Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложные реакции направление

    Химическое равновесие. Самопроизвольно, т. е. без затраты работы извне, каждая система может переходить только из менее устойчивого состояния в более устойчивое. При постоянных температуре и давлении такой переход всегда сопровождается уменьшением энергии Гиббса системы. Пределом протекания реакции,, т. е. условием равновесия, является равенство AG = 0. Согласно равенству (1,7) самопроизвольному течению реакции благоприятствуют большие отрицательные значения АН (т. е. значительное выделение энергии в ходе реакции) и большие положительные значения AS (т.е. возрастание энтропии). Для многих не слишком сложных реакций первый (энергетический) фактор отражает обычное повышение устойчивости системы при уменьшении запаса ее внутренней энергии, которое проявляется в тенденции к большей агрегации вещества, укрупнению частиц. Второй же фактор энтропийный отражает тенденцию к дезагрегации, к усилению всяческих процессов диссоциации на более простые частицы, происходящих под действием теплового движения частиц. В реакциях, которые приближают систему к состоянию равновесия, эти два фактора действуют в противоположных направлениях, и общее течение процесса определяется действием преобладающего фактора и сопровождается сближением значений величин АН и TAS до тех пор, пока не будет достигнуто равенство их между собой,. [c.25]


    В целом во второй половине XIX - начале XX века были заложены основы кинетики как раздела химии, изучающего скорости химических реакций в зависимости от условий и природы реагентов. В этот период были сформулированы два основных закона химической кинетики, получены формулы, описывающие кинетику простых реакций, обнаружены сложные реакции, введены такие важные в кинетике понятия, как константа скорости реакции, энергия активации, промежуточный продукт, сопряженные реакции. В первой половине XX века кинетика развивалась по нескольким направлениям. Во-первых, изучали простые газофазные реакции, разрабатывали их теорию (теория соударений, теория абсолютных скоростей реакций). Во-вторых, были открыты и изучены разнообразные цепные реакции, сначала в газовой фазе, затем в растворах. В-третьих, интенсивно исследовали разнообразные органические реакции в растворах. В-четвертых, широкое распространение получили корреляционные соотношения в кинетике. [c.20]

    Каскад реакторов занимает промежуточное положение между крайними режимами - смешения и вытеснения, - не только по интенсивности процесса, но и по селективности при протекании сложной реакции. Направление изменения селективности процесса при увеличении п будет таким же, как и ее изменение при переходе от ре- [c.333]

    Если диспропорционирование может протекать по нескольким направлениям (сложная реакция), то равновесная степень [c.218]

    Химические реакции, протекающие в рабочей камере печи, можно разделить на простые и сложные. Сложные реакции разделяются на последовательные, параллельные, смешанные (когда одна реакция является параллельной по отношению к какому-либо компоненту реакции и последовательной по отношению к другим компонентам реакции), сопряженные (когда одна из реакций происходит лишь совместно с другой) и, наконец, обратимые (протекающие одновременно в противоположных направлениях). [c.18]

    По сложности химические реакции разбивают на простые и сложные реакции. Простыми химическими реакциями называют реакции, протекающие в одну стадию. Реакции, протекающие в несколько стадий, часто по нескольким направлениям, называют сложными реакциями. Каталитические, цепные, фотохимические и электрохимические реакции являются сложными реакциями, но выделяются в самостоятельные группы, так как каждая из них имеет свои специфические особенности. [c.531]

    Так как механизм сложной реакции состоит из некоторой последовательности простых или элементарных реакций, то для решения вопроса о механизме необходимо знание скорости конкурирующих элементарных реакций, в которые вступают радикалы, а также направлений радикальных реакций и устойчивости радикалов в тех или иных условиях. Короче, для установления механизма превращения необходимы кинетические и термодинамические количественные характеристики радикальных реакций, выступающих, по образному выражению Шилова [219], в качестве кинетических индивидуумов в общих схемах превращений. [c.161]


    Химическая термодинамика позволяет с помощью несложных вычислений решить вопрос о возможности осуществления заданной реакции, направлении процесса и оптимальных условиях его проведения при этом удается избежать сложных, зачастую длительных или дорогостоящих экспериментальных исследований. [c.75]

    Как же влияет температура на сложные реакции Для простых обратимых, автокаталитических и самотормозящихся реакций повышение температуры приводит только к увеличению их скорости. Для эндотермического направления обратимой реакции повышение температуры может уменьшить равновесный выход и поэтому оказаться невыгодным. Оптимальные условия в этих случаях легко предсказать, зная зависимость константы равновесия от температуры. [c.254]

    Задачу, поставленную независимо Хориути (1939 г.) [41] и Боресковым (1945 г.) [42], можно сформулировать следующим образом найти кинетическое уравнение сложной реакции в обратном направлении, зная аналогичное выражение для скорости реакции в прямом направлении и пользуясь только термодинамическими соотношениями брутто-реакции. Иначе говоря, когда справедливо соотношение [c.98]

    Здесь вид превращения определяется по количеству направлений превращения (по схеме превращения). Простыми и сложными реакции могут быть также по механизму их протекания. С этой точки зрения окисление 802 - многостадийная реакция, сложная по механизму но простая по схеме превращения. [c.46]

    Превращение исходного вещества в сложной реакции протекает по разным направлениям. Не во всех протекающих реакциях образуется желаемый продукт, и для сложной реакции кроме степени превращения вводят дополнительные характеристики процесса селективность процесса и выход продукта. [c.52]

    Простые и сложные превращения. Если превращение протекает по нескольким направлениям, то стехиометрических уравнений вида (2.1) или (2.2) будет несколько. Простая реакция описывается одним стехиометрическим уравнением, сложная реакция - несколькими. [c.35]

    Подчеркнем здесь простая или сложная реакция определяется по направлениям превращения (или, можно сказать, по схеме превращения). Простыми или сложными реакции могут быть также по механизму их протекания. С этой точки зрения окисление SO2 - многостадийная реакция, сложная по механизму. [c.35]

    Р. X. различают также по тепловому эффекту (экзо- и эндотермич. р-ции, идущие с выделением или поглощением тепла соотв.), механизму (простые и сложные реакции). Важный тип сложных Р. х.— цепные реакции. Р. х., протекающие только в прямом направлеиии, наз. необратимыми протекающие как в прямом, так и в обратном направлениях,— обратимыми. В основу кинетич. классификации м. 6. положена молекулярность реакции (моно-, би- и тримолеку-лярные р-ции) или порядок реакции. По агрегатному состоянию реагентов различают газо-, жидко- н твердофазные Р. X. Еслн реагенты и продукты р-ции находятся в одной фазе, Р. X. наз. гомогенной, если р-ция происходит по иов-сти раздела фаз — гетерогенной. Особую группу составляют топохимические реакции, происходящие на пов-сти раздела тв. фаз реагента и (или) продукта. См. так- [c.499]

    При обратимых или сложных реакциях эффективность политропических схем в большинстве случаев должна быть близкой к к. п. д. простых необратимых процессов. Как уже отмечалось, особенностью этих реакций является изменение оптимальных температур с повышением степени превращения. Поэтому при выборе направления тепловых потоков и конструктивных решений необходимо обеспечивать распределение температур, по возможности приближающееся к оптимальным кривым. [c.342]

    Решение кинетических задач для сложных химических реакций, в том числе и ферментативных, требует даже в стационарном случае упрощающих алгоритмов. Структурные методы анализа сложных реакций развивались Швабом [84], Хориути [85], Христиансеном [86], Семеновым [87]. Применительно к стационарным ферментативным реакциям эффективный алгоритм был предложен Кингом и Альтманом [88] и применен к ряду конкретных проблем [89—91]. Основываясь на этом алгоритме, Кле-ланд [92] предложил номенклатуру многосубстратных реакций и наглядный способ их изображения. Однако метод Кинга и Альтмана и способ Клеланда практически неприменимы в сложных случаях. Наилучший в настоящее время алгоритм основан на применении теории графов. Графом в математике называется топологическая схема, построенная из узловых точек и соединяющих их линий [93—95]. Теория ненаправленных графов впервые использована при расчете химических реакций в работах Темкина [96]. В применении к ферментативным реакциям метод направленных графов развит в работах [97]. Направленный граф есФь совокупность узлов, соединенных направленными линиями [93]. Такие графы применимы к решению ряда задач, относящихся к разветвленным и направленным потокам вещества, зарядов или информации. Теория графов весьма эффективна в электро- и радиотехнике [98—100]. [c.462]


    Поскольку в уравнение стадии входит (учитывается) одна или несколько молекул исходного вещества или конечного продукта и одна молекула (или часть ее, например радикал, ион и т. д.) промежуточного продукта, то для ребер, примыкающих к одной вершине, промежуточные продукты будут общими. Если в этом случае уравнения стадий по какому-либо циклу графа сложить между собою, принимая стехиометрические числа равными разности чисел прохождений ребра в прямом и обратном направлениях, то промежуточные продукты выпадут из суммы. В результате получим суммарное уравнение скорости реакции, которое можно рассматривать как уравнение, соответствующее маршруту сложной стационарной реакции. Среди множества циклов графа могут быть такие, которые дадут линейно зависимые суммарные реакции. Число линейно независимых циклов, называемых базисными циклами [98], определяется цикломатическим рангом (цикломатическим числом) графа. Обычно механизм сложной реакции изображается плоским графом, для которого цикломатическое число равно числу конечных граней. Края этих граней определяют базисные циклы (базисные маршруты). Очевидно, что базисные маршруты как линейно независимые циклы, образованные конечными гранями, являются минимальными циклами. [c.102]

    М, И. Темкин [6J предложил более общий способ описания скорости сложной реакции, основанный на понятии скорость реакции по базисному маршруту . Для формулировки этой величины был введен термин число пробегов . Под числом пробегов стадии понималась разность числа актов стадии в прямом и обратном направлениях. Если число пробегов каждой стадии равно стехиометрическому числу стадий для данного базисного маршрута, можно сказать, что произошел один пробег реакций по этому маршруту. Скорость реакции по базисному маршруту равна числу пробегов по этому маршруту в единичном реакционном пространстве за единицу времени. [c.6]

    В зависи.мости от механизма реакции могут быть подразделены на простые и сложные. К простым реакциям относятся реакции, протекающие в одном направлении и включающие один химический этап. Сложные реакции подразделяются следующим образом  [c.13]

    Сложными реакциями называются реакции, протекающие в разные стороны — обратимые реакции в одну сторону, но в нескольких направлениях —параллельные реакции в несколько стадий — последовательные реакции и, наконец, сопряженные реакции, о которых говорилось выше. [c.22]

    Таким образом, течению реакции в прямом направлении благоприятствуют большие отрицательные значения ДЯ (т. е. значительное выделение энергии) и большие положительные значения А5 (т. е. возрастание энтропии). Для многих не слишком сложных реакций первый фактор (энергетический) отражает обычное повышение устойчивости системы при уменьшении запаса ее внутренней энергии, проявляющееся в тенденции к большей агрегации вещества, укрупнению частиц и пр., второй же фактор (энтропийный) отражает тенденцию к усилению всяческих процессов диссоциации на более простые частицы, происходящих под действием теплового движения частиц. [c.263]

    С наибольшими превращениями изомеризация нормальных парафинов протекает при низких температурах с ростом температуры возрастает содержание непревращенного сырья в термодинамически равновесной смеси. Добавим, что, как показывают термодинамические расчеты, возможное образование различных изопарафинов идет в преимущественном направлении метил-, но не этилзамещенных. Из метилзамещенных при низких температурах в больших количествах могут образовываться диметилпроизводные, но уже при 500 К и выше начинают преобладать монометилпроиз-водные. Обычно немного диметилзамещенных в продуктах изомеризации нормальных парафинов образуется из-за чисто кинетических затруднений. Важным обстоятельством, которое следует учитывать при термодинамических расчетах изомеризации, является возможность образования именно различных изопарафинов по параллельным реакциям. Термодинамический расчет сложных реакций изомеризации рассмотрен в работе [И]. Здесь следует лишь отметить, что его целесообразно проводить не для всех возможных реакций изомеризации, а только для тех, которые протекают в реальном процессе. Если, например, при изомеризации н-пентана образуется только 2-метилбутан, то бессмысленным яв- [c.125]

    Следует отметить, что наиболее часто используемый в МФК растворитель — хлороформ — не оказывает заметного влияния на направление этой сложной реакции. Так, было найдено, что растворитель (ДМФА или СНСЦ) не оказывает никакого влияния на алкилирование диалкилоксалацетатов и алкил-2-циано-2-фенилпируватов [370]. [c.201]

    Устойчивость реакторов с полным перемешиванием для гомогенных процессов являлась предметом изучения многих исследователей. Система в этом случае описывается обыкновенными дифференциальными уравнениями первого порядка. В случае гетерогенных каталитических процессов задача сильно усложняется. Модель реактора с неподвижным слоем катализатора рассматривали Лин Шин-лин и Амундсон Анализировался адиабатический реактор, в котором отсутствует радиальный тепло- и массоперенос. Выло принято также, что тепло- и массоперенос в осевом направлении осушествляются только за счет вынужденной конвекции. Скорость потока считалась равномерной по всему сечению реактора, а влияние длины реактора и изменения температуры на скорость потока — пренебрежимо малыми. Тепло- и массообмен происходил на пористой поверхности зерен катализатора. Исследовалась необратимая реакция первого порядка типа А—-В. Более сложные реакции также могут быть рассмотрены с помошью этого метода без введения дополнительных параметров. Полученная система дифференциальных уравнений была решена методом характеристик. [c.262]

    Нельзя не обратить внимания на особенности протекани сложной реакции при недостатке водорода (бн2=1). В этом случае большая часть СО будет реагировать по побочным направлениям и доля СО, превращенная в метан, будет меньше, чем доли СО, превращенные в С и СОг- [c.342]

    В заключение можно отметить, что сложные и взаимосвязанные превращения углеводородов в ходе парофазной гидрогенизации определяются и объясняются различным соотношением ионных и радикальных реакций. Направленность и интенсивность этих превращений в первую очередь определяются активностью катализатора в отношении ускорения гомолитических (радикальных) и [c.273]

    При этих процессах из нескольких термодинамически возможных направлений катализатор избирательно проводит часто лишь одно, что зависит от того или иного типа ориентации молекул на активных центрах катализатора (геометрический фактор). Катализаторы обладают способностью вступать в одну и ту же реакцию многократно, саморегенерируясь поэтому малые количества контакта способны изменить большие количества реагентов, что подтверждает механизм цепных реакций. В случаях сложных реакций, протекающих в несколько химических стадий, число стадий при поверхностных процессах значительно возрастает. Такие сложные процессы, как получение дивинила из этилового спирта, синтез высших спиртов или углеводородов из водяного газа, реакции необратимого катализа, кетонизация первичных спиртов и др., идут через ряд консекутивных и параллельных реакций. [c.167]

    Таким образом, в результате работ Н. А. Меншуткина, А. Н. Баха и несколько позднее Н. А. Шилова, М. Боденштейна (изучение газовых реакций) на рубеже двух веков начало наблюдаться посте-пеипое изменеппе направления развития химической кинетики. Законы Вант-Гоффа п Аррениуса оставались ее основой. То, что эти первые простые законы не отражали всей сложности явлений, нисколько не умаляло их исторического значения. Ученым последующих поколений предстояло более детально изучить причины отклонений механизма сложных реакций от формальных законов. [c.346]

    Такому направлению реакции благоприятствует то, что реакция денротонирования идет на порядок быстрее, чем дедейтернрования. Реакция дейтерирования служит удобной моделью для исследования механизмов других более сложных реакций электрофильного ароматического замещения. [c.37]

    Для стехиометрически сложных реакций степень превращения показывает лишь долю превращения реагента, но не дает представления о направлениях его расходования, которые определяются также селективностью и выходом. [c.34]

    Интересной, но довольно сложной реакцией циклообращения является изомеризация призмана в бензол, сх матически изображенная в табл. 18.3. Стрелки у структуры призмана указывают направления согласованного движения ядер, которое могло бы приводить к такой изомеризации. Чтобы исключить необходимость установления симметрии молекулярных орбиталей призмана, для описания данной реакции используется метод валентных связей. Обозначения орбиталей отвечают неприводимым представлениям точечной группы Сги, которая является общей подгруппой точечных групп симметрии обеих молекул. Канонические структуры являются симметризованными линейными комбинациями локализованных орбиталей связей для призмана, а для бензола — линейными комбинациями локализованных орбиталей связей и двух кекулевских структур. Отсутствие корреляции между орбиталями и Ьх означает, что термическая реакция могла быть разрешенной, если бы движение ядер имело симметрию 32X51 = 2. Однако движение ядер, необходимое для протекания этой реакции по согласованному механизму, преобразуется по неприводимому представлению А. Следовательно, термическая реакция изомеризации призмана в бензол запрещена или должна протекать по несогласованному механизму. [c.396]

    Реакции, направление которых не определяется пространственными факторами В циклогексана все атомы водорода равноценны (конверсия) и реакционная способность С—Н-связей мало чем отличается от таковой в алканах По этой причине для него характерны свободнорадикальные реакции, протекающие однозначно при введении одного заместителя Попытки ввести два заместителя в незамещенный циклогексан (последовательно различных или сразу - одинаковых) приводят, как правило, к образованию достаточно сложных смесей, поскольку при этом могут образовываться не только 1,1-, 1,2-, 1,3- и 1,4-дизамещенные производные, но еще и цис- и транс-изомеры каждого из них Аналогичная картина будет наблюдаться при введении в свободнорадикальные реакции алкилциклогексанов, только в этом случае течение реакций станет еще более сложным, поскольку будет затрагиваться также алкильный заместитель [c.43]

    В общем случае физико-химические процессы, протекающие при термообработке углеродсодержащих материалов в производстве активных углей, достаточно сложны по направленности реакций и внутриструктур-ной трансформации материала, изменяющих его исходное строение с сохранением основных фрагментов и образованием новых типов пространственных структур. [c.518]

    Совмещение несколысих реакций, направленных на получение одного и того же целевого продукта. При получении многотоннажных продуктов требуется, как правило, подводить большое количество тепла или отводить его из реакционных устройств, что представляет сложную задачу В процессах, требующих подвода тепла, как правило, в дальнейшем возникает задача утилизации тепла нагретых продуктовых потоков. При осуществлении же экзотермических реакций требуется отводить значительное количество тепла. Вместе с тем, в одном аппарате можно проводить, по крайней мере, две реакции, имеющие противоположные теплоты, т. е. одна из них должна протекать с подводом тепла, а другая — с его отводом. В этом случае условия их протекания в реакторе приближаются к адиабатическим. Степень приближения условий процесса к адиабатическим зависит от теплоты каждой из реакций если они равны, то будет наблюдаться адиабатический режим. Добиться адиабатического режима можно и при разных значениях теплот реакций, если имеется возможность менять производительность по отдельным реакциям. Подобная организация значительно снижает теплоту суммарного процесса и сокращает энергию на его проведение. [c.240]

    Простые и сложные реакции. Простыми называются реакции, протекающие в одном направлении и включающие одну элементарную стадию химических превращений. Сложные реакции протекают одновременно и независимо либо в прямом и обратном направлениях — обратимые реакции, либо в одном направлении, но двумя или более путями — параллельные реакции, либо в несколько стадий через промежуточные продукты — последовательные, параллельнопоследовательные реакции. [c.12]

    Матрицы 8 и 82 Баландин [3, 4] назвал структурными матрицами. ( овместно со стехиометрической матрицей X они позволяют находить стационарные суммарные реакции и уравнения их скоростей, константы и порядки, значения концентраций исходных веществ, промежуточных и конечных продуктов, связывая это при необходимости с формулами строения молекул, стереохимическими моделями, свободным вращением атомных групп около валентной связи, аддитивными свойствами, расчетом равновесий, изотермой адсорбции, направлением реакции и т. п. Одновременно структурные матрицы открывают широкие возможности использования аппарата теории графов для представления сложных реакций графически посредством кинетических формул, структурно соответствующих формулам строения молекул, -и посредством стереохимических моделей. Большинство из этих вопросов подробно разработаны Баландиным [3, 4]. [c.37]

    Таким образом, достаточно простого и эффективного метода, с похмощью которого можно было бы вычислить интересующие нас параметры, мы не имели. Имеющиеся в этом направлении работы подготовили почву для рещения этой задачи. Как уже отмечалось, если бы удалось аналитический метод определения относительных констант /г =дополнить решением, позволяющим находить абсолютное значение какой-либо константы, то задачу определения кинетических параметров (констант скоростей, энергий активаций и предэкспонент из уравнения Аррениуса для этой сложной реакции) можно было бы считать решенной. [c.7]


Смотреть страницы где упоминается термин Сложные реакции направление: [c.324]    [c.187]    [c.98]    [c.258]    [c.149]    [c.16]   
Введение в моделирование химико технологических процессов (1973) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции направление

Реакции сложные



© 2025 chem21.info Реклама на сайте