств стандартов и проб, как, например, соблюдения условий термообработки, различия в которой могут привести к отличиям в структуре и свойствах. [c.114]

    Как и во всех методах спектрального анализа, в атомно-иопи-зациомпой спектрометрии для определения концентрации элемента в пробе необходимо использовать стандарты и построение градуировочных графиков. Все рассматриваемые выше вопросы, связанные с приготовлением стандартов п требованиями к ним, в АИ-методе те же. В пламенном варианте АИ-метода возможны помехи, аналогичные тем, которые имеют место в методах пламенной фотометрии или атомно-абсорбционнои спектрометрни, где пламя используется как атомизатор (неполнота испарения капель аэрозоля, влияние различных факторов иа степень атомизации определяемого элемента, таких, папример, как образование трудно-диссоциирующих соединений, и т. п.). [c.188]

    Для маркировки двух образцов стали по содержанию легирующих элементов применили стандартную методику эмиссионного спектрального анализа, предусматривающую трехкратное фотографирование спектра каждой пробы. ИзмереннЕле значения почернения аналитических линий даны в таблицах. В качестве внутренних стандартов принята иптенсивность линий спектра келеза. [c.118]

    При анали.зе различных объектов (см. табл. 22) концентрирование примесей проводят путем отделения основного количества элемента-основы экстракцией различными реагентами, а раствор содержащий примеси (например, в случае анализа таллия), выпаривают или с угольным порошком, содержащим 4% Na l [156], или с угольным порошком, содержащим в качестве усиливающей добавки галлий и кобальт (последний служит внутренним стандартом), или на угольном порошке, содержащем 5% Iii при анализе фосфида индия [447]. Проводят спектральный анализ концентрата. При анализе воды, кислоты п легколетучцх соединений (табл. 24) обогащение проводят путем выпаривания. Прх меси ири этом [c.109]

    К порции раствора после растворения сплава (см. сгр. 400), содержащей по 40—100 мкг лантана и церия, добавляют 1 мг европия в качестве соосади-теля (он же служит внутренним стандартом для спектрального анализа). Раствор сильна нагревают с 1—ЗМНСЮ для окисления плутония до Ри (VI) и осаждают церий, лантан и европий добавлением НР. Осадок растворяют в конц НСЮ4 и раствор упаривают досуха для удаления избытка кислоты. Остаток растворяют в НС1, порции полученного раствора наносят иа медные электроды и проводят спектральное определение по методу искры. [c.411]

    С(1, 2п, Оа, 1п, РЬ, Зп, V, Мо, Со, N1, Ге и Рс1. Погрешность результатов спектрального анализа (после обогащения) при помощп непрерывной дуги с использованием н елеза в качестве внутреннего стандарта находится, для упомянутых элементов, в пределах 10—20%о. Продолжительность операции обогащррия 20—25 мин. [c.163]

    Спектральный анализ золы нефтепродуктов в настоящее время проводят, применяя в качестве источника возбуждения спектра дугу постоянного или переменного тока. Однако при использовании порошковых методик возникает ряд трудностей и неизбежны погрешности в составлении эталонов при введении внутрен-пего стандарта, разбавлении пробы и т, п. Кроме того, примене-пие порошковых хметодик связано с использованием для анализа сравнительно большого количества золы, часто намного превышающего то, которое требуется при данной чувствительности анализа. Отсюда возникает необходимость озоления значительного количества нефтепродукта, в результате чего увеличивается время анализа и возрастают потери. [c.181]

    Наиболее распространенный способ сжигания образца при спектральном анализе — сжигание его в кратере одного из электродов. Перед тем как поместить анализируемое вещество в кратер, его обычно смешивают с графитовым порошком для придания ему электропроводности и для равномерности испарения и вводят различные добавки носители, внутренние стандарты и т. д. В некоторых случаях к анализируемой пробе добавляют хлорид серебра 210, 965]. В атмосфере разряда окись кальция переходит в хлорид, обладающий большей скоростью испарения. Иногда пробу в кратере электрода фторируют для повышения точности и чувствительности [109]. Сжигание образца в кратере электрода шйроко используется при анализе чистых металлов бериллия [245], серебра [1175], вольфрама [965], алюминия [184, 246], гафния [210], а также кремния [84, 385, 611]. [c.115]

    Для спектрального анализа молибдата аммония на содержание примесей кальция основу переводят в низколетучую форму, добавляют селективный летучий носитель, фракционируют дистилляцией в дуге постоянного тока. Молибден превращают в карбид смешиванием молибденового ангидрида с угольным порошком. Носителем и одновременно внутренним стандартом служит окись меди (6%). Спектрографируют на спектрографе ИСП-22 в дуге (5 а) с угольными электродами по аналитическим пиниям Са 3933,67 - Си 4062,7 А [566]. [c.125]

    Метод эмиссионного спектрального анализа рзэ весьма широко применяется на практике, особенно при анализе собственно редкоземельных смесей [3, 378, 379, 557, 902, 903]. Когда еще не было достаточно чистых индивидуальных рзэ, в качестве внутренних стандартов применяли исключительно нередкоземельные элементы. Для определения рзэ рекомендованы Мо [1337, 1585, 1717], Т1 [1764], РеаОз [1010, 1355, 1699], 5г [1527, 1585], Рс1 [915] и 2x0 1232, 1354]. Такие стандарты удобно применять при айализе сплавов, когда сплав может непосредственно служить материалом электродов, например при анализе отливок железа на Се  [c.205]

    Сочетание высоких оптических характеристик, многофункциональности, надежности и умеренной стоимости делает приборы серии Helios идеальным выбором для большинства лабораторий, решающих задачи, связанные с регистрацией и обработкой спектров, количественным, многокомпонентным анализом и кинетическими исследованиями Высокое качество сделало спектрофотометры Helios стандартом для аналитических лабораторий спектрального анализа. [c.353]

    Качественный анализ основан на расшифровке положения линии в масс-спекгре. Идентификация осуществляется путем привязки к линиям основного элемента или введенного внутреннего стандарта, как это делается в атомно-эмиссионном спектральном анализе. [c.374]

    Основные области применения фотометрического анализа те же, что и спектрального анализа определение 1—0,001% примесей в различных технических и природных матери пах. Фотометрический метод по сравнению со спектральным ана изом дает возможность определить большее количество различных элементов и материалов. Далее при фотометрическом анализе результаты более точны, нет необходимости применять заранее проверенные стандарты. Фотометрические методы разработаны для определения содержания металлов и неметаллов. Фотометрические методы легко совмещаются с методами получения аналитических концентратов, что необходимо для анализа микропримесей 10 — 10 %. Фотометрические методы широко применяются для автоматического, а также для дистанционного контроля. [c.9]

    Разброс данных, или воспроизводимость методов, т. е. вероятность получения данных, лежащих в определенных пределах, можно выразить графически в виде кривых Гаусса. На рис. 23 приведены данные анализов полупроводниковых материалов на содержание микропримесей, полученные различными методами. Из рис. 23 видно, что наиболее вероятные значения всех методов совпадают причем это не должно быть окончательным признаком правильности всех методов, так как калибровочные графики каждого метода строились по одному и тому же стандарту, тщательно проверенному обычными методами. Методы характеризуются различным разбросом результатов. Так, для определения микроколичеств примесей спектрофотометрическим методом вероятность получения результатов с отклонением выше 10% мала. В то же время, например для спектрального анализа, вероятность [c.38]

    На практике, однако, концентрацию определяемого элемента находят не по этой зависимости, т. е. не по измерению абсолютного почернения линии, так как оно может значительно колебаться при небольших изменениях условий испарения и возбуждения пробы, обработки фотопластинки и т. д. Поэтому при любом Количественном методе эмиссионного спектрального анализа работают с относительным почернением линии, т. е. по методу сравнения ее с другой линией спектра. Последняя может принадлежать основному компоненту пробы или специально внесенному для этой цели веществу — внутреннему стандарту. Пару линий, почернение 0-торых сравнивают, называют аналитической парой. Наиболее точные результаты получают тогда, когда линии аналитической пары являются гомологическими. В некоторых случаях можнЬ сравнивать почернение с фоном пластлнки. [c.365]

    ПО характеристической кривой определяют lg/ и вычисляют величину 1. В этом случае интенсивность определяемой линии измеряют путем сравнения ее с интенсивностями линий, по которым построена характеристическая кривая. В случае применения другого стандарта пользуются характеристическими кривыми для определения отношения сравниваемых интенсивностей. Если сравниваемые линии значительно различаются длиной волны и экспонировались неодинаковое время, то измерить отношение интенсивностей сложнее, так как приходится учитывать зависимость величины 5 от длины волны и времени экспозиции. Поэтому при спектральном анализе ограничиваются, как правило, фотометрированием линий, близких но длине волны, при условии, что времена их экспозиции одинаковы или различаются очень незначительно. Измерив почернение каждой из них, т. е. и 5ср., определяют затем glj и lg/ p. по единой характеристической кривой. Если почернения обеих линий и S(.p. не выходят за пределы области нормальных почернений, то [c.210]


Смотреть страницы где упоминается термин Стандарты для спектрального анализа: [c.90]    [c.118]    [c.391]    [c.168]    [c.198]    [c.421]    [c.215]   
Смотреть главы в:

Методы спектрального анализа -> Стандарты для спектрального анализа




ПОИСК





Смотрите так же термины и статьи:

Спектральный анализ

Стандарты



© 2025 chem21.info Реклама на сайте