Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность летучая

    Особо перспективной формой метода вычитания, на развитие которой целесообразно, по нашему мнению, обратить внимание, является двухстадийный вариант, первой стадией которого является вычитание, а второй— выделение (обратное вычитанию) и хроматографический анализ удаленных на первой стадии компонентов. Селективность, точность и надежность в этом варианте существенно выше, чем в обычном. Существенного упрощения метода можно достичь, используя эффективные, селективные летучие реагенты. Это направление также является весьма перспективным, в частности его использование позволяет наиболее просто реализовать двухступенчатый вариант. Представляет интерес также дальнейшая разработка метода для концентрирования примесей, в том числе и в анализе окружающей среды. [c.160]


    Процесс, при котором образуются более высоко кипящие продукты, чем исходное сырье, можно рассматривать как результат вторичных реакций при крекинге. В результате этих вторичных реакций по большей части и идет образование кокса. Образование кокса при крекинге в общем тем больше, чем тяжелее исходное сырье. Это связано с повышенным содержанием ароматических углеводородов в сырье и, следовательно, с его обеднением водородом, что ведет к образованию высококонденсированных, не растворимых в углеводородах веществ. Кокс не является чистым углеродом — оп содержит еще некоторое количество водорода и летучих соединений. С другой стороны, крекинг идет тем труднее, чем ниже пределы выкипания фракций. Поэтому, если очень широкая фракция подвергается крекингу в условиях, обеспечивающих расщепление ее наиболее низкомолекулярной части, то одновременно более высококинящая часть ее, расщепляясь, дает много кокса. Чтобы этого избежать, необходимо крекинг-сырье предварительно разделять на фракции, кипящие в относительно узких пределах, и каждую из фракций подвергать крекингу в наиболее подходящих для нее условиях (селективный крекинг). [c.38]

    Экстрактивный растворитель должен обладать высокой избирательностью, позволяющей заметно увеличивать относительную летучесть компонентов, и вместе с тем достаточной растворяющей способностью по отношению к разделяемым веществам. Растворители, хорошо воздействующие на летучие свойства компонентов, обычно обладают меньшей растворяющей способностью, поэтому во избежание опасности образования в колонне второй жидкой фазы приходится работать с большим относительным количеством растворителя. Использование растворителя с низкой растворяющей способностью, но обладающего большой селективностью приводит, таким образом, к снижению производительности колонны. Поэтому часто на практике к растворителю с высокой [c.339]

    Если сырье является смесью летучего растворителя и нелетучего компонента (скажем, экстракта на установке селективной очистки масел), кривую зависимости давления начала испарения Рн от температуры можно построить, пренебрегая давлением нелетучего компонента, т. е. по формуле [c.215]

    Окись этилена очень летуча. Ее выделение проводят при повышенном давлении (1—3 МПа). Увеличение давления и концентрации окиси этилена в газе позволяет повысить производительность или уменьшить объем аппаратуры. Давление не оказывает существенного влияния на селективность реакции. Последняя зависит от температуры и степени превращения этилена. Степень превращения регулируется временем контакта, т. е. объемной скоростью подачи газовой смеси на катализатор. Выход окиси этилена в промышленных условиях составляет 60—70% в расчете на прореагировавший этилен. [c.206]


    Спекание может быть замедлено путем диспергирования частиц активной фазы на развитой поверхности другого тугоплавкого инертного вещества (акция нанесения) или путем разделения их тугоплавкими блоками (стабилизация). Но спекание последних на практике не может быть проконтролировано. Миграция компонентов катализатора облегчается, если они растворимы в реакционном потоке или могут образовывать раствор в самом катализаторе. Например, некоторые переходные металлы могут переноситься в виде летучих карбонилов, галогенидов и окислов, многие другие — нерастворимые окислы и соли имеют достаточную растворимость в жидкостях (особенно в полимолекулярных слоях воды) или стабильны в виде газообразных гидратов. Эти свойства ускоряют спекание кристаллитов активной фазы. Особенно опасно указанное явление потому, что оно может произойти при малых парциальных давлениях случайных примесей, вполне достаточных для воздействия на рост кристалла и для движения вещества вдоль температурных градиентов, хотя не может быть причиной их выноса из реактора [1]. Наконец, поверхность может покрываться посторонними загрязнениями (пыль, ржавчина) или блокироваться такими продуктами побочных реакций, как жидкие полимеры или твердый кокс . Если вследствие этого изменяется распределение объема пор по величинам их радиусов, а скорость реакции определяется диффузией, то можно ожидать ухудшения селективности или активности. [c.18]

    Расчет конденсаторов для смесей паров. В результате селективной конденсации (сначала конденсируются менее летучие компоненты) состав пара, а также температура конденсации изменяются по длине конденсатора, что усложняет расчет. [c.191]

    Требования к селективному растворителю он должен быть дешевым и доступным, практически нерастворимым в воде, не разлагающимся при действии воды или растворенных в ней веществ, стабильным, относительно мало летучим обладать высоким коэффициентом распределения. [c.379]

    Дальнейшая возможность качественного определения представителей опреде.ченных классов веществ в смеси состоит в селективном превращении этих соединений в летучие производные перед газохроматографическим анализом. Превращенные компоненты можно узнавать по сдвигу пиков на хроматограмме предварительно обработанной пробы, которая отличается по своему качественному составу от исходной пробы. К таким методам селективного превращения можно отнести все виды гидрирования двойных связей и другие реакции с функциональными группами, как, папример, этерификация, омыление, образование простых эфиров и т. д. При практическом осуществлении этих методов анализа также можно использовать непрерывные и прерывные способы работы. Селективное превращение компонентов пробы особенно целесообразно в тех случаях, если нет в наличии чистых образцов тех соединений, которые присутствуют в анализируемой смеси соединений, или они менее доступны, чем продукты их превращения. [c.246]

    При низких температурах окисление парафина протекает медленно, и в природных условиях нарафинистая нефть в естественных выходах на поверхности образует, в результате испарения летучих фракций, твердые темные массы, заключающие много парафина. В подходящих условиях этот парафин вместе с другими соединениями может частично окисляться за счет бактериальной деятельности. Однако ни в опытах с абиогенным, ни с биогенным окислением не получено доказательств селективного воздействия окислителей именно на высокомолекулярные парафины при наличии в смеси других классов органических веществ. [c.57]

    Газовую хроматографию в основном используют для аналитического разделения смесей летучих компонентов и их идентификации. В этом методе можно достичь такой высокой селективности и чувствительности анализа, которая не достигается в других методах. Так, например, можно полностью разделить нефтяные фракции, содержащие более чем 20 компонентов. Высокотемпературная газовая хроматография дает возможность разделять сложные смеси компонентов с большой разницей [c.244]

    Разделение циркония и гафния труднее, чем любых соседних элементов, включая лантаноиды, так как их химические свойства ближе друг к другу, чем у всех остальных пар родственных элементов (рис. 3.99). Для отделения циркония от гафния применяют дробную кристаллизацию КгХгРе и К2Н Ре, ректификацию летучих соединений (ЭСЬ. и др.), ионный обмен, селективную экстракцию, последний метод наиболее широко применяют в промышленности. [c.503]

    Вследствие химической инертности неподвижные фазы на основе углеводородов пригодны для исследования почти всех летучих соединений, в том числе и некоторых агрессивных соединений, хотя при этом селективность углеводородных неподвижных фаз незначительна, за некоторыми вышеупомянутыми исключениями (см., например, выше о селективности углеводородов для разделения спиртов и перфторированных соединений). Далее, они играют важную роль как стандартные неподвижные фазы, поскольку совершенно неполярны и способны лишь к дисперсионным взаимодействиям. Сравнивая величины удерживания для этих и других фаз (напрпмер, акцепторов и доноров электронов), можно качественно оценивать неизвестные анализируемые вещества. Лучшим в этом отношении является сквалан, так как он может быть получен в очень чистом виде и устойчив к нагреванию. [c.190]


    При газохроматографическом исследовании высококипящих органических и летучих неорганических соединений имеется верхняя температурная граница для неподвижных фаз на органической, а также на крем-нийорганической основе эта граница определяется их давлением пара и способностью к разложению. Температуру выше 350° в течение длительного времени выдерживают лишь неорганические соли, которые могут применяться ири температуре выше их точки плавления или точки плавления их смесей и часто в соответствии со своим химическим составом обладают исключительной селективностью. [c.214]

    На скорость, направление и селективность гидрирования некоторое влияние оказывает и реакционная среда, т. е. природа и количество растворителя. Наиболее часто в качестве растворителя используются этиловый и метиловый спирты, уксусная кислота, реже - диоксан, бензол (очищенный от тиофена), циклогексан и др. Лучшие растворители водорода - насыщенные углеводороды, в которых его растворимость в 3 раза выше, чем в спиртах, однако они не всегда достаточно хорошо растворяют восстанавливаемые органические соединения. Слишком летучие растворители, в частности эфир, при высоких температурах создают дополнительное давление в реакторе (автоклаве), при низких - затрудняют точное измерение количества поглощенного водорода. Вода иногда применяется при гидрировании кислот, их солей и других растворимых в ней веществ. Обнаружено, что она ухудшает избирательность восстановления винилгалогенидов, способствуя гидрогенолизу связи С-галоген. [c.39]

    Результаты работ Синфелта и сотр. [17—20] по исследованию влияния парциальных давлений этана и водорода на скорость гидрогенолиза достаточно хорошо согласуются с механизмом, предложенным Тейлором [2, 13]. При этом порядок реакции по углеводороду близок к единице и отрицателен по водороду. Полученные данные хорошо согласуются также с представлениями об интенсивном дегидрировании на поверхности, предшествующем медленной стадии разрыва С—С-св>1зей. Синфелтом [20] на примере гидрогенолиза алканов рассмотрена связь активности и селективности металлических катализаторов с положением металла в периодической системе элементов, а также некоторые вопросы определения дисперсности металлов, особенности их каталитического действия, катализ на биметаллических системах и сплавах. Отмечено, что тип активных центров на поверхности металла определяется его дисперсностью. Доля координационно ненасыщенных атомов, расположенных на ребрах и вершинах кристаллов, резко увеличивается с уменьшением размеров кристаллитов и почти равна единице в случае кластеров, включающих несколько атомов. Этим обусловлено влияние дисперсности металла на удельную активность металлических катализаторов, что проявляется для большой группы структурно-чувствительных реакций. При катализе на сплавах важное значение приобретает возможное различие составов на поверхности и в объемах сплавов. Введение в систему даже малого количества более летучего компонента часто приводит к значительному обогащению им поверхности сплава. [c.91]

    Продукты, разделенные непрерывным термо диффузионным методом, обладают некоторыми аномальными свойствами. Нефтяные фракции, полученные в качестве верхних продуктов, имеют более высокие индексы вязкости, меньшую плотность, более светлую окраску и большую стойкость к окислению, чем равновязкие масла обычной очистки. Вместе с тем они заметно менее летучи, чем равновязкие масла селективной очистки. [c.45]

    К Р. X. иногда относят газовую хроматографию с использованием селективных неподвижных фаз (сорбентов), взаимод. к-рых с разделяемыми компонентами анализируемой смеси основано на комплексообразовании в неподвижной фазе. Так, используя в качестве комплексообразователя соли серебра, можно разделить цис- и транс-томеры нек-рых непредельных летучих соед. и их изомеры, отличающиеся только содержанием и положением в молекуле атомов дейтерия. [c.216]

    Другая основная операция, проводимая в вакуумных системах,— разделение веществ на основе разных упругостей их паров. Этот процесс проходит количественно в том случае, если упругости паров различаются на три порядка этот способ непригоден для разделения веществ с близкими температурами кипения. Разделение может быть основано на конденсации менее летучего компонента или на селективном испарении более летучего компонента более эффективным является первый способ. Работу применяемой для этой цели аппаратуры (рис. 586) можно пояснить на примере [c.664]

    Для спектрального анализа молибдата аммония на содержание примесей кальция основу переводят в низколетучую форму, добавляют селективный летучий носитель, фракционируют дистилляцией в дуге постоянного тока. Молибден превращают в карбид смешиванием молибденового ангидрида с угольным порошком. Носителем и одновременно внутренним стандартом служит окись меди (6%). Спектрографируют на спектрографе ИСП-22 в дуге (5 а) с угольными электродами по аналитическим пиниям Са 3933,67 - Си 4062,7 А [566]. [c.125]

    На селективность, кроме того, сильно влияет температура. Оказалось, что полное окисление имеет более высокую энергию акТ .. вацни, поэтому при постоянной степени конверсии этилена селективность падает с повышением температуры (см. рис. 123, а, тр. 416). Оптимальным считается интервал 220—280 °С, однако иыгодное для селективности снижение тимпературы приводит к уменьшению производительности катализатора. Этот эффект компенсируют проведением процесса под давлением 1—3 МПа, которое не влияет на селективность и одновременно облегчает абсорбцию летучего оксида этилена из реакционных газов. [c.434]

    Каталитические свойства этих фаз практически одинаковы. Но пи од га из иих в отдельности не может быть использована в качестве катализатора на ппактике. В условиях реакции три-окснд мо.чибде.ча слишком летуч, и его удельная поверхность очень быстро убывает. Железо понижает летучесть оксида молибдена и препятствует уменьшению его удельной поверхности. Однако некоторое количество молибдена постепенно улетучивается с поверхности молибдата железа, и тогда снижается селективность. В присутствии избытка молибдена такого обеднения поверхностп не происходит. Поэтому время жизни смешанного катализатора намного превышает время жизни каждого из компонентов в отдельности. [c.16]

    Экзинит находится в витрините обычно в тонкодисперсном состоянии. В случае слабоспекающихся углей с высоким выходом летучих тесный контакт этих двух мацералов позволяет иногда экзиниту (легко размягчающемуся) растворять витринит, который при самостоятельном коксовании остается твердым или, как обычно говорят, инертным . Поведение угля зависит, таким образом, не только от индивидуальных свойств их мацералов и их соотношения, но также от их распределения. С другой стороны, спекание малоплавких компонентов (инертинит или витринит углей очень низкой степени метаморфизма) изменяется в зависимости от степени их дисперсности. В развитие этого положения была создана целая доктрина [9], в частности в ФРГ и США, сторонники которой исследуют зависимости между долевым участием, равномерностью распределения и степенью дисперсности различных мацералов в коксуемой угольной шихте и качеством кокса. Практическое значение этой доктрины было испытано в методе селективного помола , называемом иногда петрографическим дроблением , но представляется, что до настоящего времени получен лишь ограниченный результат. Зато эти исследования представляют интерес для объяснения поведения определенных специфических углей (см. ниже). [c.90]

    Как видно из приведенных да1И1ых, парафины более летучи, чем олефины, а бутадиен вследствие наличия двух двойных связей удерживается селективным растворителем наиболее сильно [45]. [c.197]

    Ка>1 дый агрегат для экстрактивной перегонки состоит из колонны со 100 тарелками, которая разделена на две колонны (секции) по 50 тарелок. Смесь веществ, подлежащих ра делетпо, вводят в жидком виде на тарелку, расположенную вблизи ][ижнего конца первой секции. Селективный растворитель поступает в ту ке колонну на несколг.ко тарелок ни ке ее верха он отбирается из куба отнарной колонны, в которой от фурфурола отгоняют поглощенные им легкокипящие углеводороды. Перетекая сверху вниз, с тарелки иа тарелку, растворитель извлекает из разделяемой смеси мепее летучий компопеит. Поскольку в фу])фурол переходят так ке небольшие количества второго, более летучего комиоиента, растворитель из первой секции поступает на верхнюю тарелку второй секции, в которой происходит дополнительная ректификация. При этом от фурфурола вместе с подавляю- [c.197]

    Так, весьма селективным сорбентом по отношению к хлор- и фосфорсодержащим пестицидам, ПХБ, ПХДД, ПХДФ и ПАУ жляется пенополиуретан (ППУ) плотностью 0,021 г/см , известный в быту как поролон. Он относительно дешев, прост в изготовлении, легко меняет свою форму и позволяет производить пробоотбор с высокой скоростью. Малолетучие ХОС почти полностью задерживаются ППУ, в то время как достаточно летучие вещества, например альдрин, сорбируются лишь на 50%. Фосфорсодержащие пестициды поглощаются ППУ на бб-вб /о, а ПХБ - на 70-85%. Блок из пенополиуретана толщиной 15 см способен полностью поглотить примеси ПХБ из 2700 м [32-35]. Для отбора гфоб воздуха на содержание ПХБ в индустриальных зонах используют и ам-берлит ХАО-2 [36,37]. Подобно пенополиуретану и ХАВ-2, хорошими сорбционными свойствами по отношению к ХОС обладают тенакс ОС, хромосорб 102, порапак Я [7]. Подтверждением высокой эффективности указанных сорбентов служат данные, представленные в табл. 5.3, [c.177]

    Газовую хроматографию также можно применять в анализе следовых количеств элементов. Многие элементы, например А1, Сг, Ве, 2п, (лг, 1п, Си и др., образующие летучие и термически достаточно устойчивые комплексы, можно селективно обнаружить, и количественно определить. Для анализа можно применять такие комплексные соединения, как ацетилацетонаты,. фторированнь1е диэтилдитиокарбаминаты и в первую очередь фторированные -р-дикетонаты. Последние термически очень устойчивы, и, кроме того, электронный детектор особенно чувствителен к фторированным соединениям. При этом абсолютный предел обнаружения равен 10 г. Из-за небольшого объема анализируемой пробы при работе с растворами предел обнаружения в этом случае такой же, как в ААС. [c.418]

    Как и в гидридном методе, селективность синтеза МОС позволяет уже при протекании первой стадии процесса достигнуть весьма существенной очистки металла от сопутствующих примесей. Синтезированные металлоорганичеекие соединения, как правило, содержат лишь примеси углеводородов и других МОС того же металла, но не содержат заметных количеств примесей других металлов. Более полное удаление последних осуществляется в двух других стадиях. Термораспад МОС протекает при достаточно низких температурах, что является преимуществом рассматриваемого метода по сравнению с галогенидным методом, поскольку при этом снижается вероятность загрязнения получаемого металла материалом аппаратуры. Другим преимуществом данного метода является принципиальная возможность его более широкого применения, чем галогенидного и гид-ридного методов, так как летучие МОС известны для большин- [c.14]

    Для отделения циркония от гяфния применяют дробную кристаллизацию комплексных фторцдов Кг17х ь] и К2[НГРб , ректификацию летучих соединений ЭСЦ и других ионный обмен, селективную экстракцию (последний метод наиболее щироко применяют я промышленности). [c.488]

    Удаление основы с помощью химической реакции. Проводят предварительные селективные гетерогенные реакции между твердой основой н химически активным газом с отгонкой полученного летучего соединения. Используются реакции окисления, галогепи-рования и некоторые другие. К этому типу относятся способы удаления органических веществ. Необходимо подчеркнуть, что для графитовых и полимерных органических материалов это практически единственный метод удаления основы. Общее представление о типах гетерогенных реакций и условиях отгонки можно получить из табл. 2.5. [c.199]

    Регулируемая селективность масс-спектрометра как хроматографического детектора означает следующее параллельно с хроматограммой анализируемого образца по полному ионному току могут быть записаны одна или несколько хроматограмм по заранее выбранным значениям miz (так. называемые масс-фрагменто-граммы) . Следует подчеркнуть, что предел обнаружения в этом методе примерно в 100 раз меньше, чем по полному ионному току, что обусловлено снижением уровня шумов. Такой прием дает возможность даже в сложных смесях легко обнаруживать присутствие веществ, дающих в масс-спектрах сигналы с характеристичными массовыми числами, и широко применяется при анализе следов галогенсодержащих соединений в воздухе (на фоне относительно большого количества углеводородов), аминокислот в виде их летучих производных, метаболитов лекарственных препаратов и т. д. Для повышения чувствительности масс-фрагментограммы, как правило, записывают по массовым числам максимальных сигналов в спектрах анализируемых веществ. [c.201]

    Каменноугольный пек представляет сложную смесь различных органических веществ (до нескольких сот). Из них химически индентифици-рованы лишь несколько десятков [93]. Поэтому пеки характеризуют по фракционному или компонентному составу. Группы веществ в пеках, имеющих определенную молекулярную массу, растворяются в одних растворителях и не растворяются в других. В результате многочисленных работ по разделению селективным растворением пека на фрак ции в настоящее время отобраны следующие растворители петролейный эфир (гептан), бензол (толуол), пиридин (хинолин). Часть пека, растворяемая в петролейном эфире, названа -у-фракцией, или мальтенами растворимая в бензоле, нерастворимая в петролейном эфире — -фракцией, или асфальтенами часть, нерастворимую в бензрле (толуоле), а-фрак-цией, или карбоидами. В последнее время а-фракцию стали подразделять на ai-фракцию и а2-фракцию. Фракция а не растворима в пиридине (хинолине). Предполагается, что она состоит из частичек угля, попавших в смолу, частичек сажи, образовавшихся при деструкции летучих продуктов, выделяющихся из каменного угля при его нагреве, а также из высокомолекулярных органических веществ. Молекулярная масса (средняя величина) каждой фракции мальтены 400—500 асфальтены — 700-800 карбоиды - 2000. Каменноугольный пек состоит в основной своей массе из ароматических, а также из гетероциклических молекул. В пеке обнаружены соединения, имеющие гетероциклы с кислородом, азотом и серой. Элементарный состав пека, отличающийся способом получения и температурой начала размягчения, представлен ниже, % [94]  [c.150]

    Хим. р-ции проводят в хроматографич, системе (в спец. микрореакторе или устройстве для ввода пробы, хроматографич. колонке, детекторе) или вне ее для улучшения разделения в-в, понижения предела их обнаружения, повышения селективности и т. д. Напр., для определения микроколичеств Ве и нек-рых др. элементов в лунной пыли и лунной породе пробы обрабатывали таким образом, что образовывались летучие и достаточно стабильные трифтор-ацетилацетонаты металлов, к-рые затем с высокой чувствительностью и селективностью анализировали методами газовой хроматографии. Превращение орг. к-т в их неполярные бензиловые эфиры не только приводит к существенному улучшению характеристик газохроматографич. анализа (получаются симметричные пики, улучшается разделение и т.д.), но и к значит, понижению пределов обнаружения. [c.216]

    Из ур-ния следует, что более летучий компонент обладает и большей р-римостью. Отношение р-римостей компонентов характеризует селективность извлечения. Во мн. случаях для ее повышения в сверхкритич. газ вводят малые добавки полярных в-в - модификаторов (напр., ацетон, метанол, этанол, трибутилфосфат). Последние способны образовывать донорно-акцепторные комплексы с нек-рыми в-вами, [c.421]

    Одним из решений этой проблемы является так называемая многоступенчатая хроматография, при которой работают с двумя и более колонками, соединенными последовательно [219]. Отдельные колонки могут отличаться друг от друга как по температуре, так и по виду наполнителя. При высокой температуре на первой колонке хорошо делятся наиболее высококипящие компоненты смеси, и результаты разделений регистрируются. Неразделенные или частично разделенные низкокипящие компоненты направляются в следующую колонку, находящуюся при более низкой температуре при наличии еще более летучих неразделенных компонентов они могут быть разделены на еще более холодной третьей колонке и т. д. На этом принципе основан, например, трехступенчатый хроматограф фирмы Перкин — Эльмер . Другая модификация такого прибора выпущена фирмой Консолидейтед (модель 26-202). В ней используется короткая первичная колонка, которая служит для задержания наименее летучих компонентов смеси. Если в задачи исследования не входит анализ нелетучих компонентов, то их можно током газа-носителя через отдельную линию удалить из колонки, после чего прибор готов для дальнейших анализов. Используя последовательно соединенные колонки с различными наполнителями, можно достигнуть комбинированного эффекта разделения. Например, последовательным соединением колонок с полярным и неполярным наполнителями можно добиться разделения как по полярности, так и по температурам кипения. Принципы подбора наиболее выгодных комбинаций и наиболее селективных неподвижных фаз рассмотрены в работах [31, 152, 204, 224]. Другая возможность состоит в употреблении смешанных неподвижных фаз (см., например, [187]). [c.518]

    Газовая хроматография (ГХ) — наиболее важный метод разделения летучих органических веществ. После середины 1950-х гг. разработано множество детекторов для газовой хроматографии некоторые из них обладают отличной чувствительностью и/или селективностью (см. разд. 5.1). Однако движущей силой для разработки и создания гибридных систем ГХ-МС и ГХ-ФПИК (ИК-спектроскопия с фурье-преобразованием) была необходимость бесспорного детектирования разделенных соединений. [c.598]

    В то время как газовая хроматография является ключевым методом разделения для летучих соединений, жидкостная хроматография (ЖХ) - ее эквивалент для полярных и высокомолекулярных соединений. Однако в отличие от ГХ, ЖХ испытьшает недостаток детекторов, которые одновременно чувствительны и специфичны или хотя бы селективны (см. разд.5.2). Большинство обычно используемых детекторов либо чувствительны, но не специфичны (например, рефрактометрический или флуоресцентный детекторы) или в некоторой степени специфичны в ущерб чувствительности (например, детектирование с диодной матрицей). Это вызвало развитие гибридных ЖХ-методов, гарантирующих оба этих свойства. [c.620]

    Ионизация определяемого вещества осуществляется либо путем химической ионизации с использованием растворителя, либо за счет термораспыления. В первом случае используются электроны с распылительного электрода или нити накала для ионизации молекул растворителя, что затем инициирует перенос заряда на определяемое вещество. Другой вариант основан на механизме ионного испарения из капель, в которые включен летучий растворитель. В зависимости от того, используется ли разрядный электрод, изменяется механизм ионизации, что сильно изменяет селективность. Ионное испарение обычно приводит к ионам [М-ЬН]" " для проб с высоким сродством к протону. Или же детектируются ионы [М4-КН4] , если в буфере присутствует, например в форме ацетата аммония. Если детектируют отрицательно заряженные ионы, обнаруживаются либо ионы [М+Н] , либо отрицательно заряженные кластерные ионы, образуемые молекулами определяемого вещества и растворителя или анионами буфера. Однако оба варианта ионизации являются мягкими, поэтому приводят лишь к ограниченной фрагментации. Тем не менее, для получения характеристичного спекара фрагментации в ТРС-ЖХ-МС-анализе часто используют двойные квадрупольные приборы. В отличие от одинарных квадрупольных приборов, МС/МС-приборы позволяют получать фрагментационный спектр молекулярных ионов, выделяемых первым квадру-полем (рис. 14.3-3). Ионы вводятся через отсекатель с маленьким отверстием, который достигает непосредственно ионизационной камеры. Это позволяет достигать высокого вакуума, требуемого для разделения ионов. [c.623]

    В промышленном контроле ПИА можно использовать в различных вариантах. Проточно-инжекционный метсд с градиентным разбавлением [16.4-43, 16.4-44] использовался при мониторинге красильных процессов. Методы проточно-инжекционного титрования, базирующиеся на измерении ширины пиков, также используются в промышленном анализе [16.4-45, 16.4-46]. Силиконовые мембранные сепараторы в настоящее время внедряют в процесс проточно-инжекционного анализа для повышения селективности [16.4-47]. Эти мембранные сепараторы применяют и в ферментационном мониторинге, где среда с культурой приводится в контакт с буферными растворами через мембраны [16.4-48,16.4-49]. Газо-диффузионнью ПИА-системы позволяют определять многие летучие компоненты, такие, как аммиак, диоксид углерода, уксусную кислоту, озон, хлор и амины [16.4-50, 16.4-51]. [c.663]


Смотреть страницы где упоминается термин Селективность летучая: [c.299]    [c.84]    [c.19]    [c.292]    [c.37]    [c.383]    [c.681]    [c.135]    [c.59]    [c.224]    [c.607]    [c.349]   
Руководство по газовой хроматографии Часть 2 (1988) -- [ c.41 ]




ПОИСК







© 2025 chem21.info Реклама на сайте