Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакций в пористых катализаторах

    Уравнение (3.13) имеет важный практический смысл. Анализ этого уравнения показывает, что фактор эффективности пористого катализатора асимптотически приближается к единице при уменьшении радиуса гранулы и константы скорости реакции или при увеличении коэффициента диффузии. Иначе говоря, эффективность использования поверхности катализатора мала для крупных гранул при больших значениях константы скорости и при малых значениях Х>эф. Наивысшая эффективность достигается при использовании гранул минимально возможного размера. Для очень активных катализаторов характерны низкие значения фактора эффективности, тогда как малоактивные катализаторы имеют высокие значения фактора эффективности. Графическая зависимость фактора эффективности от модуля Тиле имеет вид (рис. 3.6). Область I при малых значениях параметра фз соответствует т) 1, т. е. наблюдаемая скорость здесь равна кинетической. Эта область называется кинетической. При малых значениях [c.159]


    Цель этого этапа моделирования — определение границ кинетической области, а также оптимальных пористой структуры, формы и размеров зерен катализатора. Работами многих ученых " -созданы методы анализа скорости протекания химических процессов в пористых зернах и даны важнейшие рекомендации -зо, 52,5з JJo выбору указанных оптимальных параметров. Развитие математического моделирования при помощи ЭВМ открыло новые возможности дальнейшего совершенствования методов расчета и детального изучения механизмов химических реакций на пористых катализаторах. [c.472]

    Одни и те же реакции в зависимости от условий их проведения могут протекать в различных областях. Большое влияние здесь оказывают концентрации реагирующих, веществ, скорости потоков, пористость катализатора, температура, давление и другие факторы. [c.206]

    Если процесс протекает при невысоких давлениях, когда достижение слишком тонкой структуры пор становится нецелесообразным из-за кнудсеновской диффузии, то для катализаторов средней активности оказывается наиболее выгодной разнородная пористость. Тогда сочетание длинных широких пор, подводящих вещества к тонким коротким порам, наличие которых приводит к достаточно развитой поверхности, даст наибольший эффект, причем возможно повышение скорости реакции в 10—100 раз по сравнению со скоростью реакции на катализаторах с наиболее выгодной однородной структурой [587]. [c.448]

    По существу, уравнения (18.7), (19.11) и (19.13), описывающие скорости реакций на катализаторе, дают переход к этой псевдогомогенной модели, поскольку в них скорость выражена через концентрацию в потоке Ся (в случае пористого катализатора, как уже отмечалось, реакция на наружной поверхности зерна проходит лишь в незначительной степени, поэтому я)- [c.136]

    На адсорбцию большое влияние оказывает состояние поверхности катализатора, его пористость, шероховатость и трещиноватость. Все это в некоторой степени отражается и на скорости реакции. Часто катализаторами являются стенки реакционного сосуда. [c.270]

    Если скорости диффузии и химической реакции, рассмотренные независимо друг от друга, соизмеримы, то наблюдается переходная область. Один и тот же процесс в зависимости от условий его проведения может лежать в различных областях. Большое влияние на характер протекания гетерогенного химического процесса оказывают давление реагирующих веществ, скорости потоков, пористость катализатора и температура. [c.400]


    При данной химической природе скорость реакции увеличивается с ростом удельной поверхности, которую можно развить, используя частицы малого диаметра или частицы с большой пористостью. Размер пор влияет на скорость диффузии и обусловливает доступность внутренней поверхности. Лишь изредка в качестве промышленных катализаторов применяют чистые вещества. Обычно главный компонент смешивается с другими веществами различной каталитической активности для улучшения эффективности или удобства применения катализатора. Такое смешение может в результате привести к увеличению активной поверхности [c.303]

    Зельдович, исходя из равенства скоростей реакции и диффузии внутри элементарного объема куска пористого катализатора показал, что если в кинетической области скорость реакции записывается в виде [c.273]

    По мере увеличения скорости химической реакции и, соответственно, величины Ч может начать сказываться еще один фактор — микроструктура зерна. Если глубина проникновения реакции в катализатор уменьшится настолько, что станет сравнимой с характерным размером пор d , то пористый материал уже нельзя будет рассматривать как квазигомогенную среду. В этом предельном случае реакция пойдет только на внешней поверхности частицы, как если бы она вовсе не была пористой. Если глубина шероховатостей намного меньше толщины диффузионного пограничного слоя, то эту поверхность можно считать равнодоступной в диффузионном отношении. [c.108]

    Важнейшей характеристикой процесса на пористом катализаторе является фактор эффективности 1 , равный отношению наблюдаемой скорости реакции к скорости реакции в отсутствие диффузионного торможения, т. е. во внутрикинетическом режиме. Из формулы [c.109]

    Здесь l — концентрации веществ, участвующих в реакции Т — температура г — скорость реакции в единице объема пористого катализатора D , % — эффективные коэффициенты диффузии и теплопроводности в пористом зерне v — стехиометрический коэффициент -го вещества (v,- < О для исходных веществ и > О для продуктов реакции) h — теплота реакции V — оператор Лапласа g = С (Г), То= Т (Г) — концентрации реагентов и температура на внешней поверхности зерна oo, T a— значения соответствующих переменных в ядре потока, омывающего частицу катализатора Р,, а — коэффициенты массо- и теплопередачи из ядра потока к внешней поверхности зерна п — направление внешней нормали к поверхности Г. [c.131]

    Следует особо отметить, что в отличие от рассмотренного выше процесса на внешней поверхности частицы, селективность процесса в порах катализатора может оставаться значительной и после перехода обеих реакций в диффузионный режим. Параметр 7, определяющий локальную селективность процесса, имеет смысл отношения глубины проникновения первой реакции в толщу пористого катализатора, iD Jki к глубине проникновения второй реакции /О г/А 2. Селективность процесса падает с увеличением глубины проникновения в пористую частицу реакции А1 Аг, так как при этом удлиняется путь, который необходимо пройти образовавшимся молекулам целевого продукта, чтобы вырваться из пор катализатора, не вступив в реакцию дальнейшего превращения. Чем больше глубина проникновения в пористую частицу реакции А 2 Ад,т. е. чем меньше ее скорость и быстрее диффундирует вещество А 2, тем меньшее количество целевого продукта вступает в последовательную реакцию и тем, следовательно, выше локальная селективность процесса. При переходе обеих реакций во внутридиффузионный режим локальная селективность процесса остается при малых 7 близкой к единице. При этом замедление диффузии исходного вещества при прочих равных условиях приводит к повышению селективности. [c.142]

    При рассмотрении пористых катализаторов часто применяют понятие фактор эффективности (Ф. Э.), чтобы показать долю поверхности, участвующей в химической реакции. Эта величина определяется как отношение действительной скорости превращения к максимально возможной. Если температура частицы постоянна, то [c.177]

    Скорость полного превращения для гетерогенной реакции А —Р — X на пористом катализаторе при постоянной температуре (некоторые особые случаи) [c.180]

    Чтобы вся внутренняя поверхность катализатора была равнодоступна реагирующим молекулам, надо уменьшать размеры таблеток, но при этом быстро возрастает сопротивление слоя катализатора движению газовой смеси и возрастают энергетические затраты на продувку большой массы газа через слой катализатора. Для определения оптимальных размеров таблеток катализатора и основных параметров процессов в химическом реакторе надо знать зависимость скорости реакции от размеров таблеток, их пористости, активности катализатора, скорости движения газовой смеси и ряда других факторов. Особенно велико влияние размеров таблеток катализатора на скорость гетерогенно-каталитических процессов в жидкой фазе, так как коэффициенты диффузии в этой фазе примерно на четыре порядка меньше коэффициентов диффузии в газовой фазе. Если на катализаторе протекают параллельные или последовательные реакции, то размеры таблеток могут повлиять на селективность процесса. [c.648]


    Влияние теплопередачи также может быть существенным. Рассмотрим, например, экзотермическую реакцию, протекающую на внутренней поверхности пористого зерна катализатора. Реагирующие вещества должны продиффундировать внутрь зерна, а конечные продукты — из него. Если реакция происходит быстро и тепло не успевает достаточно быстро отводиться, то внутри зерна температура возрастет и скорость реакции увеличится. [c.23]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    При наличии гранул пористого катализатора реакция протекает на внешней поверхности и внутри самих гранул. Согласно квазигомогенной модели поры малы при сопоставлении с размером гранул и равномерно пронизывают ее. Реакция происходит,во всей грануле катализатора и активность характеризуется эффективной константой скорости, а перенос вещества — эффективным коэффициентом диффузии. Эта модель противоположна модели нереагирующего ядра с определенной зоной реакции, которая кажется целесообразнее и реальнее для большинства некаталитических реакций в системах газ—твердое вещество, описанных в главе ХП. [c.411]

    При выводе выражений скорости процесса на основе квазигомогенной модели следует принимать во внимание его различные стадии, от которых может зависеть скорость реакции. Для одной пористой гранулы катализатора эти стадии заключаются в следующем. [c.411]

    Полученные суммарные зависимости хода процесса являются составными частями следующего уровня модели и не зависят от его масштаба. Например, закономерности протекания процессов в составных частях модели второго уровня (см. рис. ХУ-2), т. е. переноса вещества и тепла внутри поры катализатора и стадии химического превращения, не зависят от масштаба зерна и капилляра. Влияние масштаба на распределение концентраций и температур по длине поры и скорость химического процесса определяются краевыми условиями зерна и характером массо- и теплообмена между наружной поверхностью и ядром потока. Наблюдаемые зависимости скорости реакции от концентраций и температуры на пористом зерне не зависят от масштаба следующего уровня (слоя катализатора) и входят в него как составляющая математической модели в неподвижном слое. [c.465]

    Во многих случаях скорости гетерогоргных хилгнческих реакций на пористых катализаторах определяются ие кинетикой химического превращения, а скоростью иеремещения молекул реагирующих веществ из объема к поверхности гранулы катализатора и через поры катализатора к зоне реакции. В зависимости от того, какая стадия является наиболее медленной и, следовательно, определяющей, различают три основных режима. [c.272]

    Одной из обязательных стадий гетерогенных катал]-1тических реакций является перенос реактантов к активной поверхности пористого катализатора. Если химическая реакция протекает достаточно быстро, скорость процесса может лимитироваться [c.95]

    Большинство протекающих каталитических реакций и их скорость зависит от копичества активных центров на поверхности катализатора. Истинная активность катализатора, оцениваемая значением пропорциональна активной поверхности. В грануле пористого катализатора активная поверхность представлена в виде стенок пор различного диаметра. В порах малого диаметра сопротивление диффузии значительное и кажущаяся активность снижается. Поры большого размера имеют малую поверхность и по этой причине кажущаяся активность их также невысока. Следовательно, для достижения оптимально высокой активности в катализаторе должно быть обеспечено определенное соотношение числа пор больших и малых размеров. Вместе с тем, в зависимости от количественного соотношения пор различных размеров, катализаторы характеризуются различной насьшной плотностью р . Увеличение пор малого диаметра ведет к увеличению значения р , а увеличение числа пор большого диаметра приводит к снижению значения катализатора. Общее уравнение, связьшающее кажущуюся константу скоростк реакции с истинной константой скорости и физико-химическими характеристиками катализатора в упрощенной форме, имеет следующий вид  [c.80]

    Применяемые катализаторы пористы и обладают большой адсорбционной способностью. Их свойства сильно зависят от способа получения. Обсуждение значения физической структуры катализатора, а также соответствующая математическая обработка содержатся в работе Уилера (Wheeler [288, 289]). Два катализатора с одинаковым химическим составом, но с разной величиной и с разным расположением пор могут отличаться друг от друга по активности, избирательности, температурным коэффициентам скоростей реакций и по устойчивости к действию каталитических ядов [290, 291]. Хотя химические свойства и каталитическое действие поверхности могут не зависеть от размера пор, мелкие поры по-разному влияют на процесс крекинга в зависимости от того, каким образом проникают молекулы углеводородов в глубину пор, как они удаляются и в течение какого времени они проходят через поры катализатора. [c.340]

    Но при низких температурах скорость реакции настолько мала, что потребовалось бы слишком много времени для получения значительных количеств аммиака. Ускорения процесса удалось добиться применением катализаторов. Из различных исследованных веществ наилучшим т т ш 500 600 700 оказалось определенным образом пригй-Температура,°с товленное пористое железо, содержащее тгебольшие количества оксидов алюминия, калия, кальция и кремния. [c.406]

    В 1.15 отмечалось наличие значительных градиентов тей пературы внутри зерен пористого катализатора, возникающих за счет теплоты реакции. Перепад температур между поверхностью и центром зерна может быть легко вычислен, как это было показано Прейтером (30]. Пусть i — концентрация реагек-та в некоторой точке пористого тела и г — скорость потребления реагента в этой точке, отнесенная к единице объема. Составим материальный баланс  [c.183]

    Лин Шин-лин и Амундсон приводят пример численного решения этой задачи при следующих исходных данных массовая скорость 0 = 2930 кг1 м -ч)-, линейная скорость и= 12,47 м1мин радиус зерна катализатора г — 4,24 мм порозность слоя е = 0,35 полное давление р — ат-, удельная теплоемкость зерна катализатора с, = 0,196 ккал кг-град)-, плотность газа рг=1,12 кг/м -, теплота реакции (—АЯ) = 0,667-10 ккал1моль-, средний радиус пор зерна Гпор = 40А коэффициент теплообмена сквозь газовую прослойку г = 97,6 ккал м-ч-град)-, пористость зерна еч = 0,40 теплоемкость газа с,-= 0,25 ккал кг-град)-, плотность катализатора рч = 960 кг м -, масса одного моля газа Л1 = 48 кг моль-, высота единицы теплопередачи Яс =0,018 м-, коэффициент теплопередачи г = 9,88 моль мР--ч-ат)-, константа скорости реакции к = = 22,5 ехр (—12200/Гч) моль м -ч-ат) поверхность зерна катализатора, приходящаяся на 1 объема, а = 402 м м -, б = ехр [12.98 —(12 200/г чЯ 1ч—температура частицы катализатора, °С т — время, мин. [c.268]

    При исследовании макрокинетики химических реакций в пористом зерне нерационально рассматривать процесс в отдельной поре. Поры реальной частицы катализатора неодинаковы по размеру и, пересекаясь друг с другом, образуют запутанную сеть более того, форма свободного объема частицы может напоминать скорее совокупность каверн неправильной форшл, чем сеть капилляров. Поэтому пористое зерно рационально рассматривать как квазигомогенную среду, характеризуя скорость диффузии реагентов эффективным коэффициентом диффузии О, а скорость химической реакции — эффективной кинетической функцией г С, Т). Последняя выражает зависимость скорости реакции в единице объема пористого зерна от концентраций реагентов и температуры в данной точке объема зерна и связана со скоростью реакции на единице активной поверхности р соотношением г = ар (С, Т). [c.100]

    В табл. 4.3 приведены сводные данные о влиянии области протекания реакции на ее кинетические параметры. Рассмотрим, как изменяется область протекания реакции с изменением условий ее проведения. Изменение температуры в наибольшей степени влияет на скорость реакции, проходящей в кинетической области, в значительно меньшей степени — при протекании реакции во внутридиффузионной области и практически не влияет на скорость реакции, если она протекает во внешнедиф-фузиоиной области. С повышением температуры реакция, протекающая во внутренней кинетической области, в результате возрастания константы скорости начинает тормозиться диффузией в порах и переходит во внутридиффузионную область. При дальнейшем повышении температуры продолжение возрастания константы скорости приводит к торможению реакции внешней диффузией, и реакция переходит во внешнедиффузионную область. Далее повышение температуры на скорость реакции влияния практически не оказывает. На рис. 4.2 приведена зависимость константы скорости реакции первого порядка на пористом катализаторе от температуры. На непористом катализаторе осуществляются только два режима— внешнекинетический и внешнедиффузионный. Если во внутренней кинетической области реакция протекает по первому порядку, то влияние [c.151]

    Подставляя температуру, найденную из этого соотношения, в выражение для скорости реакции 7- (С, Т) и переходя к безразмерным переменным, мы получаем, как и раньше, кинетическую функцию, зависящую только от одной переменной с. Таким образом, и в неизо-термическом случае задача расчета реакции на пористой частице сводится к решению только уравнения (III.68). Однако учет изменения температуры по толщине катализатора может привести к качественному изменению характера решения. Напомним, что появление множественных режимов возможно, если в некотором интервале концентраций кинетическая функция / (с) убывает с увеличением концентрации ключевого вещества и соответственным изменением всех других переменных, связанных с нею линейными соотношениями (111.(36), (III.81). Выражение (III.78) надо теперь дополнить слагаемым учитывающим зависимость скорости реакции от [c.125]

Рис. 4.2. Зависимость константы скорости от температуры в координатах Аррениуса для реакции первого порядка, протекающей на пористом катализаторе / —анутрикинетическая область // — внутридиффузионная область /// — внешнекинетическая область /V — внешнедиффузи он-ная область. Рис. 4.2. <a href="/info/366508">Зависимость константы скорости</a> от температуры в <a href="/info/9137">координатах Аррениуса</a> для <a href="/info/891867">реакции первого порядка</a>, протекающей на <a href="/info/8779">пористом катализаторе</a> / —анутрикинетическая область // — <a href="/info/330238">внутридиффузионная область</a> /// — <a href="/info/779711">внешнекинетическая область</a> /V — внешнедиффузи он-ная область.
    Структура пор катализатора, а следовательно, и величина его удельной поверхности формируется на разных этапах приготовления катализатора и различным путем, в зависимости от типа катализат ора. Для распространенных гелевых катализаторов и носителей регулирование структуры пор осуществляется либо на стадиях осаждения, промывки и прокалки, либо путем специальной гидротермальной обработки. Установлено [36, 37], что увеличению пористости силикагеля способствует pH > 7 при осаждении и щелочная реакция промывных вод. Этими же работами установлено, что повышение температуры прокаливания свыше 600° С приводит к уменьшению удельной поверхности силикагеля и сокращению диаметра пор. Ряд аналогичных исследований проведен для алюмосиликагеля [38, 39 ] и алюмохромогеля [40 ]. Варьирование условий осаждения в отношении pH растворов, их концентрации, скорости осаждения и времени вызревания осадков, а также температуры осаждепи дает возможность путем изменения величины кристаллитов изменять пористость катализаторов, получаемых из кристаллических осадков. Исследованиями Кагановой с соавторами [41] показано для силикагелей и алюмосиликагелей, что наблюдаемые зависимости пористости готового катализатора от pH среды, температуры сушки, а также содержания окиси алюминия сводятся к взаимосвязи пористой структуры геля со степенью его синерезиса. Гели с равной степенью синерезиса, т. е. с равными отношениями количества воды к количеству окислов, имеют одинаковую пористую структуру. [c.195]

    Для сложных неоднородных структур трудно определить процессы переноса вещества и тепла от химического процесса. При строгом расчете скорости реакции в пористом зерне надо знать полную геометрию пористой структуры, а не только функции распределения пор по радиусам и общее число неоднородностей. Так, например, точный расчет возможен для правильных, бидисперсных структур. При наличии структуры, состоящей из длинных макропор с короткими микропорами, эффективный коэффициент диффузии равен коэффициенту диффузии в макропорах. Для сложных неправильных структур значения эффективного коэффициента диффузии, определяемые соответствующими уравнениями переноса, в отсутствие реакции и при ее протекании различны они зависят от глубины работающего слоя катализатора. Еще более отличаются один от другого стационарный и нестационарные эффективные коэффициенты диф- фузки. [c.474]

    Здесь введены следующие обозначения Ск, Ср — теплоемкости катализатора и потока ек, е — пористости зерна катализатора и слоя Хк, Яс2, X R, Xfz, Ярн — коэффициенты температуронроводно-сти зерна катализатора, скелета катализатора и потока Dk, Dfz, DpB — коэффициенты диффузии в зерне катализатора и в потоке акр, O.KW, 2, O.FW — коэффициенты теплообмена между катализатором и потоком, холодильником и входным потоком и между потоком и холодильником — коэффициент массообмена между зерном катализатора п потоком R , Ra, L — радиус зерна, радиус и длина аппарата VF(Г, Z) — скорость химической реакции Q — тепловой эффект реакции к — константа скорости реакции Ё — энергия активации Д — газовая постоянная и — скорость потока. [c.129]

    При использовании твердого пористого катализатора концентрация реагента на наружной поверхности будет больше, чем на внутренней поверхности частиц. Поэтому в катализаторах с небольшой пористостью и большой активностью не обязательно учитывать поверхность пор, а для увеличения скорости реакции нужно работать с мелкими частицами катализатора. При повышеппых температурах диффузпя в порах значительно увеличивается. [c.262]


Смотреть страницы где упоминается термин Скорость реакций в пористых катализаторах: [c.129]    [c.142]    [c.99]    [c.46]    [c.40]    [c.318]    [c.122]    [c.106]    [c.125]    [c.132]    [c.650]    [c.142]    [c.34]   
Смотреть главы в:

Гетерогенный катализ -> Скорость реакций в пористых катализаторах




ПОИСК





Смотрите так же термины и статьи:

Катализаторы из скоростей реакций

Катализаторы как пористые

Катализаторы пористость

Скорость от катализатора

Физические факторы, определяющие скорость реакций на пористых катализаторах



© 2025 chem21.info Реклама на сайте