Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация ионов Явление сольватации ионов

    Сведения о характере явления сольватации ионов в растворах можно получить на основании оптических исследований этого процесса. Однако в большинстве случаев оптические исследования ионов в растворах проводились с целью изучения равновесий, в которых участвуют ионы, а не с целью выяснения природы сольватации ионов. К этому следует добавить, что оптические исследования процесса сольватации типичных ионов, для которых хорошо известны числа и энергии сольватации, трудно осуш ествить, так как они поглош ают свет в далекой ультрафиолетовой области, где большинство растворителей уже не прозрачно. [c.180]


    Следует отметить, что теория Дебая—Хюккеля объясняет особенности поведения электролитов электростатическим взаимодействием между ионами и совсем пренебрегает явлениями сольватации ионов и изменением сольватации ионов (изменением числа и энергии сольватации) с изменением концентрации электролита. [c.98]

    Явление сольватации ионов [c.166]

    Большой интерес представляют работы по физической химии Ивана Алексеевича Каблукова (1857—1942). В 1891 г. он установил явление сольватации ионов электролитов в юдных растворах и показал значение химического взаимодействия в процессах электролитической диссоциации. И. А. Каблукову принадлежат первые работы в области неводных растворов. [c.7]

    Таким образом, основу процесса отмывки ионита составляет изменение физико-механических свойств его под воздействием проникновения растворителя в ионит, электростатических явлений (доннановского потенциала), явлений сольватации (гидратация) и тепловых эффектов. Существующие подходы к составлению математических модулей процесса имеют определенные недостатки (в моделях не отражена взаимосвязь релаксационных, диффузионных, тепловых, химических и др. явлений модели не охватывают весь интервал разбавления растворов и степени сшитости ионитов). [c.376]

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]


    Различные методы определения чисел сольватации часто дают несовпадающие результаты, причем величины во многих случаях оказываются меньше координационного числа п , т, е. того числа молекул растворителя, которые составляют ближайшее окружение иона. Для объяснения этих результатов можно воспользоваться предложенной О. Я. Самойловым следующей динамической картиной явлений сольватации. Все частицы раствора — ионы и молекулы растворителя — находятся в непрерывном хаотическом движении, которое осуществляется за счет периодических перескоков этих частиц на расстояния молекулярных размеров. Пусть — среднее время, в течение которого ион находится в неподвижном состоянии. [c.27]

    Следовательно, направление, механизм и скорость электродной реакции определяются сочетанием электрохимических и химических стадий. В силу этого обстоятельства они зависят не только от факторов, влияющих на стадию переноса электрона (потенциал и материал электрода, природа растворителя, pH раствора), но также и от факторов, воздействующих на кинетику и механизм химических реакций. Иногда это те же самые факторы, оказывающие влияние на различные стадии посредством разных механизмов, иногда совсем иные. К последним относятся, например, явления сольватации и ионной ассоциации в растворе, а также величина концентрации реагирующего вещества. [c.190]

    В неводных растворах отступления от электростатической теории наступают еще при более низких концентрациях, чем в водных растворах. Было показано, что электропроводность в общем виде имеет очень сложную зависимость от концентрации. Это несовпадение теории с экспериментальными данными объясняется рядом явлений, которые наблюдаются в более концентрированных растворах и которые теория Дебая не учитывает. К ним относятся явления ассоциации ионов и влияние изменения сольватации ионов. [c.103]

    СОЛЬВАТАЦИЯ ИОНОВ 27. Явление сольватации ионов [c.137]

    Таким образом, неприложимость уравнения Робинсона — Стокса не может быть оправдана тем, что в неводных растворах эффект сольватации меньше, чем в воде. Отсутствие минимума в неводных растворах с низкой диэлектрической проницаемостью объясняется тем, что наряду с эффектом сольватации наблюдается и эффект ассоциации ионов. Следовательно, с одной стороны, связывание части растворителя в сольватную оболочку ионов и их частичная десольватация с ростом концентрации повышают коэффициенты активности, но, с другой стороны, ассоциация понижает их. Чтобы описать зависимость коэффициентов активности от концентрации, в этих случаях недостаточно учитывать только явление сольватации, необходимо учитывать также и изменение ассоциации ионов. [c.209]

    Из сказанного следует, что как состояние ионов при бесконечном разбавлении, так и состояние ионов в концентрированных растворах зависит от явления сольватации. При этом состояние ионов при бесконечном разбавлении зависит только от явления сольватации. Состояние ионов в концентрированных растворах зависит от явления сольватации ионов, дебаевского взаимодействия между ионами и ассоциации ионов. Совокупность этих явлений — сольватации, электростатического взаимодействия и образования ионных ассоциатов или неполной диссоциации — определяет состояние электролита при любой концентрации в любом растворителе. [c.214]

    Основной недостаток в существующих подходах к явлению сольватации состоит в попытке свести его к взаимодействию ион — растворитель, а не ион — среда. Сольватация определяется всеми видами взаимодействий в растворах ион — растворитель, растворитель — растворитель, ион — ион, сольватация характеризуется диалектическим единством всех указанных взаимодействий. Роль различных видов взаимодействий меняется в широких пределах в зависимости от концентрации электролита, температуры, добавок неэлектролитов и других факторов. [c.237]

    Второй подход к явлению сольватации называется кинетической сольватацией. Он учитывает преимущественно взаимодействия растворитель — растворитель и связан с представлениями о кинетической устойчивости ассоциата.ион —молекулы растворителя. Для водных растворов данный, подход был предложен О. Я. Самойловым (1956).. Рассмотрим его более подробно. [c.238]

    Развитые взгляды по-новому ставят вопрос о толковании явления ионной сольватации. Термодинамический и кинетический подходы здесь оказываются ограниченными. Во-первых, они не отражают всю совокупность изменений, происходящих при сольватации ионов. Основное внимание сосредоточивается либо на степени связанности ионом молекул растворителя, ли о на степени ограничения трансляционного движения последних в поле иона. Во-вторых, рассмотренные подходы в значительной степени основываются на разрыве и определенном противопоставлении взаимодействий ион — растворитель и растворитель — растворитель. В действительности же они теснейшим образом связаны и могут быть разделены лишь условно. И в-третьих, изложенные представления развиты для сольватации индивидуальных ионов, а не для стехиометрической смеси разноименно заряженных частиц. [c.241]


    С явлением сольватации связывают химические процессы перестройки внешних электронных оболочек молекул и ионов вплоть до образования связей по донорно-акцепторному механизму. При этом решающая роль во взаимодействии приписывается или растворенному веществу, или растворителю, или отдельным частицам того или другого, или некоторым атомным группам многоатомных молекул или ионов. [c.80]

    Мы рассмотрели строение простых жидкостей и те системы, которые получаются при введении в них электролитов. Общим итогом анализа состояния таких систем, очевидно, будет вывод о существовании сил связи как между однородными составными частями систем (молекулами растворителя), так и между компонентами раствора. Взаимодействие молекул растворителя друг с другом — ассоциация — наблюдается во всех жидкостях и даже в парах, а взаимодействие растворенных частиц с растворителем описывается как явление сольватации. Частицы сольватов не независимы друг от друга — в слабополярных средах образуются ионные пары, тройники и, возможно, кластеры, иллюстрирующие действие внутренних связей в таких системах. Мы намеренно ограничиваемся слабыми силами связи, так как они обусловливают большое разнообразие продуктов реакций. [c.262]

    Молекулярно-кинетический аспект сольватации. О. Я- Самойлов обосновал молекулярно-кинетическое представление о гидратации ионов. Явление гидратации трактуется им не как прочное связывание определенного числа молекул воды, а как действие ионов на тепловое движение ближайших к ним молекул раствора. Он различает два [c.274]

    От явлений сольватации и гидратации следует отличать процессы сольволиза и гидролиза, при которых молекулы растворителя (например, воды), взаимодействуя с ионами растворенного вещества, разлагаются на составные части (также ионы), вступающие в реакцию с ионами растворенного вещества. Примером реакции гидролиза может служить взаимодействие с водой тех же катионов никеля в водном растворе по схеме  [c.126]

    Установление связей между полярными молекулами растворенного вещества и полярными молекулами растворителя, сопровождающееся явлением сольватации, может привести к обратимой диссоциации. Схематически этот процесс показан на рис. 107. Ослабление энергии связи между центрами положительных и отрицательных зарядов полярной молекулы растворенного вещества, приводящее к диссоциации на ионы, можно условно представить как влияние диэлектрической постоянной среды (растворитель) по закону Кулона-. [c.198]

    Различные методы определения чисел сольватации часто дают несовпадающие результаты, причем величины л во многих случаях оказываются меньше координационного числа п, т. е. того числа молекул растворителя, которые составляют ближайшее окружение иона. Для объяснения этих результатов можно воспользоваться предложенной О. Я. Самойловым следующей динамической картиной явлений сольватации. Все частицы раствора — ноны и молекулы растворителя — находятся в непрерывном хаотическом движении, которое осуществляется за счет периодических перескоков этих частиц на расстояния порядка размеров молекул. Пусть Т1 — среднее время, в течение которого ион находится в неподвижном состоянии, а тг — время, необходимое, чтобы диполь растворителя, находящийся вблизи иона, порвал связь с другими диполями, изменил свою ориентацию и вошел в состав сольватной оболочки иона. Если Т1 Т2, то молекулы растворителя успевают порвать водородную или диполь-ди-польную связь с другими молекулами растворителя и войти в сольватную оболочку иона. В этих условиях ион окрулоет прочная сольватная оболочка и пн = пь. Поскольку согласно уравнению (II.9) электрическое поле иона тем сильнее, чем меньше его радиус, то это характерно для небольших ионов. Так, например, результаты по сжимаемости водных растворов солей лития, по энтропии гидратации и по подвижности иона дают среднее значение лл=б, соответствующее координационному числу иона лития. При условии Х1<Ст2 диполи растворителя в сольватной оболочке очень быстро меняются, а экспериментальное значение пл==0. Такой результат получается для ионов большого радиуса и малого заряда, например для ионов 1 и Сз+. При сравнимых Т1 и Т2 числа сольватации принимают значения от О до Пк, причем различные методы в неодинаковой степени отражают процесс замены диполей в сольватной оболочке иона, и это приводит к значительному расхождению результатов для Пн. [c.32]

    Оболочка нз молекул растворителя, примыкающих к иону н ориентированных своими постоянными и наведенными электрическими диполями по направлению поля центрального иона, называется сольватной оболочкой, а само явление называется неспецифической сольватацией или просто сольватацией иона. Способность растворителей к неспецифической сольватации ионов, как и диэлектрическая постоянная, тем выше, чем больше значения и а. Поэтому сольватирукщая способность растет в ряду растворителей с возрастающей диэлектрической постоянной. [c.29]

    Кроме того, с тем, что устойчивость типичных лиофобных ионностабилизо-ванных коллоидных систем может определяться сольватацией, не согласуются способность этих систем коагулировать под влиянием ничтожных количеств электролитов и вообще все закономерности, наблюдающиеся при электролитной коагуляции, о которых мы скажем несколько ниже. Далее, при объяснении устойчивости лнофобных систем сольватацией ионов становится непонятным, как могут происходить электрокинетические явления. Для того чтобы воспрепятствовать коагуляции, сольватный слой вокруг частицы должен быть достаточно толстым и уж во всяком случае простираться за плоскость скольжения мицел- [c.282]

    Большое значение имеют эффекты сольватации. Было показано, что реакционная способность различных анионов может изменяться [157]. Известно, что водородная связь понижает реакционную способность нуклеофильных частиц. Поэтому присутствие спирта в реакционной смеси может замедлять реакцию. Для алифатических сшхртов с нормальными цепями это обстоятельство не иредставляется особо важным с препаративной точки зрения, так как даже в присутствии избытка спирта протекает полный алкоголиз при комнатной или близкой к комнатной температуре. Это, однако, не наблюдается для реакций с фенолами. Недавно было установлено [135], что реакцию с феноксидом натрия можно ускорить проведением ее в тетрагидрофуране. который не только не может образовать водородную связь с анионной частью этого реагента, но, возможно, довольно прочно соединяется с ионом натрия и, таким образом, повышает еще больше реакционную способность реагента. До сих пор мало изучена истинная природа этого нуклеофила. Реагенты этого типа часто существуют в растворе в различных степенях агрегации и спаривания ионов. Явление координации ионов металла с донорными растворителями, например тетрагидрофураном, по сравнению с инертными растворителями (бензолом) должно ослаблять степень агрегации и облегчать разделение пар ионов, каждый из которых способен увеличивать реакционную способность реагента. Очевидно, следует ожидать [c.55]

    В работе Н. Е. Хомутова [45] развит новый подход к изучению явления сольватации ионов, основанный на анализе результатов сопоставления термодинамических свойств сольватированных ионов с термодинамическими свойствами свободных ионов. На рис. 164 и 165, заимствованных из указанной работы, показано сравнение значений соответственно А// и А2 (растворитель — вода). Как видно из этих чертежей, в пределах погрешности характер линейных зависимостей определяется структурой наружных электронных оболочек. Действительно, линии Л и Б на рис. 164 объединяют катионы, имеющие электронные оболочки атомов инертных газов на линии В ж Г лежат ионы, наружные электронные оболочки которых являются незаполненными и заполненными 3 -, 4й- и 5й-электрон-ными слоями. Между этими прямыми легли точки для Си , Си " , РЬ и 8п. [c.217]

    Некоторые исследования позволили установить, что растворенный в воде неэлектролит влияет на гидратацию и сольватацию ионов. Результаты измерения свободной энтальпии переноса хлоридов щелочных металлов из воды в смесь метанол — вода были объяснены Войсом [386]. Согласно этой интерпретации, при переносе из воды в смесь метанол — вода сольватная оболочка иона Li+ стабилизируется больше, чем оболочка иона Na+, что является следствием более сильного электростатического влияния иона Li+ из-за его меньшего радиуса. Однако стабилизация иона Rb+ ниже, чем имеющего больший радиус иона s+, что обусловлено его неэлектростатическим влиянием на растворитель. В исследовании [38в] изучена тольватация двухзарядных ионов в смесях метаиол — вода. Установлено, что координационное число двухзарядных ионов больше, чем у однозарядных с таким же радиусом. Ион Ba + более стабилен в смесях метанол — вода, чем К+, даже если вычисление отнести к единице заряда. Во взаимодействии ионов Sf2+ и Ва + с координирующимися с ними молекулами воды < преобладают электростатические силы. Явление сольватации LiBr IB смесях вода — ацетон было исследовано в работе [38г], а гидратации H IO4 в смесях вода—диоксан в работе [38д]. [c.556]

    Книга предназначается в качестве учебника для студентов химико-технологических вузов. В ней последовательно изложены основные положения теоретической электрохимии —прохождение тока через растворы электролитов, теория сильных электролитов И ее применения, явления сольватации ионов, теория возникновения электродвижущих сил, теория электро-каниллярных явлений и электродных процессов при выделении металлов. Уделено также внимание некоторым особым случаям электролиза — растворению металлов на аноде, образованию сплавов, электролизу с наложением переменного тока, электролизу неводных растворов и расплавов. Отдельные главы посвящены основам теории аккумуляторов и электрохимической коррозии. В заключительной главе учебника рассматриваются теоретические основы некоторых электрохимических процессов, нашедших применение в промышленности. [c.2]

    По данным Вике (Wi ke, 1954) ион [НзО]+ в водных растворах гидратирован дополнительно, т. е. к нему присоединены еще и другие молекулы воды, прочность связи которых приблизительно соответствует прочности связи молекул воды с другими гидратированными ионами, например с ионами щелочных металлов. Согласно этому воззрению, ион гидроксония отличается особенно большой энергией связи молекул воды с протоном. По представлению Вике в водных растворах к иону [НзО]+ присоединяются еще три молекулы воды и образуется комплекс (наличие которого в кристаллизующихся соединениях было уже давно установлено, см. стр. 773), имеющий вид пирамиды [Н0О4] . В этом комплексе, по всей вероятности, избыточный протон является очень подвижным, так что он после образования комплекса оказывается нефиксированным около определенной молекулы воды. К сформированной таким образом внутренней гидратной оболочке могут присоединяться еще другие молекулы воды, образуя внешнюю гидратную оболочку. Протон, гидратированный одной молекулой воды, называют ионом гидроксония. Как в водных растворах с водой, так и в других средах растворенные вещества часто соединяются с растворителем в более или менее слабо связанные продукты присоединения. Их называют общим названием сольваты (сюда включаются также существующие в водных растворах гидраты). Это явление называется сольватацией. [c.91]

    Явлецие сольватации заключается в том, что ионы в растворе движутся вместе с некоторой частью растворителя, вступившего с ним во взаимодействие, и нарушают структуру растворителя. К. П. Миш енко дает более широкое определение явления сольватации, он считает, что в бесконечно разбавленном растворе под сольватацией следует понимать всю сумму изменений, вызываемых появлением ионов электролита в растворе . [c.137]

    Явление сольватации обязано тому,, что заряженная частица (ион), появившаяся среди молекул растворителя, изменяет свойства и порядок распределения последних в растворе. Если молекулы растворителя имеют дипольный момент, то они взаимодействуют с ионами, образуя сольватные оболочки. При этом электростатическое бзаимодействие не является единственной причиной сольватации ионов. Сольватация может возникать и за счет некулоповских — химических сил. Многие соли образуют гидраты и сольваты не только в растворах, но и в твердом состоянии. К такому комплексообразованию склонны почти все соли. Например, образование гидратов солей меди является типичным процессом комплексообразования. В таких соединениях связь между ионами и молекулами воды чисто химическая, она обусловлена обычной координационной валентностью, типичной для комплексных соединений. [c.137]

    Достаточно указать, что она определяет равновесие и скорость растворения твердых и жидких веществ, разнообразных химических превращений в растворах и.т. д. Сольватация приводит, с одной стороны, к изменению природы реагирующих частиц (образованию сольватокомплексов, перераспределению ионного заряда, поляризации, блокированию реакционных центров и т. п.), с другой — структуры растворителя и его свойств. Своеобразно проявление сольватации в явлениях химической кинетики. Здесь сольватация исходных веществ, переходного комплекса и продуктов реакции определяет не только скорости и другие кинетические параметры рва кций, но также и их механизмы. Следует отметить, что учет и детальный анализ сольватационного взаимодействия растворителя с переходным комплексом необходим для построения теории реакционной способности молекул и ионов. Так, например, издавна считается, что полярный растворитель благоприятствует протеканию химических реакций, переходный комплекс которых более полярен, чем исходное состояние реагентов. [c.237]

    Термодинамический и кинетический подходы. В истолковании явления сольватации имеются два подхода. Один из них называется термодинамической сольватацией. Он основан на преимущественном учете взаимодействий ион— растворитель и предполагает, что при сольватации ионы прочно связывают определенное число молекул растворителя. Это число называется сольватацион-ным (в случае водных растворов — гидратационным). Для количественной характеристики сольватационные числа не всегда применимы, так как они в значительной степени зависят от методов их определения. Достаточно указать, например, что, по данным различных авторов, гидратационные числа для иона Li+ изменяются от 158 до 4, для иона Са + —от 16 до 6 для иона АР+ — от 39 до 6 и т. д. Более определенный смысл имеет число молекул растворителя, составляющих непосредственное окружение иона (координационное число). Оно служит одной из важнейших количественных характеристик процесса сольватации. Координационное число зависит от природы сольватирующихся частиц, их концентрации и т. д. Обсуждаемый подход к сольватации на основе преимущественной роли взаимодействия ион — растворитель связан с представлениями о термодинамической устойчивости ас-социата ион — молекулы растворителя, мерой которой является общая энергия взаимодействия между ними. [c.238]


Смотреть страницы где упоминается термин Сольватация ионов Явление сольватации ионов: [c.187]    [c.4]    [c.3]    [c.128]    [c.394]    [c.71]    [c.416]    [c.40]    [c.159]   
Смотреть главы в:

Электрохимия растворов издание второе -> Сольватация ионов Явление сольватации ионов




ПОИСК





Смотрите так же термины и статьи:

Ионы сольватация,

Сольватация

Сольватация ионов



© 2025 chem21.info Реклама на сайте