Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические компоненты нуклеиновых кислот

    Химические компоненты нуклеиновых кислот [c.277]

    Рч сложным белкам относятся нуклеопротеиды, в которых небелковая часть представлена нуклеиновыми кислотами (НК). Они подобно белкам характеризуются большой относительной молекулярной массой. При гидролизе НК образуются пуриновые и пиримидиновые основания, углеводный компонент и фосфорная кислота. По химическому составу нуклеиновые кислоты делят на рибонуклеиновую (РНК) и дезоксирибонуклеиновую (ДНК). Углеводный компонент в РНК представлен рибозой, а в ДНК — дезоксирибозой. Аденин. гуанин и цитозин являются общими как для РНК, так и для ДНК. Четвертым основанием в РНК является урацил, а в ДНК — тимин. [c.433]


    Физико-химические свойства нуклеиновых кислот. Электрические, оптические и маг-ни--ные свойства нуклеиновых кислот и их компонентов, пер. с англ., М., 1976. [c.534]

    Эти аминокислоты рассматриваются вместе, поскольку они близки по химической структуре и взаимосвязаны в процессах обмена. В ходе своего обмена глицин подвергается превращениям в другие аминокислоты, в компоненты нуклеиновых кислот, порфиринов, липидов и углеводов. Хотя глицин по своему строению является простейшей аминокислотой, его промежуточный обмен представляет крайне сложную картину. [c.319]

    Авторы настоящей монографии делают попытку восполнить этот пробел, отдавая себе отчет в трудности поставленной задачи. Книга посвящена реакциям нуклеиновых кислот и их компонентов эти реакции приводят к изменениям структуры, к так называемой химической модификации нуклеиновых кислот. [c.10]

    Нуклеиновые кислоты отличаются от других биополимеров относительно малым разнообразием мономерных единиц, входящих в их состав. Принято разделять мономерные единицы нуклеиновых кислот на основные компоненты и редкие (минорные) компоненты. Под основными компонентами нуклеиновых кислот понимают мономерные единицы, имеющие универсальное распространение и входящие в состав полимеров в значительных количествах (не менее 5%). Содержание редких компонентов заметно меньше (как правило, не более 2%) они встречаются далеко не во всех нуклеиновых кислотах. Обычно редкие компоненты можно рассматривать как производные основных компонентов, образующиеся из них при довольно простых химических реакциях (таких, как алкилирование, гидрирование и т. д.). [c.49]

    Несмотря на применение защищенных производных нуклеотидов и нуклеозидов, некоторые побочные реакции (например, образование пирофосфатов при синтезе исходя из моноэфиров фосфорной кислоты) все же имеют место вследствие этого требуется тщательная хроматографическая очистка продуктов реакции. Одним из приемов, позволяющих существенно упростить очистку продуктов реакции, является фиксация одного из компонентов реакционной смеси на полимерном носителе Такой полимер может быть легко отделен от других компонентов реакционной смеси. Продукт реакции, фиксированный на полимере, можно подвергать дальнейшим превращениям, что значительно упрощает многостадийные синтезы. Наконец, после выполнения всех стадий продукт может быть отщеплен от полимера и выделен в чистом состоянии. Такой подход к синтезу олигонуклеотидов привлекает сейчас большое внимание . Неспецифичность химических методов создания межнуклеотидной связи, являющаяся недостатком химического подхода к синтезу олигонуклеотидов (получение защищенных производных нуклеозидов и нуклеотидов требует многостадийных синтезов), в данном случае дает ряд преимуществ, поскольку в синтез олигонуклеотидов могут быть введены самые разнообразные производные нуклеозидов, в том числе и синтетические аналоги компонентов нуклеиновых кислот. Это открывает широкие возможности исследования связи структуры и функции природных полинуклеотидов. [c.86]


    По своему химическому поведению аминогруппа в компонентах нуклеиновых кислот наиболее близка, по-видимому, к аминогруппе ароматических аминов, содержащих сильные электроноакцепторные заместители, например к аминогруппе п-нитроанилина. Дополнительное осложнение состоит здесь, однако, в том, что даже простейшие производные данного ряда (нуклеозиды) содержат также и другие функциональные группы, способные вступать в реакцию с электрофильными реагентами. Это атомы азота пиридинового типа в гетероциклическом ядре, гидроксильные группы остатка моносахарида. При переходе от нуклеозида к нуклеотиду проведение реакции осложняется еще больше за счет появления в молекуле функциональной группы с сильными нуклеофильными свойствами — остатка фосфорной кислоты — создается возможность новых побочных реакций. При реакциях с олиго- и полинуклеотидами вследствие таких побочных реакций могут возникать три-замещенные производные фосфорной кислоты, в которых крайне облегчена атака нуклеофильных агентов на атом фосфора, что может приводить к расщеплению полимерной цепи. Поэтому подбор оптимальных условий проведения реакции по экзоциклическим заместителям ядер на полинуклеотиде является обычно достаточно трудной задачей. [c.402]

    Напротив, для исследования первичной структуры нуклеиновых кислот модификация формальдегидом не может иметь большого значения из-за неустойчивости первичных продуктов реакции и крайне медленного образования устойчивых продуктов типа X . Гораздо большие перспективы в этом отношении имеет взаимодействие нуклеотидов с альдегидами, содержащими дополнительные функциональные группы, взаимодействие которых с гетероциклическим ядром может приводить к стабилизации продукта реакции. Примером использования такого подхода при разработке специфических реагентов для химической модификации нуклеиновых кислот может служить исследование взаимодействия компонентов нуклеиновых кнслот с а-окисью акролеина XI Этот реагент способен гладко реагировать при pH 10,0 с гуанозином и дезоксигуанозином , в то время как другие обычные нуклеозиды [c.412]

    Реакции, приводящие к расщеплению фосфоэфирных (в особенности фосфодиэфирных) связей, занимают особое место в ряду других химических превращений нуклеиновых кислот и их компонентов. Они являются основой аналитических методов, используемых для определения состава и строения нуклеиновых кислот. Хотя в настоящее время химические методы гидролиза фосфоэфирных связей в значительной степени уступили место ферментативным, позволяющим проводить такое расщепление в более мягких условиях и более специфично, тем не менее возможности химических способов гидролиза еще далеко не исчерпаны. [c.541]

    В предыдущих главах были описаны химические реакции, характерные для основных и большей части редких компонентов нуклеиновых кислот. Однако некоторые редкие компоненты обладают необычными химическими свойствами, обусловленными присутствием в их молекуле функциональных групп, отсутствующих в других нуклеозидах. Эти реакции, выходящие за рамки принятой в данной книге классификации, кратко рассматриваются в данной главе. [c.605]

    Исследования действия ультрафиолетового облучения на нуклеиновые кислоты и их компоненты интенсивно развиваются в последнее время (обзоры — см.в трех основных направлениях 1) влияние УФ-облучения на функциональные свойства нуклеиновых кислот (см., например, 2) органическая фотохимия компонентов нуклеиновых кислот 3) физика возбужденных состояний нуклеиновых кислот и их компонентов. В данной главе рассмотрена собственно органическая фотохимия пуриновых и пиримидиновых оснований, нуклеозидов, нуклеотидов и полинуклеотидов. Особое внимание обращено на изменение химических свойств компонентов нуклеиновых кислот при переходе их в возбужденное состояние. [c.615]

    Нуклеотиды, нуклеозиды, пуриновые и пиримидиновые основания— нелетучие полярные соединения, имеющие приемлемую растворимость в водных растворах. Эти соединения способны ионизоваться в водных растворах, хотя в каждом отдельном случае это зависит от температуры, pH и ионной силы среды водных растворов. Все приведенные химические характеристики соединений указанного типа позволяют предположить, что в данном случае наиболее действенным способом разделения может быть ионообменная хроматография. Особенно важно, что степень ионизации зависит от трех переменных температуры, pH и ионности среды. Далее мы покажем, как, используя эти параметры, можно предложить практически бесконечное число вариантов методики разделения любой данной смеси компонентов нуклеиновых кислот. [c.302]

    Несмотря на то, что от работы Уотсона и Крика нас отделяют всего лишь два десятилетия, представления о ДНК, как о двойной спирали, давно уже стали классическими. Последующие физико-химические исследования нуклеиновых кислот и их компонентов, в том числе рентгеноструктурные исследования, подтвердили эти представления, однако в то же время они дали много нового для понимания биологических функций нуклеиновых кислот, и притом именно на уровне стереохимии. [c.400]


    Нуклеиновые кислоты подразделяются на рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК) кислоты. В основу такой классификации положена химическая структура углеводного компонента нуклеиновых кислот. Если в состав нуклеиновых кислот входит рибоза, кислоты называются рибонуклеиновыми, если дезоксирибоза— дезоксирибонуклеиновыми. РНК и ДНК отличаются и по некоторым азотистым основаниям. [c.140]

    Нуклеиновые кислоты — простетические группы нуклеопротеидов относятся к высокомолекулярным соединениям, построенным из ряда компонентов. Для понимания химической природы нуклеиновых кислот, молекулярный вес которых насчитывает от десятков тысяч до нескольких миллионов, важно прежде всего познакомиться с химической структурой их составных частей. [c.47]

    Фракционирование методом гель-проникающей хроматографии (ГПХ) основано на применении принципа молекулярного сита, т. е. разделение молекул происходит только по размерам и не зависит от химической природы компонентов. Это свойство отличает метод ГПХ от всех других методов, основанных на растворимости полимеров. Возможность разделения только по размерам особенно важна для сополимеров и полимерных веществ биологического происхождения (белков, нуклеиновых кислот и др.). [c.96]

    Среди лабораторных методов очистки, фракционирования и анализа структуры белков, нуклеиновых кислот и их компонентов совокупность различных хроматографических методов занимает центральное место. Ни один другой метод не может сравниться с хроматографией по широте количественного диапазона. Начиная от препаративных колонок объемом в несколько литров, на которых можно вести фракционирование граммовых количеств препарата на первых этапах выделения фермента, через разделение близких по своей природе компонентов очищенной смеси веществ, количество которых измеряется миллиграммами или долями миллиграмма, этот диапазон простирается до микроанализа аминокислотного состава белка, когда на колонку вносят сотые доли микрограмма исходного гидролизата. Вне конкуренции остается и разнообразие физико-химических параметров, по которым может осуществляться хроматографическое фракционирование молекулярные размеры, вторичная или третичная структура биополимеров, растворимость, адсорбционные характеристики молекул, степень их гидрофоб-ности, электрический заряд и, наконец, биологическое сродство к другим молекулам. [c.3]

    Физические и химические свойства белков во многих отношениях несопоставимы также со свойствами важнейших молекулярных компонентов живого - жирами, углеводами и нуклеиновыми кислотами. Химическое поведение последних определяется в основном локальными участками цепи. По сравнению с белками оно крайне просто и подчиняется классической теории химического строения. Жиры и высокомолекулярные углеводы в растворе не образуют фиксированных трехмерных структур. [c.52]

    Современное развитие химических и биологических наук истребовало более глубокого проникновения в существо изучаемых процессов, детального анализа химического состава разнообразных смесей и биологических объектов. Кроме того, для химического и биотехнологического ироизводства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев ири оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Рещение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой различной природы — от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хроматографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций ио различным вопросам теории и применения метода, общее же их число в несколько раз больше. [c.5]

    Мономерными звеньями ДНК и РНК являются остатки нуклеотидов. Нуклеотиды — это фосфорные эфиры нуклеозидов, которые, в свою очередь, построены из остатка углевода — пентозы и гетероциклического основания. В РНК углеводные остатки представлены D-рибозой, в ДНК — 2-1)-дезоксирибозой. Связь между углеводным остатком и гетероциклическим основанием в нуклеозиде осуществляется через атом азота в основании, т. е. с помощью К-гликозидной связи. Таким образом, нуклеозидные остатки в ДНК и РНК относятся к классу N-гликозидов. Как уже отмечалось во Введении, в качестве гетероциклических оснований ДНК содержат два пурина аденин и гуанин — и два пиримидина тимин и цитозин. В РНК вместо тимина содержится урацил. Кроме того, ДНК и РНК обычно содержат так называемые минорные нуклеотидные остатки — производные обычных нуклеотидов по основаниям или углеводному остатку, доля которых в зависимости от вида нуклеиновой кислоты колеблется от десятых процента до десятков процентов. Строение, химическая номенклатура и принятые сейчас сокращенные обозначения нуклеотидов и их компонентов показаны на рис. 2. [c.11]

    Нуклеиновые кислоты (ДНК и РНК) относятся к сложным высокомолекулярным соединениям, состоят из небольшого числа индивидуальных химических компонентов более простого строения. Так, при полном гидролизе нуклеиновых кислот (нагревание в присутствии хлорной кислоты) в гидролизате обнаруживают пуриновые и пиримидиновые основания, углеводы (рибоза и дезоксирибоза) и фосфорную кислоту  [c.97]

    Химический состав. Фаги состоят из двух основных химических компонентов — нуклеиновой кислоты (ДНК или РНК) и белка. У фагов, имеющих форму сперматозоида, двунитчатая ДНК плотно упакована в виде спирали внутри головки. [c.60]

    Особая роль в живой природе принадлежит нуклеиновым кислотам. Пуриновые и пиримидиновые основания — незаменимые компоненты нуклеиновых кислот и некоторых коферментов. В свою очередь, пурины можно получить из замещенных 4 (5)-аминоимидазолов и пи-римидинов или более простых компонентов. Для изучения химической эволюции и развития жизни на Земле большое значение имеет выяснение вопросов абиогенного происхождения пуринов. Одним из альтернативных путей происхождения пуринов является полимеризация циановодорода, имеющего, по-видимому, уникальное и в то же время универсальное значение в образовании аминокислот, порфиринов, пуринов, которое доказано экспериментально в условиях, имитирующих добиологический период существования Земли [250, 334]. Кальвин, Поннамперум и другие исследователи синтезировали 4-аминоимидазол-5-карбоксамид и пурины при р-облучении обогащенной водородом атмосферы, содержащей метан, аммиак, водород и пары воды. Аналогичные опыты поставлены в условиях ионизирующей радиации, однако выход пуринов оказался ничтожным (до 0,01 %). [c.44]

    Выделение и идентификацию компонентов нуклеиновых кислот производят с помощью физико-химических методов. Очень важную роль в разделении сложных смесей играют хроматографические методы ( см. 15.1). Пиримидииовые и пуриновые основания, обладающие заметным поглощением около 260 нм, обычно идентифицируют с помощью УФ-спектроскопии (см. 15.3.1). Поскольку нуклеотиды имеют кислотный характер и способны находиться в ионизированном сосюя НИИ, то для идентификации их используют также электрофорез (см. 15.1). [c.444]

    Основные химические реакции нуклеиновых кислот и их компонентов позволяют получить представление о многообразии химических превращений, в которых участвуют нуклеиновые кислоты in vivo и in vitro. [c.397]

    Второй этап — с начала нашего века по тридцатые годы. Здесь проводилось изучение главным образом продуктов расщепления нуклеиновых кислот. В ходе исследований были выделены и изучены мономерные компоненты нуклеиновых кислот. Левин и отчасти Гулланд установили структуру углеводных остатков, нуклеозидов и нуклеотидов. На основании полученных данных Левин выдвинул так называемую тетрануклеотидную гипотезу строения нуклеиновых кислот, не подтвердившуюся впоследствии. Отсутствие подходящих методов выделения, физико-химической и биологической характеризации нуклеиновых кислот и данных об их роли в процессах жизнедеятельности сдерживало развитие исследований в этой области. [c.14]

    Для изучения химических свойств компонентов нуклеиновых кислот используется весь арсенал классической и современной органической химии — как теоретические квантовохимические расчеты, так и эмпирические методы, основанные на изучении реакционной способности аналогов. В данной главе с этой точки зрения рассматриваются основные характеристики компонентов нуклеиновых кислот и нуклеотидкоферментов, определяющие их химическую специфичность в основном электронном состоянии. Свойства компонентов нуклеиновых кислот в возбужденном состоянии будут рассмотрены в гл. 12. [c.146]

    Реакции гидроксиламина с компонентами нуклеиновых кислот исследованы значительно глубл е других реакций и являются в настоящее время наиболее разработанными в теоретическом и препаративном отношении реакциями химической модификации рассматриваемого класса соединеппй. Сам гидроксиламии в зависимости от pH реакционной среды проявляет различную специфичность по отношению к основаниям нуклеиновых кислот при кислых и нейтральных значениях pH он реагирует в основном с цитозиновым ядром, а при щелочных — с урацильным ядром Взаимодей- [c.343]

    Для понимания вопросов реакционной способности и химической модификации нуклеиновых кислот важное значение имеют реакции, в которых участвуют экзоциклические заместители пуриновых и пиримидиновых оснований, т. е. аминогруппы цитозина, аденина или гуанина, карбонильные группы урацила, гуанина, ксантина и их производных, а также реакции атома серы тиопро-изводных (редких компонентов РНК). Как уже отмечалось выше (см. гл. 3), п-электроны атомов азота аминогрупп и кислорода карбонильных групп оснований нуклеиновых кислот (и их производных) в значительной степени взаимодействуют с л-электронной системой гетероциклического кольца, вследствие чего свойства соответствующих компонентов нуклеиновых кислот сильно отличаются от свойств простых аминов, амидов или тио-амидов. [c.401]

    Характерная особенность производных аденина — их способность влиять на рост растений. Значение аденина обусловлено тем, что он является одним из компонентов нуклеиновых кислот и многих коферментов. Аденнн обладает более выраженными свойствами основания, чем пиримидин, но в то же время адениновое основание слабее имидазола. Поскольку и кислотный характер у аденина выражен сильнее, чем у имидазола, в химических реакциях он может участвовать и как основание, и как кислота. Его биологическая активность возрастает, если к аминогруппе в положении 6 присоединяется слабая кислота. Наиболее известное производное аденина этой группы — кинетин (6-фурфуриламинопурин). По физиологической активности кинетин относится к соединениям, регулирующим рост и развитие растений. Он стимулирует синтез белков, нуклеиновых кислот и соответственно процесс клеточного деления, кроме того, замедляет старение растений. В основе механизма биологической активности кинетина лежит способность усиливать синтез т ранспортной РНК- [c.72]

    Значительное место в исследованиях химических свойств нуклеиновых кислот и их компонентов занимает химическая модификация нуклеиновых кислот, преследующая цель изучения их структуры и функций. Первые шаги в этом направлении были сделаны в ИХПС АН СССР (Москва) в лаборатории химии углеводов и нуклеотидов (П. К. Кочетков, Э. И. Будовский и др.). Здесь, а также в ряде зарубежных лабораторий было показано, что из всех оснований нуклеиновых кислот в реакцию с гидроксиламином вступают, в зависимости от условий, либо урацил, либо цитозин. Подробное исследование этих реакций позволило установить оптимальные условия модификации каждого из этих оснований. [c.522]

    Исследование химического строения нуклеиновых кислот, начатое Ф. Мишером, далее было продолжено К. А. Косселем (1879 г.), который обнаружил в нуклеиновых кислотах азотсодержащие гетероциклические основания. Первым выделенным гетероциклическим основанием, присутствующим в нуклеиновых кислотах, был гуанин (ранее выделенный из перуанского гуано — помета птиц, ценного азотистого удобрения). Впоследствии из нуклеиновых кислот были выделены тимин (из клеток тимуса быка), цитозин (от греч. ytos — клетка) и аденин (от греч. aden — железа). В результате проведенных исследований русский химик Ф. Левен установил, что в состав нуклеиновых кислот входят азотсодержащие гетероциклические основания (производные пурина и пиримидина), фосфорная кислота и углеводный компонент — рибоза или дезоксирибоза. [c.264]

    При полном жестком кислотном гидролизе (72%-я H IO4, 100 °С или 25%-я НСООН, 75 °С) нуклеиновых кислот образуются пуриновые и пиримидиновые основания гетероциклические азотистые основания), моносахарид пентоза рибоза или дезоксирибоза в фуранозной форме) и фосфорная кислота. Рассмотрим особенности химического строения и физико-химических свойств данных соединений как главных компонентов нуклеиновых кислот и их предшественников — нуклеозидов и нуклеотидов. [c.265]

    Вопрос о физиологической роли минеральных элементов в живой клетке и организме в целом широко изучается в последнее время. Современная литература содержит много работ, свидетельствуюш их о тесной связи условий внешней среды, особенно ее химического состава, и физиолого-биохимических свойств клеток. Известно, что минеральные элементы влияют на ход ферментативных реакций в клетках, обмен различных соединений и формообразовательные процессы. Усвоение минеральных элементов связано с образованием основных клеточных компонентов — нуклеиновых кислот и белков, а также полисахаридов и липидов. [c.52]

    Методы анализа фракций могут быть физическими, химическими и биологическими. Одним из лучших методов считается детектирование радиоактивных изотопов. Результаты измерений оформляют в виде кривой зависимости определяемой величины от объема злюата. По распределению пиков на хроматограмме судят о возможности объединения некоторых фракций, совершенно чистых, без примесей других компонентов. Методом ионообменной хроматографии можно разделять различные катионы и анионы, четвертичные аммониевые основания, амины, аминокислоты, белки, продукты гидролиза пептидов, физиологические жидкости, гидролизаты клеточных оболочек микробов, антибиотики, витамины, нуклеиновые кислоты. [c.361]

    Методы количественного определения нуклеиновых кислот основаны на определении содержания составляющих их компонентов азотистых оснований (как правило, спектрофотометрически благодаря поглощению в ультрафиолетовой области спектра) пентоз (с помощью химических реакций, позволяющих отдельно определять рибозу и дез-оксирибозу) и фосфора нуклеиновых кислот. [c.161]

    На понижении растворимости и переходе от полного смешения к ограниченной растворимости основаны также многочисленные случаи коацервации (Бунгенберг-де-Ионг). Так, например, коацерваты с расслоением в капельножидкой форме или в виде двух слоев могут быть получены из водных растворов желатины добавлением спирта или сернокислого натрия, из спиртовых растворов проламинов при разбавлении их водой, из положительно заряженных молекул желатины (при pH 1,2—4,8) и отрицательно заряженных частиц гуммиарабика или крахмалофосфорной кислоты, из растворов двух белков с сильно различными положениями изоточек, из растворов белка и нуклеиновых кислот и др. Во всех этих случаях коацерваты возникают в условиях перехода к взаимно ограниченной растворимости компонентов раствора. Степень расслоения полимеров при коацервации очень велика, например, при получении коацервата из 1%-ного раствора желатины до 93% ее количества входит в состав коацерватного слоя, а при более низких концентрациях — относительно еще больше поэтому оба слоя при коацервации резко различаются по содержанию коллоидных веществ. Физико-химические свойства коацерватов в ряде отношений напоминают соответствующие свойства протоплазмы, что привлекает к ним внимание биологов согласно Опарину, коацервация имела большое значение для пространственного отделения и организации коллоидных веществ в истории возникновения жизни на Земле. [c.187]

    Дальнейшее развитие биологии и медицины почти невозможно без применения методологических принципов современной биологической химии. Установление способов хранения и передачи генетической информации и принципов структурной организации белков и нуклеиновых кислот, расшифровка механизмов биосинтеза этих полимерных молекул, а также молекулярных механизмов трансформации энергии в живых системах, установление роли биомембран и субклеточных структур, несомненно, способствуют более глубокому проникновению в сокровенные тайны жизни и выяснению связи между структурой индивидуальных химических компонентов живой материи и их биологическими функциями. Овладение этими закономерностями и основополагающими принципами биологической химии не только способствует формированию у будущего врача диалектикоматериалистического понимания процессов жизни, но и дает ему новые, ранее недоступные возможности активного вмешательства в патологические процессы. Этими обстоятельствами диктуется необходимость изучения биологической химии студентами медицинских институтов. [c.9]

    Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп протамины, гистоны, альбумины, глобулины, проламины, глютелины и др. Классификация сложных белков (см. главу 2) основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), пуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы). [c.72]

    Пуклеопротеины состоят из белков и нуклеиновых кислот. Последние рассматриваются как простетические группы. В природе обнаружено 2 типа нуклеопротеинов, отличающихся друг от друга по составу, размерам и физико-химическим свойствам,— дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНН). Названия нуклеопротеинов отражают только природу углеводного компонента (пентозы), входящего в состав нуклеиновых кислот. У РНП углевод представлен рибозой, у ДНП—дезоксирибозой. Термин пуклеопротеины связан с названием ядра клетки, однако ДНП и РНП содержатся и в других субклеточных структурах. Следовательно, речь идет о химически индивидуальном классе органических веществ, имеющих своеобразные состав, структуру и функции независимо от локализации в клетке. Доказано, что ДНП преимущественно локализованы в ядре, а РНП —в цитоплазме. В то же время ДНП открыты в митохондриях, а в ядрах и ядрышках обнаружены также высокомолекулярные РНП. [c.86]


Смотреть страницы где упоминается термин Химические компоненты нуклеиновых кислот: [c.96]    [c.303]    [c.2]    [c.11]    [c.52]    [c.40]    [c.56]   
Смотреть главы в:

Основы органической химии -> Химические компоненты нуклеиновых кислот




ПОИСК





Смотрите так же термины и статьи:

Компонент химический

Нуклеиновые кислоты



© 2024 chem21.info Реклама на сайте