Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсные системы Растворы 240). 68. Процесс образования растворов

    КОЛЛОИДНЫЕ СИСТЕМЫ (коллоиды, коллоидные растворы) — гетерогенные дисперсные системы с предельно высокой дисперсностью. К- с. занимают промежуточное положение между истинными растворами и грубодисперсными системами (суспензиями, эмульсиями). Размеры коллоидных частиц от 10 до 10 см. Образование К. с. связано с двумя процессами коагуляцией и пеп-тизацией (см. Коагуляция. Пептизация). [c.131]


    Образование твердых тел с характерными для них механическими свойствами также теснейшим образом связано с процессами, изучаемыми современной коллоидной химией в виде проблемы структурообразования в дисперсных системах (суспензиях) и в растворах высокомолекулярных соединений, представляющих собой, соответственно, коагуляционные и конденсационные структуры. [c.14]

    Следуя логической схеме Щукина и Ребиндера, оценим прирост энтропии при образовании дисперсной системы в процессе диспергирования стабильной макрофазы. Для этого будем рассматривать дисперс-в N4 молях растворителя, как идеальный или регулярный раствор ную систему, содержащую Лх частиц (или Л (=Л°1/Ыа молей частиц) Тогда увеличение энтропии при образовании дисперсной системы можно выразить как увеличение энтропии при смешении  [c.115]

    Кристаллизация в дисперсных системах как процесс складывается из ряда этапов, к которым относятся образование пересыщенного раствора или переохлажденного расплава, образование зародышей, рост кристаллов. Очередность отдельных этапов во времени может быть разной. Либо они следуют друг за другом, либо протекают одновременно, совмещаясь друг с другом. Все эти явления должны тщательно учитываться при проектировании аппаратуры, используемой для практического осуществления процесса в условиях промышленного производства. [c.9]

    Лиофильные (термодинамически агрегативно устойчивые) дисперсные системы, как и истинные растворы, могут образовываться самопроизвольно — равновесное состояние системы отвечает миниму.му энергии Гиббса. Это означает, что из любого другого состояния система переходит в данное состояние с уменьшением энергии Гиббса, т. е. термодинамически агрегативно устойчивые дисперсные системы — системы равновесные, обратимые. Процесс образования таких систем можно представить термодинамическим соотношением  [c.326]

    Порционная подача растворителя является эффективным способом создания благоприятных гидродинамических условий для роста кристаллов парафинов путем регулирования вязкости и концентрации фаз дисперсной системы в процессах депарафинизации и обезмасливания. При порционной подаче растворителя создаются условия для раздельной кристаллизации высоко- и низкоплавких парафинов. При первом разбавлении сырья часть растворителя подается в количестве, достаточном для образования первичных, наиболее крупных, кристаллов из высокоплавких парафинов нормального строения. При дальнейшем охлаждении раствора с подачей следующей порции растворителя осуществляется кристаллизация на первичных кристаллах более низкоплавких компонентов, в состав которых могут входить низкомолекулярные н-алканы, изоалканы и циклические углеводороды. Такой способ подачи растворителя позволяет не только повысить скорость фильтрования и выход депарафинизата, но и проводить процесс с большей скоростью охлаждения. [c.521]


    В непористых мембранах из-за отсутствия пор в плотном слое резко сокращается количество вещества, адсорбированного поверхностью, решающую роль играет растворимость газов в матрице мембраны. Процесс идет по механизму абсорбции, который условно включает стадии поверхностной сорбции и последующего растворения газа при этом возможна диссоциация молекулы газа или образование нового химического соединения. Таким образом, проникающее вещество и матрица мембраны образуют растворы, которые могут быть однофазными (в высокоэластичных полимерах) или гетерофазными (в полимерах композиционно-неоднородной структуры). Во втором случае необходимо различать дисперсную фазу и дисперсионную среду. В полимерах роль дисперсной фазы играют структурные образования, характеризующиеся периодичностью расположения макромолекул и большой плотностью упаковки. Обычно принимают, что проникающее вещество растворяется и мигрирует только в дисперсионной среде, обычно аморфной фазе, обладающей значительной долей свободного объема и большей подвижностью элементов полимерной матрицы. Мембраны, изготовленные из композиционных материалов с наполнителями или армирующими элементами, представляют собой многофазные системы. [c.71]

    Как дисперсную систему — жидкостную эмульсию — следует рассматривать в предкритической области дистиллятное нефтяное сырье, подвергаемое очистке селективными растворителями. При критической температуре происходит нарушение агрегатной устойчивости системы и разделение ее на рафинатный и экстрактный растворы. Большое значение приобретают исследования коллоидно-химических процессов образования эмульсий в многокомпонентных нефтяных системах с ограниченно растворяющимися компонентами. В модельных бинарных системах самопроизвольно образуются обратимые эмульсии, существующие в определенном интервале концентраций и температур, вне которого они разрушаются с образованием двух макрофаз или являются гомогенной системой [9]. [c.34]

    В этом случае снижается влияние теплового движения на изменение структуры и состояния нефтяной дисперсной системы. Важную роль в этих системах играют межмолекулярные взаимодействия, которые ответственны за структуру структурированных нефтяных дисперсных систем. Следует отметить важные особенности поведения нефтяных дисперсных систем при пониженных температурах. При понижении температуры нефтяной фракции уменьшается тепловое движение молекул жидкости, замедляется перемещение и конфигурационное изменение макромолекул в пачках и пакетах, начинаются процессы достройки пакетов и пачек углеводородами, кроме того может происходить создание новых пачек и пакетов из-за пересыщения раствора при понижении температуры. На поверхности частиц дисперсной фазы, состоящей в том числе из асфальтенов, смол, других включений, может происходить достройка отдельных их участков, с образованием усов , которые вырастают из мицеллярных структур. Происходит смыкание мицеллярных структур с созданием крупных агрегатов или глобул. Это приводит к снижению агрегативной и кинетической устойчивости нефтяных дисперсных систем. Указанные процессы можно описать аналитически с применением математического аппарата. [c.62]

    Размеры образующихся частиц зависят от условий проведения процесса конденсации, в принципе — от соотношения между скоростями двух одновременно идущих процессов образования зародышей и роста их. Для получения мелких частиц (т. е. частиц дисперсной фазы в будущей дисперсной системе) необходимо значительное преобладание скорости первого процесса над скоростью второго. Практически такие условия создаются либо в весьма разбавленных растворах реагирующих веществ, либо, наоборот, в достаточно концентрированных растворах, когда образуется сразу много зародышей кристаллизации, не успевающих вырасти до больших размеров. В первом случае образуется золь (коллоидная система), во втором получается мелкокристаллический осадок, который можно в определенных условиях перевести в коллоидный раствор. [c.77]

    В развитии указанных основных проблем современной науки и техники фундаментальное значение приобретают коллоидная химия и реология в тех основных формах, которые сложились под влиянием физико-химической механики и соответствующих областей практики. Большое значение коллоидной химии, т. е. учения о дисперсных системах и поверхностных явлениях, и реологии в развитии физикохимической механики связано с тем, что реальные твердые тела и отдельные кристаллы обладают своеобразной коллоидной структурой кроме того, образование твердых тел с характерными для них механическими свойствами зависит от процессов, изучаемых современной коллоидной химией и реологией в виде проблемы структурообразования в дисперсных системах (суспензиях) и в растворах высокомолекулярных соединений. Поэтому прежде чем рассматривать основные принципы и содержание физико-химической механики, необходимо вначале изложить те разделы коллоидной химии и реологии, с которыми непосредственно связана эта наука. [c.4]


    В основе конденсационных методов лежит процесс образования частиц дисперсной фазы из вещества, находящегося в молекулярном или ионном состоянии. Необходимое требование создать пересыщенный раствор, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических и химических условиях. [c.104]

    Особую роль играет управление свойствами первичной коагуляционной структуры на начальном этапе структурообразования [463]. И. Г. Гранковским [147] было показано, что в конце первой стадии структурообразования (рис. 22) образуется пространственный каркас коагуляционной структуры. Она еще малопрочна, а в ней уже заложены дефекты, которые в своем развитии приводят к потере прочности. Поэтому в начальном состоянии структуры, именно в этот момент, наиболее целесообразно прикладывать механические (вибрационные) воздействия, чтобы с наименьшей затратой энергии разрушить возникшие рыхлые коагуляционные образования и обеспечить равномерность распределения частиц и уплотнение дисперсной системы, что в дальнейшем приводит к более плотной и совершенной коагуляционной и кристаллизационной структурам. Установлено также, что при помощи механических воздействий в зависимости от продолжительности интенсивности и времени приложения (рис. 24) можно регулировать продолжительностью начальных стадий формирования дисперсной структуры, т. е. сокращать или удлинять период формирования (или сроки схватывания) в процессе твердения цементной суспензии. Сокращение сроков схватывания очень важно в условиях твердения цементного раствора при пониженных температурах. [c.191]

    В главе II рассматриваются закономерности и механизм образования пространственных дисперсных структур в белковых системах па разных уровнях организации макромолекул белка с учетом их конформационных особенностей и процессов образования новой лиофильной дисперсной фазы из пересыщенных растворов в биомолекулярных системах. [c.5]

    Анализ проведенных исследований показал, что в целом решается комплекс проблем по повышению нефтеотдачи от фундаментальных исследований физико-химических основ подбора химреагентов, изучения свойств и вытеснения нефти до опытнопромышленных работ и внедрения разработок. Проведен комплекс работ по созданию химических композиций на основе полифункциональных органических соединений с регулируемыми вязкоупругими, вытесняющими и поверхностно-активными свойствами с целью избирательного воздействия на нефтенасыщенный пласт в тex юлoгияx повышения нефтеотдачи и обработки призабойной зоны пласта применительно к исследуемым месторождениям Республики Башкортостан. Теоретически разработана и экспериментально подтверждена концепция эффективного применения полифункциональных реагентов, обладающих свойством межфазных катализаторов. Изучен механизм взаимодействия полифункциональных реагентов с нефтью и поверхностью коллектора с использованием различных методов спектрофотометрии. Выявлены основные закономерности, происходящие в пласте под воздействием химреагентов. Установлено, что при взаимодействии ПФР с металлопорфиринами нефтей происходит процесс комплексообразования по механизму реакции экстра координации. Образование малоустойчивых экстракомплексов приводит к изменению надмолекулярной структуры МП и изменению дисперсности системы. Проведены сравнение реакционной способности различных ПФР и расчет констант устойчивости экстракомплексов. Показано, что наибольшей комплексообразующей способностью обладают ими-дозолины. Определены факторы кинетической устойчивости различных нефтей до и после обработки реагентами. Установлено, что реагенты уротропинового ряда обладают большей диспергирую-и ей способностью, чем имидозолины. Уменьшение размера частиц дисперсной системы вызывает снижение структурной вязкости нефти, что в конечном счете положительно сказывается на повышении нефтеотдачи. Показано, что вязкость нефти после контакта с водными растворами ПФР снижается в 3-8 раз. Оптимальные концентрации реагентов зависят как от структуры применяемого ПФР, так и от состава исследуемой нефти. [c.178]

    Еще отчетливее, пожалуй, различие между гомогенными растворами высокомолекулярных соединений и коллоидно-гетерогенными дисперсиями проявляется при их взаимных превращениях в процессах разделения метастабильных (пересыщенных) гомогенных растворов на две фазы, приводящих к образованию высокомолекулярных дисперсных систем и дисперсных структур. По Ребиндеру и Щукину, лиофильные дисперсные системы, сохраняющие двухфазность, характеризуются весьма низкими значениями межфазной поверхностной энергии. [c.56]

    В соответствии с принципами физико-химической механики образование пространственных дисперсных структур в белковых системах следует рассматривать во времени в процессе развития структуры на разных уровнях организации макромолекул белка с учетом их конформационных особенностей и процессов образования новой лиофильной дисперсной фазы. Это образование новой фазы происходит в биополимерных системах из пересыщенных растворов путем создания контактов между частичками, приводящих к [c.128]

    Физико-химия полимеров в значительной степени под влиянием успехов современной коллоидной химии как физико-химии поверхностных явлений в дисперсных системах и физико-химической механики дисперсных структур сталкивается с необходимостью рассмотрения процессов, приводящих к возникновению межфазных границ, т. е. возникновению гетерогенности (двух- или много-фазности) в первоначально истинном растворе полимера при повышении его концентрации или при изменении температуры, например, при гелеобразовании, или в блочных полимерах при частичном образовании кристаллической дисперсной фазы, сосуществующей с аморфной средой. Возникновение так называемых надмолекулярных структур зачастую сводится к образованию частиц новых фаз, так что система, в которой эти процессы происходят, становится двухфазной, с явно выраженной поверхностью раздела. [c.262]

    Далее началось исследование ряда полимерных систем, являющихся типично коллоидными (дисперсии, латексы, наполненные полимеры, смеси полимеров и пр.). Все это дало возможность рассматривать полимеры как гетерогенные системы, характеризующиеся различными уровнями гетерогенности как в растворе, так и в блоке. Таким образом, начался и продолжается процесс сближения физической химии полимеров и коллоидной химии, если последнюю, следуя Ребиндеру [29], определить как раздел физической химии, в котором рассматриваются процессы образования и разрушения дисперсных систем, а также их характерные свойства, связанные в основном с поверхностными явлениями на границах раздела фаз в этих системах . [c.9]

    Молекулярные коллоиды — гомогенные однофазные лиофильные системы, устойчивые и обратимые, образующиеся самопроизвольно их частицы состоят из отдельных сольватных макромолекул. Эти дисперсные системы образуются из природных или синтетических высокомолекулярных веществ, которые имеют большую молекулярную массу (от десяти тысяч до нескольких мНоТлиопов). Молекулы этих веществ имеют размеры коллоидных частиц, поэтому их истинные растворы рассматриваются как коллоидные системы. Образование молекулярных коллоидных систем происходит в процессе набухания, при котором молекулы дисперсионной среды проникают в твердый полимер, раздвигая макромолекулы. При неограниченном набухании полимер переходит в растворимое состояние с образованием гомогенной системы. [c.73]

    В связи с изложенными представлениями для правильного понимания и корректной оценки факторов, обусловливающих самопроизвольное диспергирование в коллоидных системах, целесообразно также привести в качестве примера случай полной термодинамической стабильности спонтанно образующейся коллоидно-дисперсной системы. Таков процесс мицеллообразования в водных растворах мылоподобных ПАВ, например неионогенных мыл типа полиэтиленглико,левых эфиров с длинной алкильной цепью. В данном случае фактор (в) (резкий рост АР при малых г) обусловливается указанной нами ранее причиной [31] — зависимостью а от г. Действительно, дробление мицелл, имеющих оболочку из полярных групп и соответственно очень низкое значение а на границе с водой, должно привести к вскрытию углеводородных ядер и образованию новых поверхностей раздела углеводород/вода с высоким значением о, т. е. к резкому росту эффективного значения а при уменьшении г, поддающемуся количественной оценке на основе приближенной геометрической модели (А. В. Перцов). Подобную картину мы имеем и в известном слу- [c.170]

    Эмульсии относятся к микрогетерогенным системам, частицы которых видны в обычный оптический микроскоп, а коллоидные растворы принадлежат к ультрамикрогетерогенным системам, их частицы не видны в обычный микроскоп. Хотя по своей природе эти системы близки, но физико-химические их свойства различны и зависят в значительной степени от дисперсности. При образовании эмульсии образуется огромная поверхность дисперсной фазы. Так, количество глобул воды в одном литре 1%-ной высокодисперсной эмульсии исчисляется триллионами, а общая межфазная площадь поверхности — десятками квадратных метров. На такой огромной межфазной поверхности может адсорбироваться большое количество веществ, стабилизирующих эмульсию. В процессе образования эмульсии на хщспергирование жидкости затрачивается определенная работа и на поверхности раздела фаз концентрируется свободная поверхностная энергия — избыток энергии, содержащейся в поверхностном слое (на границе двух соприкасающихся фаз). Энергия, затраченная на образование единицы межфазной поверхности, называется межфазным поверхностным натяжением. Удельная поверхностная энергия измеряется работой изотермического и обратимого процесса образования единицы поверхности поверхностного слоя и обозначается а. [c.15]

    Конденсация. Все методы конденсации, или конденсационные методы, сводятся к тому, что частицы предельно раздробленного вещсства, т. е. вещества, находящегося в растворенном состоянии или в виде пара, когда его молекулы разобижены, подвергаются укрупнению, соединяясь друг с другом и образуя более крупные агрегаты. Процесс коггденсации вещества в состоянии отдельных молекул (или нонов) может произойти только в том случае, если это вещество пересыщает раствор или газовую смесь. Таким образом, кондеисациоиный процесс образования гетерогенной дисперсной системы происходит в две стадии 1) образование пересыщенного раствора или пара и 2) собственно конденсация из пересыщенного раствора или пара. Конденсационные методы отличаются от дисперсионных тем, что раз начавшийся процесс конденсации идет далее самопроизвольно и сопровождается отдачей энергии. Все усилия при искусственном иолучении гетерогенных дисперсных систем иосредством метода конденсации сводятся к получению пересыщенного раствора или пара, что может быть достигнуто двумя способами 1) понижением растворимости или давления пара путем охлаждения или замены растворителя или 2) образованием [c.189]

    Укрупнение частиц может идти двумя путями. Один из них, называемый изотермической перегонкой, заключается в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные растут. Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой /соаг(/ля <и/о, заключающуюся в слипании (слиянии) частиц дисперсной фазы. В общем смысле под коагуляцией понимают дотерю агрегативной устойчивости дисперсной системы. Коагулящ я в разбавленных сИЖМах приводит к потере, седимеитационной устойчивости и в конечном итоге к расслоению (разделению) фаз. К процессу коагуляции относят адгезионное взаимодействие частиц дисперсной фазы с макроповерхностями. В более узком смысле коагуляцией называют слипание частиц, процесс слияния частиц получил название коалесценции. В концентрированных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда. В соответствии с двумя разными результатами коагуляции различаются и методы наблюдения и фиксирования этого процесса. Укрупнение частиц ведет, нанример, к увеличению мутности раствора, уменьшению осмотического давления. Структурообразование изменяет реологические свойства системы, например, возрастает вязкость, замедляется ее течение. [c.271]

    Для характеристики взаимодействия между веществом дисперсной фазы и жидкой дисперсионной средой служат понятия лиофиль-ность и лиофобность . Под взаимодействием фаз дисперсных систем подразумевают процессы сольватации (гидратации), т. е. образование сольватных (гидратных) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы. Системы, в которых сильно выражено взаимодействие частиц дисперсной фазы с растворителем, называют лиофильными (по отно1пению к воде — гидрофильными). Если частицы дисперсной фазы состоят из вещества, слабо взаимодействующего со средой, системы являются лиофобными (по отношению к воде — гидрофобными). Термин лиофильный происходит от греч. 1уо — растворяю и philia — любовь лиофобный — от 1уо — растворяю и phobia — ненависть, что означает не любящий растворения . [c.369]

    Н. П. Песков (1920) ввел понятие о двух видах устойчивости дисперсных систем седиментационной (кинетической) и агрегативной. Седиментационная устойчивость позволяет системе сохранять равномерное распределение частиц в объеме, т. е. противостоять действию силы тяжести и процессам оседания или всплывания частиц. Основными условиями этой устойчивости являются высокая дисперсность и участие частиц дисперсной фазы в броуновском движении. Агрегативная устойчивость дисперсных систем — это способность противост()ять агрегации частиц. В этом отношении дисперсные системы делят на два класса 1) термодинамически устойчивые, или лиофильные, коллоиды, которые самопроизвольно диспергируются и существуют без дополнительной стабилизации (мицеллярные растворы ПАВ, растворы ВМВ и т. п.). При образовании этих систем свободная энергия Гиббса системы уменьшается (Лй<0) 2) термодинамически неустойчивые, или лиофобные, системы (золи, суспензии, эмульсии). Для них А6 > 0. [c.424]

    С другой стороны, образование твердых тел с характерными для них механическими свойствами также теснейшим обрааом. связано.,а процессами, изучаемыми современной коллоидной химией в виде проблемы структурообразования в дисперсных системах (суспензиях) и растворах высокомолекулярных соединений. Большое значение здесь имеют оба основных типа структур. Первый тип — это коагуляционные структуры (пространственные сетки), возникающие вследствие беспорядочного сцепления мельчайших частичек дисперсной фазы или макромолекул через тонкие прослойки данной среды, и кристаллизационно-конденсационные структуры, образующиеся в результате непосредственного срастанЯя кристалликов с образованием поликристаллического твердого тела Второй тип — образование химических связей (поперечных мостиков), как при вулканизации линейных полимеров типа каучуков или в пространственных полимерах, например, в студнях кремнекислоты. [c.211]

    Образование структур в коллоидных системах и в растворах высокомолекулярных соединений является результатом сцепления частиц под влиянием действующих между ними сил (молекулярных или химических). Процесс образования структуры и свойства структурированных систем зависят от состояния и свойств поверхности частиц дисперсной фазы. Важную роль при этом играет неоднородность поверхности частиц, которая в одних случаях обусловлена анизоднаметрической формой, в других случаях — химическим строением, т. е. наличием в составе частиц функциональных групп с различными свойствами (например, полярных и неполярных групп). [c.366]

    Изучение процессов структурирования и деструктурирования в дисперсных системах часто удобно вести путем наблюдения за изменением в них типичного для жидких систем свойства — вязкости, тесно связанного с другими реологическими свойствами систем. При этом следует учитывать, что вязкость некоторых лиофобных золей и особенно растворов высокомолекулярных веществ обнаруживает ряд аномалий а) неподчинение закону Ньютона и Пуазейля, б) изменение во времени, в) аномальное поведение с изменением температуры, г) изменение от механических воздействий (явление тиксотропии). В таких системах появляется дополнительная вязкость, обусловленная добавочным сопротивлением (трением) течению жидкости за счет образования сеткообразных структур. Такая вязкость получила название структурной. Таким образом, вязкость указанных систем можно рассматривать как сумму двух слагаемых нормальной вязкости, обусловленной нормальным, подчиняющимся законам Ньютона и Пуазейля, ламинарным течением жидкостей ( 31) и структурной вязкости Г]отр [c.370]

    Таким образом, физико-механические свойства всех систем, начиная от высокомолекулярных веществ и их растворов и кончая структурированными дисперсными системами, могут в принципе исследоваться общими методами реологии (реологией наз 1вается общее учение о деформации и течении). Такие исследования имеют преимущество перед простыми измерениями аномальной или структурной вязкости неньютоновских жидкостей (рис. 96), потому что структурная вязкость зависит от условий изм-терения, тогда как реологические константы характеризуют материал независимо от размеров прибора или режима течения. Образование или разрушение различного рода структур или пространственных сеток частиц или мюлекул с различной прочностью связей и жесткостью структурных элементов играет ис1 лючительную роль в дисперсных и полимерных системах и во многих отношениях определяет их техническое использование. Поэтому изучение процессов деформации, их кинетики, частотной зависимости, предельных напряжений и др. имеет большое научное и техническое значение. Установление релаксационного механизма деформации и объективных методов характеристики процессов деформации является существенным успехом коллоидной химии, во многом обусловленном работами советских ученых — Кобеко, Александрова, Каргина, Слонимского, Ребиндера, Соколова, Догадкина и др. [c.251]

    В то время как усхойчивость обычных растворов имеет вполне однозначный смысл и ее нарушение связано с фазовым переходом, устойчивость коллоидов и вообще дисперсных систем может нарушаться в результате следующих процессов во-первых, расслоения и выделения дисперсной системы с другой концентрацией или структурой (коацервация или образование периодической структуры) во-вторых, изменения дисперсного состава, точнее, изменения распределения частиц по размерам за счет диффузионных процессов перехода молекул от одних частиц к другим (обычно более крупным) в-третьих, коагуляции или в общем случае процессов агрегации и дезагрегации, идущих или параллельно или последовательно. [c.3]

    ТИМО, существуют дисперсные структуры с непосредственными фазовыми контактами, у которых энергия связи в контактах велика (Е /сТ). Эти системы являются необратимо разрушающимися, т. е. нетиксотропными пространственными сетками. К ним относятся конденсационно-кристаллизационные структуры, возникающие в процессах образования новой дисперсной фазы из переохлажденных расплавов или пересыщенных растворов. Образующиеся при этом зародышевые кристаллики новой фазы срастаются в более или менее плотной кристаллизационный каркас. Именно кристал лизационно8 структурообразование лежит в основе твердения минеральных вяжущих материалов. Механизм и закономерности возникновения и развития дисперсных структур твердения с учетом лежащих в их основе физических и химических превращений были исследованы Ребиндером и Сегаловой [11]. [c.54]

    Реакции термоокислительных превращений компонентов сырья в процессах получения битумов характеризуются очень малой величиной стерического фактора (Ю -10Согласно теории соударений, химическое взаимодействие происходит лишь в тех случаях, когда частицы обладают энергией, достаточной для преодоления потенциального барьера и должным образом ориентированы относительно друг друга при соударениях. В рассматриваемом случае лишь очень малое число соударений завершается химическими взаимодействиями, что, вероятно, связано с экранированием реакционных центров молекул (радикалов) объемными структурными фрагментами. Эти данные объясняют причину медленного превращения кислородсодержащих продуктов окисления масел, когда окисляемое вещество находится в состоянии раствора, и значительного возрастания скорости их превращения в смолы и асфальтеш.1 при образовании дисперсной системы. [c.743]


Смотреть страницы где упоминается термин Дисперсные системы Растворы 240). 68. Процесс образования растворов: [c.259]    [c.188]    [c.377]    [c.5]    [c.91]    [c.8]    [c.5]    [c.129]    [c.418]    [c.145]    [c.12]    [c.67]    [c.263]    [c.85]   
Смотреть главы в:

Общая химия -> Дисперсные системы Растворы 240). 68. Процесс образования растворов




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Дисперсные системы. Раство. 3. Процесс образования растворов

Образования пар процесс

Растворы Образование растворов

Растворы образование



© 2025 chem21.info Реклама на сайте