Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Задачи анализа химико-технологической системы

    Ш 5.5. АНАЛИЗ ХИМИКО-ТЕХНОЛОГИЧЕСКОЙ СИСТЕМЫ 5.5.1. Задачи анализа химико-технологической системы [c.271]

    Задачи анализа химико-технологической системы [c.212]

    Задачи синтеза и анализа каждого возможного альтернативного варианта проектируемой химико-технологической системы решают по следующим этапам 1) выбор определенного типа элементов ХТС в соответствии с заданной целью функционирования системы 2) разработка технологической топологии ХТС, которая удовлетворяет требованиям критерия оптимизации функционирования системы  [c.36]


    С позиций системного анализа решаются задачи моделирования, оптимизации, управления и оптимального проектирования химико-технологических систем в масштабе химического цеха, завода. Существо системного подхода в данном случае состоит в том, что вся информация, получаемая в лабораториях, на опытных и промышленных установках, последовательно накапливается и обогащается в процессе разработки полной математической модели химико-технологической системы. Построенная математическая модель затем используется для оптимизации химического производства или цеха в целом. [c.10]

    Основная цель системного подхода — раскрытие реального механизма функционирования рассматриваемой циклической адсорбционной системы с учетом ее управления для облегчения адаптации к изменяющимся внешним условиям. Анализ циклических адсорбционно-десорбционных процессов показывает, что современные установки могут служить объектом системного анализа. Во-первых, адсорбционно-десорбционный процесс — это сложная система, которая, с одной стороны, является составной частью более общей химико-технологической системы, определяющей цели и ограничения режимов функционирования с другой стороны, адсорбционно-десорбционная установка представляет собой сложную совокупность процессов в системе периодически повторяющихся в определенной последовательности взаимосвязанных явлений. Во-вторых, задачи оптимизации адсорбционной установки совпадают с целью системного анализа — выбрать наилучшие пути приспособления исследуемой системы к постоянно меняющимся и не вполне определенным условиям. Таким образом, подтверждается принципиальная возможность и необходимость системного подхода к решению задачи оптимизации адсорбционных установок.  [c.8]

    В задачи курса входит общее знакомство с химическим производством, его структурой и компонентами, изучение основ химических процессов и химических реакторов, освоение общих методов анализа и синтеза химического производства как химико-технологической системы, знакомство с некоторыми конкретными химическими производствами, на примере которых предметно демонстрируются теоретические положения курса. Значительное место уделяется физико-химическим и технологическим аспектам анализа процессов в химическом производстве, в основном в химических реакторах, и организации химико-технологических процессов. [c.3]


    Пример 4. Пусть имеется некоторая химико-технологическая система (ХТС). Описывая ее на определенном уровне подробности, диктуемом как необходимостью, так и современным состоянием знаний о системе, получим в качестве математической модели состояния системы в данный момент времени набор параметров, которые называются информационными переменными. Сопоставим, далее каждому аппарату системы ХТС точку на плоскости и каждую информационную переменную отнесем к некоторой такой точке. Обмен между информационными переменными, т. е. математическая модель функционирования системы, описывается набором отрезков, соединяющих точки указанного множества. Эти отрезки определяют информационные потоки, каждый из них соответствует одному из выбранных параметров физического потока между двумя соответствующими аппаратами. Таким образом, мы получим информационно-потоковый мультиграф, который используется для решения задач анализа и синтеза ХТС. [c.25]

    Проведенный анализ смешения как химико-технологической системы является лишь первым шагом на пути построения абстрактной модели этой системы. Для того чтобы изучить физическую систему, ее заменяют абстрактной системой с теми же отношениями, и задача становится чисто математической. Однако для того чтобы систему можно было достаточно успешно изучить с помощью математических методов, она должна обладать рядом специфических свойств. Во-первых, должны быть хорошо известны имеющиеся в ней соотношения во-вторых, должны быть количественно определены существенные для системы свойства (причем их число не должно быть столь большим, при котором их анализ становится невозможным) и, в-третьих, должны быть известны при заданном множестве отношений формы поведения системы (которые определяются физическими законами). [c.197]

    Из известных методов синтеза наиболее приемлемым для решения поставленной задачи является интегрально-гипотетический метод синтеза [246], основанный на последовательной разработке, анализе и оптимизации некоторого множества альтернативных вариантов технологической топологии и аппаратурного оформления синтезируемой системы. Интегрально-гипотетический принцип синтеза химико-технологической системы включает создание гипотетической обобщенной структуры системы, ее анализ и оптимизацию. [c.243]

    Таким образом, оптимизация межремонтных сроков службы всей химико-технологической системы возможна только при комплексном рещении этой задачи для всех входящих в систему основных аппаратов и мащин. Поэтому экономический анализ межремонтных сроков службы важнейших групп оборудования должен проводиться с учетом влияния их изменения на общие технико-экономические показатели всей системы. [c.84]

    Общая характеристика. Системотехника применительно к химической промышленности (проектирование химико-технологических систем) представляет собой раздел технической кибернетики, занимающийся анализом свойств отдельных элементов технологического процесса, связями и зависимостями между ними, а также синтезом из этих элементов единой системы, обеспечивающей в определенных условиях достижение наилучших технологических и экономических результатов. Понятие большая система пока еще не имеет однозначного определения, однако оно оказалось полезным при постановке и решении очень важных практических задач и некоторых теоретических вопросов. Можно указать следующие характерные свойства, которые, как правило, выступают в сложных системах [57]  [c.473]

    Современный подход к решению задач химической технологии основан на принципах системного анализа и синтеза. Это означает, что химико-технологический процесс рассматривается как сложная система, состоящая из элементов различных уровней детализации, начиная от молекулярного и кончая отдельными процессами. Элементы системы, характеризующие процессы химического превращения, диффузионного, конвективного и турбулентного переноса вещества, т. е. явления на молекулярном уровне, а также явления коалесценции и диспергирования, распределения материальных и энергетических потоков и т. д., иерархически взаимосвязаны между собой в соответствии с физической реализацией процесса. Можно выделить четыре основных этапа системного исследования процесса. [c.3]

    В предлагаемой книге авторы попытались систематизировать вопросы создания систем как качественно нового подхода к использованию вычислительной техники. Книга посвящена комплексному рассмотрению проблемы построения таких систем для анализа и синтеза химико-технологических процессов, изложению методологического подхода — от формулирования проблемы, разработки математического описания отдельных процессов до выбора средств вычислительной техники и языков программирования. Рассмотрены вопросы создания пакетов прикладных программ, техническое и системное математическое обеспечение Единой Системы электронных вычислительных машин (ЕС ЭВМ). Приведено математическое описание и структура систем для решения задач анализа физико-химических свойств веществ и расчета типовых процессов химической технологии. [c.5]


    Понятие физико-химической системы и технологического оператора. Основу современного кибернетического подхода к решению проблем химической технологии составляет системный анализ, в соответствии с которым задачи исследования и расчета отдельных технологических процессов, моделирования и оптимизации сложных химико-технологических систем (ХТС), оптимального проектирования химико-технологических комплексов решаются в тесной связи друг с другом, объединены обш,ей стратегией и подчинены единой цели созданию высокоэффективного химического производства. [c.6]

    Для эффективного решения задач, возникающих на всех уровнях иерархии химического производства, необходимо прежде всего выполнить идентификацию операторов отдельных ФХС, составляющих ХТС, т. е. оценить входящие в них параметры. Это может быть достигнуто либо решением обратных задач с постановкой соответствующих экспериментов (если объектом исследования служит действующее производство), либо априорным заданием ориентировочных значений технологических параметров, используя данные аналогичных производств (при проектировании новых химико-технологических систем). После процедуры идентификации отображение (2) можно считать готовым для изучения свойств ФХС в рабочем диапазоне изменения ее параметров нахождения оптимальных конструктивных и режимных параметров технологического процесса синтеза оптимального управления системой анализа и моделирования поведения ХТС, в состав которой в качестве элемента входит рассматриваемая ФХС и т. п. Реализация перечисленных задач так или иначе связана с решением системы уравнений, соответствующих отображению (2), что равносильно получению явной функциональной связи между переменными у и и либо в аналитической форме конечных соотношений, либо в виде результата численного решения задачи на ЭВМ. Формально это решение представляется в виде соответствующего отображения [c.8]

    Формализация процедур на основе топологического принципа описания ФХС. Выше была определена схема общей стратегии системного анализа на уровне отдельного химико-технологического процесса. Для повышения эффективности этой стратегии необходимо создание соответствующей автоматизированной системы оперативной подготовки математических описаний процессов, в задачи которой входила бы максимальная формализация и автоматизация всех промежуточных процедур построения функциональных операторов ФХС. Иными словами, возникает необходимость в создании специального методологического подхода, который позволил бы путем широкого использования средств вычислительной техники упростить процедуру построения математических моделей сложных процессов, обеспечил бы правильную координацию отдельных функциональных блоков между собой при их агрегировании в общую математическую модель ФХС и допускал бы эффективную формализацию основных процедур синтеза математических описаний ФХС. [c.17]

    Формализация и автоматизация процедуры построения математической модели ФХС. Из сказанного ясно, что эффективность процесса моделирования и последующего использования математической модели для решения задач оптимизации, построения модулей, анализа и синтеза химико-технологических систем в значительной мере обусловлена тем, насколько удачно учтены все перечисленные выше аспекты математического моделирования. Это в свою очередь во многом зависит от опыта, интуиции и степени квалификации исследователя, т. е. от того, что составляет субъективный фактор процесса моделирования. Удельный вес субъективного фактора при построении модели можно существенно уменьшить созданием специальной системы формализации и автоматизации процедур синтеза математических моделей. При этом вычислительная техника может и должна активно использоваться не только для решения уже готовых систем уравнений, но и на стадии формирования математического описания объекта. Такой [c.203]

    Актуальным вопросом с позиции системного анализа является непосредственный переход от словесного описания исследуемой системы к ее математической модели. Введенное понятие нечеткого множества как математического объекта позволяет нечетко определенные понятия представить в числовом виде. При этом обеспечивается формализация качественной информации, которая сводится к экспертным оценкам, и последующая ее переработка. Представление химико-технологических систем диаграммами взаимных влияний параметров дает наглядное представление об изучаемой системе и лежит в основе построения моделей, что подробно рассмотрено нри решении конкретных задач. [c.352]

    Законы термодинамического равновесия определяют условия, при которых процесс переноса любой субстанции (массы, энергии, импульса) приходит к своему завершению. Состояние системы, при котором необратимый перенос субстанции отсутствует, называют равновесным. Равновесное состояние описывается такими законами, как законы Генри, Рауля и др. Знание условий равновесия позволяет решать очень важные для анализа и расчета химико-технологических процессов задачи - определение направления процесса переноса (из какой фазы в какую переходит субстанция) и границ его течения, расчет движущей силы процесса. [c.17]

    Задача может рационально решаться при рассмотрении всей технологической схемы (сложной системы) по частям, т.е. при разделении системы на подсистемы. Причем экспериментальная проверка работоспособности подсистем (элементов и комплексов) позволяет, в конечном счете, определять работоспособность производства с выбранным вариантом технологической схемы. Применение подобной методологии разработки, анализа и проверки работоспособности технологических схем производства позволяет проектировать цеха, предусматривающие меньшие энергетические и капитальные затраты с получением продуктов необходимой степени чистоты. Вместе с тем эта методология дает возможность при разработке технологических схем производства 00 и НХС и их проектировании использовать вычислительную технику что, с одной стороны, сокращает время разработки и проектирования, а с другой - обеспечивает переход к автоматизированному проектированию химико-технологических комплексов, включающих реакторные узлы, узлы разделения и другие узлы любой сложности. [c.65]

    При анализе надежности химико-технологического обьекта учитывают его структуру, т. е. вьщеляют элементы и определяют связи между ними. Элемент — такая часть системы (объекта), которую для решения поставленных задач не требуется детализировать. Каждый элемент вьшолняет одну или несколько определенных функций. При эксплуатации вследствие различных причин (износа, коррозии, перегрузки, влияния внешних воздействий) элемент частично или полностью теряет свою работоспособность, что приводит к невыполнению соответствующих функций, снижает эффективность функционирования объекта, создает условия, благоприятствующие возникновению аварий, или непосредственно их вызывает. [c.675]

    Использование современных достижений в области теории растворов и ИОННЫХ равновесий и применение электронных вычислительных машин позволяют с требуемой точностью решать многие теоретические и практические задачи аналитической химии, не прибегая к предварительным экспериментам. Достоверность прогнозируемых решений и их результатов может быть проверена опытным путем. Многие задачи возможно решать с по-мош,ью кондуктометрических методов анализа, отличающихся существенными преимуществами по сравнению с другими методами. Особое преимущество имеют кондуктометрические методы в системах автоматического и дистанционного химико-аналитического контроля различных стадий химико-технологических процессов. [c.7]

    Вопрос о том, из чего состоит вещество, возникает при любой работе химика - при разработке и реализации технологических процессов, в исследовательской или заводской лаборатории, при проведении самых разнообразных экспертиз. Химической идентификацией, т. е. установлением вида частиц (молекул, атомов, ионов, радикалов), составляющих исследуемую систему, занимается аналитическая химия. В предыдущих разделах этой книги мы уже много раз убеждались, что химические системы бесконечно разнообразны, столь же разнообразны задачи и методы аналитической химии. В зависимости от поставленной задачи различают несколько видов анализа. [c.441]

    Задача химической промышленности — наиболее полное и целесообразное использование исходного сырья путем нревраш,епия в определенные химические соединения, которые могут быть как промежуточными, так и конечными продуктами технологического процесса. Поскольку химические реакции связаны с изменением расположения атомов в молекулах исходных веш,еств по сравнению с расположением тех же атомов в молекулах продуктов реакции, то перед химиком возникает задача осуществить химическое превращение в таких условиях (давление, температура и т. д.), которые способствовали бы преимущественному протеканию рассматриваемой реакции с образованием желаемых продуктов. Тщательный термодинамический анализ реагирующей системы часто помогает выяснить необходимые условия получения того или иного продукта, позволяет установить, какие реакции невозможны, и привлекает внимание к осуществимым реакциям. Целесообразность такого термодинамического анализа определяется наличием достаточно надежных основных термодинамических свойств веществ, однако даже при отсутствии всех необходимых данных часто оказывается возможным, опираясь на закономерности в термодинамических свойствах веществ, сделать некоторые обоснованные предположения о продуктах реакции. По мере накопления соответствующих данных применение термодинамического анализа в современных исс.ледованиях получает все более широкое распространение. [c.173]

    Другой существенный недостаток методологии анализа д фева неполадок - ее ограниченная применимость к задачам химической и нефтеперерабатывающей промышленности. Эта методология представляется наиболее подходящей для электромеханических систем, особенно там, где событии имеют бинарную природу, т. е. возможны лишь два состояния оборудования. Нарушения в функционировании технологического оборудования химического и перерабатывающего производств действительно включают такие типы неисправностей, например отказы в системах автоматичес1сого регулирования. Однако большинство нарушений в химико-технологических системах нельзя отнести к простым ситуациям типа "работает - не работает", они заключаются в отклонении от предписываемых норм. И хотя формально можно трактовать отклонения от технологического регламента как бинарные события (значение [c.475]

    Анализ показателей, определяющих экономическую эффективность любого технологического процесса в химической промьшшенности позволяет отнести к определяющим параметрам степень превращения основного вида сырья на стадии го химического взаимодействия [60]. Использование этого параметра в роли единственного и независимого переменного при заданной совокупности остальных параметров на каждой последующей стадии сложной химико-технологической системы позволяет весьма приближенно решать задачу оптимизации процесса ректификации. Зная оптимальное значение степени превращения сьфья, можно определить тип и размеры основной аппаратуры, используемой на каждой последующей стадии технологической схемы. Применительно к стадии, на которой осуществляется разделение продуктов реакции путем ректификации, это позвопит сузить границы изменения остальных параметров и облегчит возможность использования аналитических методов поиска оптимума с учетом описания только технологических параметров. [c.60]

    Этап 7 — завершающий. Он представляет собой математическую задачу нахождения максимума критерия Q в области изменения управляемых переменных, определяемой ограничениями системы. Слоновость этого этана обусловливается сложностью математических моделей отдельных блоков системы, сложностью структуры системы и числом управляемых переменных. Общее рассмотрение задачи оптимизации химико-технологического процесса и последовательности этапов ее выполнения можно найти в литературе Применительно к задаче оптимизации химического реактора детальный анализ этапов ее решения содержится в статье К. К. Кирдина и М. Г. Слинько . [c.19]

    Степень сложности задачи календарного планирования определяется как типом технологической структуры (конвейерная, сетевая и т. п.), так и режимом функционирования системы (последовательный, параллельный, групповой и т. п.). Как правило, задачи календарного планирования носят комбинаторный характер и относятся к классу трудно решаемых задач, т. е. число вариантов, подлежащих анализу, возрастает с размерностью задачи по экспоненциальному закону. Например, число перестановочных расписаний в совмещенной химико-технологичсской системе конвейерного типа равно п, где п—число продуктов. Большинство задач этого класса являются Л/Р-полными. [c.304]

    Автоматизированная система анализа и синтеза ХТС (АСАС ХТС SYNSYS), разработанная на кафедре кибернетики химико-технологических процессов МХТИ им. Д. И. Менделеева, предназначена для решения широкого круга задач, связанных с цифровым моделированием, анализом, оптимизацией и синтезом оптимальных химико-технологических систем [1, 2]. Она содержит три основных уровня уровень автоматизированного моделирования уровень синтеза ХТС уровень анализа ХТС (рис. 11.1). [c.588]

    Конечная цель системного анализа на уровне отдельного химико-технологического процесса — построение функционального оператора (модуля химико-технологического процесса), который используется в дальнейшем для решения задач оптимизации, управления, проектирования процессов, а также для решения задач выс-щих ступеней иерархии химического производства. Необходимость применения системного подхода особенно остро стоит при анализе сложных ФХС, т. е. систем, для которых характерны многообразие явлений, совмещенность и взаимодействие явлений различной физико-химической природы. К таким системам можно отнести процессы массовой кристаллизации из растворов и газовой фазы. [c.3]

    Для описания математических моделей химико-технологических процессов используются системы дифференциальных уравнений в обыкновенных либо в частных производных с различного типа граничными и начальными условиями. Причем нелинейности, как правило, входят в свободные члены уравнений п описывают кинетические закономерности процессов, а коэффициенты перед производными зависят только от пространственных координат и времени либо вообще выбираются постоянными. В настоящее время [1, 2] достаточно полно разработаны и исследованы численные методы приближенного решения краевых задач такого вида. Однако численный анализ моделей химической технологии сталкивается со значительными трудностями, связанными с наличием у большинства процессов больших, сильно изменяющихся градиентов температурных и концентрационных нолей, вследствие чего применение традиционных конечноразностных методов решения задач с большими градиентами требует слишком мелкого шага дискретизации, что ведет к чрезмерно большому объему вычислительной работы и затрудняет численный анализ математических моделей каталитических процессов на ЭВМ. Большие градиенты искомых решений в задачах химической технологии возникают либо из-за малых параметров перед старшими производными (явление пограничного слоя), либо из-за наличия мощных источников тепла в случае сильноэкзотермических процессов. В вычислительной математике наметились два дополняющих друг друга подхода, позволяющих бороться с указанными трудностями. Первый из них состоит в построении [c.144]

    Основная операщи проектирования новых и анализа действующих химико-технологических систем - это расчёт материально-тепловых балансов в условиях установившегося технологического режима. При проектировании химико-технологических систем (ХТС) значения материально-тепловых нафузок и производительностей элементов ХТС представляют собой исходную информацию для расчёта значений технологических к констр) кцио1ШЫХ параметров элементов ХТС, а также для расчёта значений удельных расходных норм или расходных коэффициентов сырья и топливно-энергетических ресурсов. Первым этапом такого расчёта является постановка задачи и составление системы уравнений материально-тепловых балансов. [c.185]

    Для изучения химико-технологических процессов создаются АСНИ, специализированные на задачах анализа кинетики каталитич. хим. р-ций. Элементы исследуемого объекта-реакционноспособные фрагменты молекул и активные центры катализатора осн. задача-выбор эффективных каталитич. системы и режшыа работы катализатора. Для решения этой задачи синтезируются варианты гипотетич. маршрутов хим. р-ций, по к-рым в ЭВМ автоматически составляются системы дифференц. ур-ний, представляющих собой мат. модели кинетики р-ций. Число вариантов моделей ограничивается по результатам предварит. экспериментов. На основе анализа входных и выходных расходов и концентраций потоков, т-р и давлений в исследуемых реакторах (в контролируемых условиях тепло- и массообмена внутри реакц. слоя) оцениваются константы скоростей и энергии активации в ур-ниях кинетики. Анализ особенностей кинетич. ур-ний дает возможность планировать последующие эксперименты для сокращения числа гипотез и выбора оптимальных условий использования каталитич. системы. Выявление лимитирующих стадий процесса позволяет найти направление совершенствования катализатора. Принципиальное улучшение исследований данного класса стало возможным на базе изучения кинетики хим. р-ций в динамич. режимах и благодаря слежению физ. методами (ЭПР, диэлькометрия и др.) за состоянием активных центров катализатора в ходе р-ций. [c.27]

    Подведем итог анализу методов физического моделирования газожидкостных реакций. Все рассмотренные методы с той или иной степенью приближения позволяют решать частные задачи. Некоторые из методов безусловно можно использовать для моделирования ряда конкретных, сравнительгю несложных химико-технологических процессов, особенно если не имеется информации о механизме химических реакций и физико-хими-ческих свойств системы. Однако недостатки приближенных физических методов [основные из них 1) недостаточный учет специфики хемосорбционных процессов и существования различных областей протекания процесса 2) отсутствие учета реальной структуры потоков газа и жидкости в промышленных аппаратах 3) принципиальная необходимость получения большого объема экспериментальных данных по скорости хемосорбции на модельной установке, часто при высоком давлении] ограничивают возможности моделирования. [c.168]

    Так появилась необходимость в дальнейшем усовершенствовании науки о химической технологии, а по существу в развитии нового научного направления по созданию теоретических основ химической технологии. Его основная задача — разработка методов нахождения оптимальных инженерных решений на базе системного подхода, т. е. рассмотрения химического производства как сложной системы, состоящей из большого числа взаимодействующих типовых процессов, на основе детального анализа закономерностей протекания этих процессов. Возникли новые научные дисциплины химическая кибернетика, оптимизация химико-технологических процессов и др. Все они опираются на закономерности протекания типовых процессов химической технологии. Теоретические основы химической технологии в нашей стране разрабатываются Н. М. Жаворонковым, В. В. Кафаровым, В. А. Малюсовым и многими другими учеными. [c.8]

    На практике случайные величины, значения которых оказывают определяющее влияние на работоспособность элементов химико-технологических систем (например, время начала процессов износа или старения, скорость износа), бывают распределены по более сложным законам или являются дискретными случайными величинами часто надежность элементов определяется воздействием многих внешних факторов (параметров окружающей среды, характеристик применяемых материалов и т. п.). В случаях, когда аналитическое решение задачи затруднено или невозможно, приходится прибегать к статистическому моделированию параметрической надежности методами Монте-Карло, применяемому к самым разнообразным технологическим системам без восстановления и с восстановлением отказавших элементов, без резервирования и с резервированием, с различными системами технического обслуживания и ремонта и т. д. Обьлны-ми условиями, определяющими необходимость и целесообразность применения статистического моделирования при анализе надежности системы, явJiяer я сложность ее структуры и многообразие особенностей взаимодействия элементов, длительность, сложность, трудоемкость и высокая стоимость физического экспериментального моделирования надежности, а необходимыми условиями — стохастический характер исследуемых процессов и параметров и определенность законов распределения вероятностей случайных параметров элементов системы. [c.742]

    Все более широкое использование в практической деятельноста инженера химика-технолога получают пакеты прикладных программ, стоимость которых достаточно высока (от 2000 и выше). Пакеты прикладных программ, как правило, ориентированы на решение задач автоматизированного проектирования, анализа технологических ситуаций, использование для принятая решений в системах с тренажером. [c.34]


Смотреть страницы где упоминается термин Задачи анализа химико-технологической системы: [c.176]    [c.203]    [c.32]    [c.21]    [c.19]    [c.173]    [c.8]    [c.182]   
Смотреть главы в:

Общая химическая технология -> Задачи анализа химико-технологической системы

Общая химическая технология и основы промышленной экологии -> Задачи анализа химико-технологической системы




ПОИСК





Смотрите так же термины и статьи:

Системы Системы химико-технологические

Системы анализ

Системы технологические

Химико-технологическая система

Химико-технологические системы анализ



© 2024 chem21.info Реклама на сайте