Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тип связи и положение элемента в Периодической таблице

    А. Металлические сплавы. Плотности чистых металлов связаны с их положениями в Периодической таблице системы элементов Д. И. Менделеева, но не следуют строго их атомным массам. Плотность сплава можно рассчитать в соответствии с массовыми долями чистых компонентов  [c.188]

    Зависимость электроотрицательности элементов от их положения в Периодической таблице показана на рис. 15.2. Окислительные или восстановительные свойства элементов связаны с электроотрицательностью, как показано на рис. 15.8, в. [c.365]


    Между положением в периодической таблице легких элементов и их химическими свойствами не всегда обнаруживается закономерная взаимосвязь. Например, бериллий (II группа) во многих отношениях напоминает алюминий (группа ША) много общего также между бором и кремнием. Степени окисления этих элементов соответствуют номерам их групп, но, судя по свойствам образуемых ими соединений, по кислотно-основным характеристикам этих элементов и их физическим свойствам, между ними существует необычная для периодической системы диагональная связь. Причиной этого является сходство так называемых ионных потенциалов у диагонально расположенных в периодической таблице пар элементов. Ионным потенциалом (не пу- [c.105]

    Элементарные процессы реакции. Химические реакции можно классифицировать с различных точек зрения, но самое важное в исследовании химической реакции — это изучение природы элементарного процесса, т. е. механизма разрыва и образования связи или переноса электрона. Рассматриваемые в этой главе многоатомные молекулы и ионы участвуют в разнообразных реакциях, и сопоставление с указанной выше точки зрения характерных примеров таких реакций поможет глубже понять связь свойств элемента с его положением в периодической таблице. [c.168]

    Близкое ознакомление со строением атомов позволяет установить гораздо более разнообразные соотношения, чем это можно было сделать, основываясь исключительно на положении элементов в таблице периодической системы. То, что представляется исключением, если исходить только из периодической системы, следует с необходимой закономерностью из строения атомов. В дальнейшем можно убедиться, что не только обсуждавшиеся выше правильности вроде изменения валентности от одной группы к другой или закономерности изменения электрохимического характера, но и кажущиеся с первого взгляда неправильности, как, например, особое положение, занимаемое в периодической системе водородом, своеобразный распад периодической системы на периоды различной длины, поразительно тесная связь редкоземельных элементов, — в действительности являются следствием изменения строения атомов при переходе от одного элемента к другому. [c.41]

    Элементы, носящие название актиноидов, и электронные конфигурации их атомов приведены в табл. 27.1. Их положение в периодической таблице и связь с рядом лантаноидов уже обсуждались в гл. 8. Из последующего изложения будет видно, что общее название актиноиды выбрано для этих элементов не так удачно, [c.534]


    Это сходство с металлами указывает, что валентные электроны в германии не связаны с атомами столь прочно, как можно было бы ожидать для настоящего ковалентного каркасного кристалла. Мыщьяк, сурьма и селен существуют в одних модификациях в виде молекулярных кристаллов, а в других модификациях - в виде металлических кристаллов, хотя атомы в их металлических структурах имеют относительно низкие координационные числа. Известно, что теллур кристаллизуется в металлическую структуру, но довольно вероятно, что он может также существовать в виде молекулярного кристалла. Положение астата в периодической таблице заставляет предположить наличие у него промежуточных свойств, однако этот элемент еще не исследован подробно. [c.607]

    Сложное влияние перечисленных факторов приводит к достаточно сложной зависимости теплоемкости от атомного номера (см. рис. 27,а). Таким образом, как при низких (Г<вв), так и при высоких (7 >0d) температурах правило Дюлонга и Пти не выполняется, хотя причины отклонений по своей природе различны. Заметим, однако, что как в первом, так и во втором случае существенную роль играют особенности характера химической связи, обусловленные положением элементов в периодической таблице Д. И. Менделеева. [c.87]

    Классификация ионов по аналитическим группам тесно связана с их положением в периодической системе элементов Д. И. Менделеева (см. таблицу на форзаце). [c.230]

    При попытке связать электронную конфигурацию атома эле мента с положением в периоди ческой системе видно, что длинная форма периодической таблицы может быть разделена на четыре главные секции, как показано на рис. 3-8. Секция, обозначенная 5, содержит по два элемента каждого периода, секция р содержит по шесть, 1 — по десять, / — по 14 элементов. Это приводит к мысли о связи периодической системы с 5-, р-, д.- и /-состояниями, так как в этих состояниях может находиться соответственно 2, 6, 10 и 14 электронов. [c.98]

Таблица 7. Связь между положением элемента в периодической системе и типом заполняемых электронами орбиталей в его атоме Таблица 7. <a href="/info/26849">Связь между</a> <a href="/info/189748">положением элемента</a> в <a href="/info/2616">периодической системе</a> и типом заполняемых <a href="/info/2438">электронами орбиталей</a> в его атоме
    Закономерности изменения кислотности Льюиса также связаны с положением элемента в периодической таблице это видно из сравнения силы льюисовских кислот общей формулы МХ [87]. [c.344]

    Составьте таблицу строения электронных оболочек атомов элементов первых трех рядов Периодической системы элементов Д. И. Менделеева. Какова связь между электронным строением и положением элемента в Периодической системе  [c.8]

    Г и д р и д ы. Атом водорода самый малый и самый типичный среди атомов внедрения. Заполнение атомами или ионами водорода октаэдрических и тетраэдрических пустот в решетках переходных металлов сопровождается меньшими искажениями, чем при внедрении других неметаллов. Характер связи в фазах внедрения определяется особым положением, которое занимает водород в периодической таблице это первый элемент, с которого начинаются как металлы, так и неметаллы, и в зависимости от условий он проявляет свойства как тех, так и других. В гидридных фазах состояние водорода самое различное. Крайние состояния — присутствие молекулярного водорода, который концентрируется на поверхности, границах зерен, возможно, на дислокациях, либо его протонизация, при которой отдаваемый электрон идет на вакантную -орбиталь переходного металла или присоединяется к свободным электронам, наличие которых характеризует металлическую связь. Между обоими крайними состояниями в гидридных фазах одного и того же металла есть промежуточные состояния. [c.232]

    ТИП СВЯЗИ И ПОЛОЖЕНИЕ ЭЛЕМЕНТА В ПЕРИОДИЧЕСКОЙ ТАБЛИЦЕ [c.362]

    Первоначальная шкала электроотрицательностей Полинга была выбрана таким образом, чтобы элементам второго периода от углерода до фтора соответствовали значения от 2,5 до 4,0, изменяясь на 0,5 при переходе к каждому следующему элементу. Значения электроотрицательности элементов в этой шкале приведены на рис. 6.9 в виде диаграммы. Размеры кружков на этой диаграмме отвечают относительным радиусам атомов, а расположение элементов приблизительно воспроизводит форму таблицы периодической системы однако положения элементов в пределах периодов смещены так, чтобы соответствовать их значениям электроотрицательностей в указанной шкале. Вследствие этого элементы, принадлежащие к одной группе периодической системы, располагаются на диаграмме не по вертикальным колонкам. Со времени появления первоначальной шкалы Полинга значения энергий разрыва химических связей, на которых она была основана, в результате уточнения подверглись значительным изменениям. Результаты пересчета электроотрицательностей элементов по методу Полинга с подстановкой новых значений энергий связи представлены в табл. 6.5. Общий ход изменения электроотрицательности соответствует тому, чего и можно было ожидать для элементов одного периода или одной группы электроотрицательность возрастает при уменьшении размеров атома. Водород, который, строго говоря, не принадлежит ни к одной из групп, имеет приблизительно такую же электроотрицательность, как бор. Следует также отметить, что электроотрицательность металлов первой, второй и третьей групп возрастает при увеличении числа валентных электронов. В дальнейшем будет показано, каким образом на основании учета этих закономерностей можно судить о характере связи атомов в молекулах. [c.104]


    Два элемента с почти одинаковой электроотрицательностью образуют ковалентные связи. Например, углерод, который занимает промежуточное положение на шкале электроотрицательности, образует ковалентные связи с элементами, расположенными вблизи него в периодической таблице. Когда разность электроотрицательности двух элементов значительна, связь полярна (т. е. обладает в высокой степени ионным характером), как и в случае хлористого натрия. Для большинства химических связей распределение электронной пары не совсем одинаково, так что связь обладает в некоторой степени ионным характером это приводит к появлению дипольного момента связи (разд. 14.10). [c.444]

    Подводя итог рассмотрению данного вопроса, приведем таблицу 2, иллюстрирующую связь свойств элементов со строением их атомов и положением в периодической системе. [c.108]

    Первым этапом этой работы был сбор сведений о каталитических системах и расположение их в виде таблиц в соответствии с положением в периодической системе катализирующего элемента и подразделением по типу химических реакций. Эта задача была осуществлена в основном в первых трех томах справочника. Заключением ее является рассмотрение каталитических свойств веществ в пределах отдельных групп реакций с целью выявления лучших катализаторов, сопоставления их с веществами, обладающими посредственными или плохими каталитическими свойствами в данных реакциях, и нахождение самых общих связей между химическими и каталитическими свойствами простых веществ и их соединений. Именно этому посвящен IV том справочника, который завершает данное издание. Такое первичное обобщение содержащегося в справочнике материала уже на самой первой стадии может оказать практическую пользу, облегчив поиск подходящих катализаторов для новых процессов. Поскольку на этой подготовительной стадии еще не имеется классификации систем, наиболее целесообразна разбивка реакций по группам на основании принятой в химии классификации. [c.5]

    Несмотря на эти трудности и вызванные ими возможные неточности и ошибки, которых не удалось избежать, просмотр материала по главам справочника указывает на явную связь,— конечно, лишь качественного характера,— между положением элемента в периодической таблице и каталитическими свойствами элемента и его соединений, что оправдывает принятую систему расположения материала. Чтобы при этом сделать книгу удобной для практи- [c.4]

    Особое достижение Дайна составляет подмеченная ям связь между тенденцией элементов к принятию и отдаче электронов с положением элементов в периодической таблице  [c.59]

    ТО будет ВИДНО, что точки кипения Н О, HF и NH.-j сдвинуты от линий в направлении, указывающем на некоторые дополнительные межмолекулярные взаимодействия, которые в других соединениях проявляются незначительно. На рис. 6.5 показана зависимость теплот испарения тех же веществ от положения элементов в периодической таблице. Из обоих графиков следует, что только гидриды , О и N обладают значительным межмолекулярным взаимодействием, определяемым существованием сильных водородных связей, хотя и НС1 проявляет небольшие отклонения. Достаточно сказать, что все экспериментальные данные свидетельствуют о том, что [c.26]

    Заполнение электронных слоев и оболочек. Рассмотрим связь между электронным строением атомов в нормальном состоянии и положением элементов в периодической системе. Электронное строение атомов представлено в таблице, напечатанной на форзаце. Приведенные данные об электронном строении атомов получены в результате исследования атомных спектров. [c.39]

    Таковы некоторые факты, которые могут быть объяснены с помощью принятой атомной модели. Она объяснила два основных типа связи в химических соединениях — полярную связь между противоположно заряженными ионами в солях и неполярную связь в органических и других неионизируемых молекулах. Неполярная связь бывает двух видов, первый из которых имеет место в молекулах СН и ННд, где число таких связей может быть сопоставлено с положением элемента в периодической таблице, а второй вид встречается в координационных соединениях Вернера. [c.57]

    Предсказание новых элементов. Значение, периодической системы.) Периодическая система раскрывает глубокую связь между всеми химическими элементами и их группами. Она показывает, что свойства элементов не случайны, а закономерны и определяются их положением в системе. Зная место, занимаемое элементом в таблице Менделеева, можно предсказать его важнейшие свойства. [c.109]

    П191. Прохоров В. Г. Закономерности распределения элементов в некоторых природных объектах в связи с их положением в периодической таблице Д. И. Менделеева. Сб. Физика, химия и хим. технол. , Красноярск, 1969, стр. 134—137. [c.54]

    Типические элементы образуют оксиды, формулы которых можно предсказать на основании положения элементов в периодической таблице например, элементы третьего периода образуют следующие оксиды НагО, МяО, А12О3, ЗЮз, Р2О5 63 и С12О7. Оксиды элементов, находящихся в левой части таблицы, являются сильными основаниями. Для них характерно наличие больщого отрицательного заряда на атомах кислорода, и по типу связи они принадлежат к ионным соединениям. Температуры плавления этих ионных оксидов, как правило, достигают 2000°С, но многие из них разлагаются уже при более низких температурах. Они реагируют с водой с образованием основных растворов [c.321]

    Валентность. Ковалентность атомов. Понятие валентности является одной из центральных концепций химии. Оно было введено в середине XIX века. Таблица Менделеева наглядно представляла связь между валентностью элемента и его положением в периодической системе. Меделеев же ввел [c.117]

    Лабораторные работы по изучению свойств простых веществ и их соединений расположены в порядке следования А и В подгрупп элементов в длиннопериодиом варианте таблицы Д. И. Менделеева справа налево, т. е. начиная с галогенов и кончая щелочными металлами. Постепенный переход от активных неметаллов к активным металлам дает яркую картину изменения свойств элементов (и их соединений) в связи с их положением в периодической системе. Однако описание опытов дано таким образом, что лабораторный практикум можно начинать и со щелочных металлов. [c.3]

    Выше была показана связь свойств соединений с положением образующих их элементов в Периодической таблице. Степень окисления элемента также влияет на характер его соединений. Так как поляризующее действие катиона М + сильнее, чем соединения M(1V) имеют более ковалентный характер, чем соединения М(И). Например, хлорид свинца (И) представляет собой твердое кристаллическое вещество. Он ограниченно растворим в воде с образованием раствора ионов РЬ + (водн.) и С1 (водн.). Хлорид свинца(1У) является жидкостью, которая быстро гидролизуется водой до PbO U и H I  [c.367]

    Вместе с тем многие физические свойства элементов соответствуют их положению в периодической системе. Температуры плавления и кипения типичных металлов (табл. 6.7), как правило, повышаются при переходе снизу вверх вдоль группы, а для неметаллов, наоборот, возрастают при переходе сверху вниз вдоль группы. Плотность металлов в общем связана с их положением в периодической системе. Наименее плотные металлы относятся к группам I и II иногда их так и называют легкими металлами . Наиболее плотные элементы, естественно, обнаруживаются среди тех, у которых самый большой атомный вес и самый маленький атомный объем, следовательно, в середине нижней части таблицы. Самым плотным элементом является осмий, его плотность равна 22,84 г/см . Окраска элементов почти не связана с их положением в периодической системе, если не считать того, что все элементы группы VIIА—галогены — обладают окраской. Большинство металлов имеют белый цвет, но все металлы с желтой окраской (Си, Ag и Аи) располагаются в группе 1Б. В дальнейшем (см. гл. 10) мы убедимся, что элементы одной группы кристаллизуются в сходных формах вследствие сходства их степени окисления, электроотрицательности и характера химической связи. [c.105]

    Углеводороды относят к ковалентным соединениям. Углерод имеет резко выраженную способность образовывать ковалентные связи. Углеводороды (типа метана, называемые насьпценш,1ми углеводородами) не имеют кислотного характера, не имеют также основного характера. Нейтральный характер, т.е. отсутствие способности образовывать положительные и отрицательные ионы, соответствует положению углерода в середине периодической таблицы - между электроположительными элементами, расположенными в левой части,и электроотрицательными элементами, расположенными в правой части этой таблицы. Нейтральный характер вместе со способностью образовьшать ковалентные связи определяет исьслючительное свойство атомов углерода - их возможность соединяться друг с другом практически [c.7]

    Максимальное окислительное число 6+ отвечает положению этого элемента в периодической таблице (группа Via). Трех- и двухзарядпые ионы похожи на ионы, образуемые другими переходными элементами, например ионом железа(П1) Fe " и железа(П) Fe " . Вполне вероятно, что эти ионы образуются в результате того, что атомы переходных элементов имеют несколько электронов в одной и той же оболочке (3d) два или три из этих электронов легко могут отделяться под действием окислителя, однако большее число электронов отделяться не может, поскольку притяжение иона, обладаюш,его большим зарядом, становится по отношению к электронам слишком большим. (Соединения шестивалентного хрома имеют ковалентные связи, которые частично нейтрализуют положительный заряд атома хрома.) [c.419]

    Суммарный эффект экранирования протонов органической молекулы представляет собой результат наложения всех присутствующих в ней диамагнитных и парамагнитных полей. При анализе спектра ЯМР данной группы необходимо рассматривать все возможные эффекты экранирования. Показано, что для насыщенных молекул наибольший вклад вносит диамагнитное экранирование и что положение ЯМР-сигнала определяется электроотрицательностью атома, с которым соединен данный протон. Это ясно видно на примере метилированных производных типа СНдХ(СНз) (рис. 3-16). Поскольку эти молекулы полностью насыщены, можно ожидать, что экранирование метильных групп будет практически полностью определяться электроотрицательностью атома X. Оказалось, что для элементов одного периода, как и для элементов одной группы периодической таблицы Д. И. Менделеева, характерно приблизительно линейное изменение химических сдвигов при переходе от элемента к элементу X. Вместе с тем, экранирование гидридных протонов типа ХН не обнаруживает столь четкой зависимости от электроотрицательностц элемента X. Влияние электроот )ицательных групп, приводящее к ослаблению экранирования, быстро убывает с их удалением, и на расстоянии, большем чем две насыщенные углерод-углеродные связи, оно почти не обнаруживается. [c.97]

    Способность к образованию полимеров совершенно отчетливо связана с положением элемента в периодической системе Менделеева. Рассматривая влияние местоположения элемента в периодической системе на спсссбность его к образованию гомоцепных полимеров, можно видеть, что все элементы периодической системы разбиваются на три группы. Первая группа включает низкомолекулярные газообразные и жидкие металлоиды, а также благородные газы вторая — содержит элементы, образующие гомоцепные полимеры к третьей группе относятся металлы. Если взглянуть на периодическую систему элементов (особенно наглядно показанную в интерпретации Бора, см. рис. 1), то можно легко заметить, что первая группа охватывает элементы, находящиеся в правой части таблицы Менделеева полимеры занимают среднее промежуточное положение в верхней правой части металлы помещаются в нижней левой части таблицы. [c.402]

    Факторы, определяющие величины теплоемкостей, энтальпии, энтропии и свободной энергии, зависят, конечно, от положения элемента в периодической таблице. Термодинамические функции связаны с атомными и молекулярными энергетическими уровнями, с отношением радиусов и другими проявлениями размеров и с массами. В настоящее время термодинамические свойства большинства простых соединений измерены непосредственно, однако их можно вполне удовлетворительно оценивать интерполяцией по зависимостям от порядкового номера, как это видно из рис. 29.5—29.7. На рис. 29.6 и 29.7 приведены термодинамические величины, отнесенные к эквиваленту вещества, т. е. для каждого из них молярная величина поделена на сумму степеней окисления катионов в его формуле. Например, для NasO следует делить на 2, для СаО на 2, для АЬОз на 6, для 5сС1з на 3, для Ре04 на 8, для LiF на 1 и т. д. [c.422]

    ЛИЧИНЫ К получают, используя концентрацию и парциальные давления. Эти значения К легко вычислить из аналитических, электрохимических, термических и спектральных даных. Термодинамические свойства можно связать с положением элементов в периодической таблице и ца основании этого установить новые химические процессы. Неосуществимые по термодинамическим причинам процессы обнаруживают без применения дорогостоящего оборудования, а предпочтительные направления сложных процессов определяют расчетом, используя данные для более простых систем. [c.429]

    Эти взгляды были развиты Абегом [5] в 1904 г. Он высказал соображение, что любой элемент может проявлять либо положительную, либо отрицательную валентность, и указал, что атомы любого элемента всегда проявляют постоянную отрицательную валентность. Однако они часто проявляют переменную положительную валентность, стремящуюся к максимуму с увеличением силы электронного сродства соседнего атома. Он указал также на связь между силой электронного сродства атомов и их положением в периодической системе элементов, связь, которая в настоящее время общеизвестна. Он завершил эти теоретические рассуждения своим знаменитым" правилом восьми , которые мы можем выразить следующим образом. Любой элемент (кроме благородных газов) может иметь нормальную валентность , а также валентность противоположного знака, называемую контрвалентностью . Арифметическая сумма максимальных значений этих двух валентностей у любого элемента равна восьми. Это правило позднее легло в основу октетной теории Льюиса и Лангмюра и может быть пояснено следующей таблицей  [c.32]

    При растворении этих соединений в воде они диссоциируют как соли AXj, давая комплексный ион [М (NH yз+ jj ЗС1-, причем связи между атомом металла и молекулами остаются ненарушенными. Тог факт, что число связей, образуемых элементами различных периодических групп, одинаково, а также то, что молекулы NHg, уже яв ляюи иеся устойчивыми, могут образовать такие связи, показывает, что эти связи принадлежат к совершенно иному типу, чем связи в простых солях или молекулах. Напрнмер, формулы фторидов элементов второго короткого периода соответствуют положению элементов в периодической таблице  [c.57]


Смотреть страницы где упоминается термин Тип связи и положение элемента в Периодической таблице: [c.177]    [c.362]    [c.142]    [c.87]    [c.8]    [c.39]    [c.88]    [c.259]   
Смотреть главы в:

Начала современной химии -> Тип связи и положение элемента в Периодической таблице




ПОИСК





Смотрите так же термины и статьи:

Элемент периодическая



© 2025 chem21.info Реклама на сайте