Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ комплексов металлов

    Другим интересным и важным примером является введение в газ-носитель комплексообразователя при анализе комплексов металлов, что повышает их стабильность и приводит к получению стабильных результатов [20]  [c.246]

    Анализ комплексов металлов [c.254]

    В работе [77] приведены данные термического анализа комплексов металлов с пиридином. В [4] приведены данные по термодинамике образования пиридиновых комплексов соединений металлов в водных растворах. [c.66]


    Содержание металлов в нефтях и нефтепродуктах. Тщательный анализ нефтей и их дистиллятов показал наличие в них сложных комплексов металлов с высокомолекулярными углеводородными соединениями. Вначале изучением металлов, содержащихся в нефтях, занимались в основном геохимики с целью обоснования различных теорий происхождения нефти. Позднее было установлено, что наличие металлов в нефтепродуктах приводит к резкому увеличению коррозии оборудования и особенно лопастей газотурбинных установок, а также является причиной резкого ухудшения работоспособности катализатора крекинга. Это побудило исследователей тщательно заняться изучением строения и свойств металлоорганических соединений, распределения их по различным фракциям нефти, разработкой методик определения содержания металлов и методов их удаления из различных нефтяных дистиллятов и нефтей. [c.134]

    Известны также комплексы полиолов с соединениями тяжелых металлов, например железа. Эта реакция комплексообразования применяется для маскировки некоторых ионов при проведении их анализа обычно в щелочной, но иногда и в кислой средах [32]. Прочность комплексов металлов с многоатомными спиртами возрастает в ряду гликоль — глицерин — маннит в том же ряду увеличивается кислотность полиолов [33, 34]  [c.17]

    Комплексные соединения широко распространены в природе, играют важную роль в биологических процессах. Достаточно упомянуть гемоглобин крови (комплексообразователь Ре +) и хлорофилл зеленых растений (комплексообразователь Mg + ), витамин В12 (комплексообразователь Со + ). Комплексные соединения и комп-лексообразование находят самое разнообразное практическое применение. Образование комплексов используется при умягчении жесткой воды и растворении камней в почках важнейшую роль играют комплексные соединения в химическом анализе, производстве металлов и т. д. [c.76]

    Ступенчатый характер образования (и диссоциации) извест(ш для большинства роданидных и иодидных комплексов, для комплексов металлов с фенолами, оксикислотами, ализарином и др. Эти обстоятельства имеют существенное значение для колориметрического анализа. Кроме того, необходимо принимать во внимание другие свойства окрашенных соединений, как, например, устойчивость во времени. [c.207]

    Если по ходу анализа необходимо выделить связанный в комплекс ион, то демаскирование можно осуществить с помощью следующих приемов а) маскирующий лиганд Е отделяют от замаскированного иона металла М действием другого иона М, образующего с Е более прочный комплекс, чем М б) подкислением раствора (для комплексов металлов, образованных анионами слабых кислот) в) окислением или восстановлением М или Е г) отгонкой Е после связывания в летучее соединение. [c.122]


    Более детальный анализ ИК-спектров оксалатных комплексов металлов часто позволяет выяснить л другие особенное и их структуры. [c.580]

    Комплексы металлов с неорганическими лигандами широко применяют как в качественном, так и в количественном анализе. Среди таких комплексов имеют большое значение аммиакаты, галог( нидные и род-анидные комплексы реже находят применение пер-оксидные, цианидные, фосфатные, сульфатные и сульфитные комплексы. [c.265]

    В практике анализа органических объектов на содержание примесей металлов, например в нефтях и нефтепродуктах, важное значение имеет приготовление стандартных растворов. Обычно для этих целей применяют металлоорганические соединения или комплексы металлов с органическими лигандами. Стандартные растворы металлов в органических растворителях можно получить также при анодном растворении металлических электродов. Для этого при выбранном потенциале и заданном токе в течение фиксированного времени генерируют ионы металла из материала активного электрода. По количеству электричества , зная объем раствора, можно рассчитать точную концентрацию металла в растворе. [c.533]

    Научным центром по изучению неорганической химии остается Институт обш,ей и неорганической хйм ии им. Н. С. Курнакова. Помимо традиционных исследований по физико-химическому анализу, солевым равновесиям и комплексным соединениям, здесь в послевоенные годы начали работы по химии отдельных элементов, а также разнообразных соединений. Химию комплексных соединений разрабатывали исследователи под руководством директора института (1941 г.) Ильи Ильича Черняева (1893— 1966). Ученик Л. А. Чугаева, он работал после Октябрьской революции в институте по изучению платины и других благородных металлов. С 1934 г. был заведующим отделом Института общей и неорганической хими . Еще в 1926 г. при анализе комплексов двухвалентной платины открыл явление трансвлияния, объяснившее реакционную способность заместителей во внутренней сфере комплексов. И. И. Черняев и его сотрудники получили различные комплексные соединения платины и платиновых металлов. [c.301]

    Однако более предпочтительна работа с истинными растворами комплекса металла. Для этого используют органические растворители, смешивающиеся с водой (такие как спирт), которые образуют водную смесь, поддерживающую и реагент, и хелат в растворе. Однако для того, чтобы достаточно увеличить растворимость хелата, необходимы большие объемы органического растворителя. При этом возможно высаливание неорганических солей. Альтернативой является экстракция хелата органическим растворителем, не смешивающимся с водой. Этот вариант почти всегда является более предпочтительным при анализе следов элементов. [c.236]

    Качественные теории комплексообразования позволяют ориентироваться в большом экспериментальном материале по химии комплексообразования. Как и отмечалось выше, количественных теоретически обоснованных подходов, которые позволяли бы априори оценивать константы устойчивости комплексов металлов, пока не существует. Задача создания таких методов очень сложна и далека от своего решения. В то же время накоплен большой массив данных по константам равновесий реакций комплексообразования. Анализ этих [c.43]

    Образование окрашенных комплексов металлов с органическими реагентами широко используют в качественном и количественном неорганическом и органическом анализе. Для определения металлов чаще всего используют комплексообразующие реагенты. Собственно хромофорные группы, поглощающие свет в видимой области электромагнитного излучения, представляют собой группы, содержащие атомы [c.58]

    Интересное применение двумерной хроматографии описано Блю-мером [4], который произвел анализ смеси порфиринов, содержащих сложные эфиры и комплексы металлов, а также свободные кислоты. Сначала сложные эфиры и комплексы отделялись при помощи четыреххлористого изооктанового углерода, не оказывающего влияния на свободные кислоты. Затем смесь кислот этерифицировалась диазометаном методом капельной обработки непосредственно на листе фильтровальной бумаги. Образовавшиеся эфиры разделялись после второго проявления под прямым углом к первому в одном и том же растворителе. [c.259]

    Сведения о форме молекул получают непосредственно с помощью электронной микроскопии и рентгеноструктурного анализа комплексов белков с тяжелыми металлами. [c.510]

    Очевидно, концентрация ионов водорода при колориметрических определениях играет очень важную роль, и при использовании колориметрических методик надо руководствоваться следующими положениями реакции образования окрашенных комплексов металлов с анионами сильных кислот следует проводить в кислых средах если реактив является слабой кислотой, то с повышением pH степень связывания иона металла в комплекс возрастает. Однако при повышении pH раствора надо учитывать ступенчатость комплексообразования, проявление индикаторных свойств реактивом и возможность образования окрашенных комплексов реактивом с посторонними ионами интервалы pH, при которых следует проводить реакцию, как правило, определяют экспериментально. При проведении анализа химик должен строго придерживаться прописи, указанной в методике. [c.26]


    До настоящего времени этот метод применяли только для анализа комплексов металлов, и, по-видимому, в связи с этим японские исследователи назвали его лигандно-паровым газохроматографнческим методом. Однако несомненно, его значение не ограничивается областью определения комплексов металлов. Поэтому правильнее называть этот метод реагенто-паровым газохроматографическим методом (РПГХМ), в котором в качестве реагентов можно использовать вещества, участвующие в реакции и введение которых в зону реакции приводит к сдвигу ее в сторону образования целевых производных. [c.27]

    Этот подход вполне утвердился в области органической химии, но он все еще находится в периоде становления, когда речь идет о химии координационных соединений. Матье [94] первым применил его к комплексам металлов. Он рассчитал разность энергий несвязанных взаимодействий в диастереомерах г ис-[Со( -рп)2Х2], пытаясь объяснить преимущественное образование одного изомера. Матье ограничился различиями в энергиях, обусловленными взаимодействиями двух метильных групп и взаимодействиями диполь — наведенный диполь между X и СНз. Вторая значительная работа по конформационному анализу комплексов металлов появилась лишь через 15 лет. В 1959 г. Кори и Бейлар опубликовали весьма важную статью, подробно описывающую результаты исследований ряда комплексов металлов [26]. Она послужила основой для большинства последующих работ. Однако совсем недавно было применено более строгое приближение [49—52], которое и будет изложено ниже, [c.52]

    Для анализа комплексов металлов с органическими лигандами, каталитических систем и в ряде других случаев весьма эффективными оказались различные варианты метода атомно-абсорбционной спектрометрии (ААС). Проведенные исследования влияния органического лиганда на результаты определения металлов позволили существенно повысить достоверность результатов определения металлов и разработать новые методы метод пзосорб, который позволяет объективно установить аналитическую область влияния органического лиганда на сигнал ААС метод непрерывного наблюдепия влияния добавки спектро-химического буфера при определении металлов методом ААС метод объективного определения систематической погрешности, вносимой ионами-спутниками на аналитический сигнал ААС с помощью непрерывного реактора полного смешения метод непрерывной регистрации кинетики экстракции в несмешивающихся водно-органических системах для сравнительной оценки показателей экстрагирующих [c.87]

    Особо следует отметить ряд попыток перевода летучих комплексов металлов в нелетучие [192]. Так, при добавлении к дистилляту, содержащему ванадий в виде порфиринового комплекса, небольшого количества пиридина образуется нелетучий пиридинва-надиевый комплекс. После разгонки продукта дистиллят существенно очищается от ванадия. Весьма интересные результаты приведены в работе [329] по изучению облучения газойля дозой У-Ю Р. Анализ показал, что количество летучих соединений ванадия и никеля заметно снизилось, вероятно, вследствие того, что металл-порфириновые комплексы неустойчивы к облучению. Этот факт может быть использован для перевода летучих соединений никеля и ванадия в нелетучие формы. [c.207]

    Наряду с детальным химическим анализом смолисто-асфальтеновых компонентов с целью количественной характеристики концентрационного распределения в них ванадия и никеля, был проведен также спектральный анализ всего комплекса металлов в тех же фракциях смолисто-асфальтеновых веществ всех трех нефтей (табл. 19). Кроме того, спектральным методом был исследован характер распределения металлов между высокомолекулярной углеводородной частью и смолисто-асфальтеновыми компонентами ромашкинской и бавлинской нефтей (табл. 20). [c.62]

    Палладиевый комплекс получен из раствора, содержащего бромид-ион и пиридин 5H5N (этот лиганд-хороший донор, легко координируемый ионами металлов). Элементный анализ комплекса показал, что он содержит 37,6% брома, 28,3% углерода, 6,60% азота и 2,37% водорода. Это соединение слабо растворимо в ряде органических растворителей, его спиртовый и водный растворы не проводят электрический ток. Экспериментально установлено, что у данного комплекса нулевой дипольный момент. Запищите химическую формулу этого комплекса и укажите его предполагаемую структуру. [c.406]

    Образование малорастворимых соединений используют и в качественном, и в количественном анализе. Аналитическая избирательность некоторых реагентов связана с тем, что ОргАР образует малорастБоримый комплекс с одним или несколькими ионами металлов, в то время как его комплексы с другими металлами хорошо растворимы в воде. Изменить растворимость можно введением в молекулу ОргАР различных ФГ. Для увеличения растворимости в воде комплекса металла, не имеющего заряда, вводят в лиганд какую-либо ионизирующую группу, например сульфо- или карбоксильную группу. Заместитель, протонирую-щийся в кислой среде, увеличивает растворимость комплекса при низких значениях pH. [c.71]

    Аммины, или амминокомплексы. или аммиакаты, или аммиачные комплексы металлов — координационные соединения металлов, содержащие молекулы координированного (т. е. связанного с атомом металла) аммиака. Молекулу аммиака, выступающую в роли монодентатного лиганда, называют аммином. Молекула аммиака связана с атомом металла донорно-акцепторной координационной связью через атом азота по схеме М<-ННз. Донор электронной пары — атом азота, акцептор электронов — атом металла. Направление стрелки, обозначающей донорно-акцепторную связь, указывает направление донирования электронов. Аммины могут быть комплексами катионного типа (например, [Р1(ЫНз)4]С12). Часто к амминам относят также комплексы, содержащие, кроме аммиака, другие лиганды (на1фимер, [Р1СЬ(ННз)2]), хотя, строго говоря, подобные соединения амминами не являются. Широко используются в химическом анализе. [c.204]

    О.-а. с. применяют для аналит. контроля газов (NH3, СО, СО2, HF, пары воды и др.), высокочувствит. анализа жидкостей (в частности, р-ров орг. соед., комплексов металлов) и твердых в-в (напр., руд). Оптико-акустич. детекторы используют гл. обр. в бумажной и тонкослойной хроматографии, где они позволяют определять в-ва непосредственно на хроматограммах. О.-а. с. дает возможность получать оптич, характеристики светорассеивающих образцов (полупровод ники, биол. объекты, полимеры и др.), измерять коэф поглощения, квантовые выходы люминесценции, теплопро водность разл. в-в, обнаруживать фазовые переходы в твер дых телах, исследовать хим. процессы на пов-сти твердого тела, изучать фотохим. р-ции и т.д. Лазерная оптико-акустич. микроскопия позволяет проводить локальный анализ твердых образцов с продольным разрешением 0,5-3 мкм и поперечным разрешением 1-5 мкм. [c.389]

    ПОЛЯ ЛИГАНДОВ ТЕОРИЯ, квантовохим. теория электронного строения координац. соединений. Описывает взаимодействие дентр. атома (или группы атомов) и лигандов на основе представлений о мол. орбиталях в рамках молекулярных орбиталей методов. Как и в кристаллического поля теории, в П. л. т. принимается, что состояние электронов центр, атома определяется электростатич. полем, созданным лигандами, однако учитывается также изменение электронного распределения лигандов под воздействием центр, атома. Соотв. расширяются и задачи, решаемые методами П. л. т. помимо описания строения, реакц. способности, расчета спектральных и термодинамич. характеристик координац. соединений И изменений их св-в при замене центр, атома или лигандов, становится возможным теоретич. анализ таких ситуаций, когда взаимодействие центр, атома и лигандов настолько существенно, что может привести, напр., к образованию прочных хим. связей. Так, П. л. т. позволяет, в частности, описать смещения электронной плотности а- и я-электронных подсистем в группах СО карбонильных комплексов металлов. [c.65]

    Ограничения П. л. т. относятся преж,це всего к анализу возбуждешых состояний комплексов (особенно в случае средних и слабых полей лигандов). В этих сл) чаях для получения надежных данных о распределении электронов в комплексах следует учитывать не только расположение и порядок одноэлектронных уровней энергии, но и корреляц. эффекты, обусловленные межэлектронным отталкиванием. При анализе комплексов, образованных тяжелыми металлами, необходим учет спин-орбитального взаимодействия и нек-рых др. эффектов. [c.65]

Рис. 9.1-8. Спектры, обусловленные переносом заряда и полем лигандов в тетраме-тилендитиокарбаматных комплексах Ре(1П) (о) и Сг(1П) (б), используемых для количественного анализа микроколичеств металлов. Рис. 9.1-8. Спектры, обусловленные <a href="/info/3058">переносом заряда</a> и <a href="/info/16519">полем лигандов</a> в тетраме-тилендитиокарбаматных комплексах Ре(1П) (о) и Сг(1П) (б), используемых для <a href="/info/5094">количественного анализа</a> микроколичеств металлов.
    Анализ кристаллических структур комплексов белков с металлами показал, что аминокислотные комплексы металлов имеьот октаэдрическое строение, причем два остатка аминокислоты связаны с центральным атомом металла амино- и карбоксильными группами, а свободные координационные места заняты водой. Особой устойчивостью отличаются комплексы с аминокислотами, имеющими функциональные боковые цепи, как, например, гистидин, азот имидазола в котором образует дополнительную связь с центральным атомом. [c.67]

    Такое повышение качества аналитической информации привело к решению установить на станции дополнительный понохроматографпческпй комплекс для анализа переходных металлов. [c.22]

    В то же время ХНФ на основе комплексов металлов пригодны для разделения соединений со значительно меньшей полярностью, а следовательно, и большей летучестью. Поскольку способность к координации с атомом металла обнаружена даже у простых алке-нов, не говоря уже о других соединениях с электронодонорными орбиталями (простые и сложные эфиры, тиоэфиры, и т. д.), многие соединения можно разделять, не переводя их в какие-либо производные. Это означает, что такие колонки часто могут успешно эксплуатироваться при относительно низких температурах. Как будет показано в дальнейшем, капиллярные колонки с ХНФ такого типа наиболее пригодны для анализа газовой фазы (например, при изучении синтеза хиральных алкенов). Кроме того, они весьма полезны при исследовании различных хиральных ферромонов. [c.98]

    С целью установления структуры лантаноидного комплекса цис-син-цис-дициклогексил-18-краун-6 (изомер А) и Ьа(Ш) (N03)3, впервые полученного Харменом и др. [96] кристадлизацией из смеси эфир-этанол, был проведен рентгеноструктурный анализ комплекса. Как показано на рис. 3.13, Ьа координирован шестью атомами кислорода краун-кольца и тремя бидентатными группами N03. Это первый пример незаряженного молекулярного комплекса с координационным числом 12. Все известные ранее комплексы с координационным числом 12 имели структуры, в которых центральный металл был координирован такими анионами, как [Се(КОз) ]" (п = 2,3) и СаТЮд. [c.116]

    В неорганическом люминесцентном анализе наиболее распространены методы с использованием органических реагентов. Здесь есть свои особенности, отличные от молекулярной абсорбционной спектроскопии. Основная из них — более резко выраженная зависимость спектральнолюминесцентных свойств комплекса металла от природы и взаимного расположения электронных уровней лиганда и иона металла-комплексо-образователя. [c.305]

    Широкое использование комплексов металлов в аналитической химии, как в качественном, так и в количественном анализе, определяется широкими интервалами измеиеиня аналитически ценных свойств комплексов устойчивости, растворимости, окраски. Особенно широко можно варьировать устойчивость комплексов. Многие свойства комплексных соединений в настоящее время с большим или меньшим успехом можно предсказать, а чаще объяснить с привлечением современных теорий строения комплексов. [c.44]

    В химическом анализе применяется много различных экстракционных систем. В общем их можно разделить на две большие группы комплексы металлов с неорганическими лигандами и комплексы с органическими реактивами. К первой группе принадлежат ацидокомплексы различных металлов с ионами галоидов, родана и некоторыми другими. Экстракцию обычно ведут из кислой среды кислородсодержащими растворителями. Широко применяется также экстракция подобных систем с добавлением высокомолекулярных аминов или основных красителей при этом экстрагируются соединения типа аммонийных солей сложных аминов с ацидокомплексами металлов. К группе неорганических экстрагирующихся комплексов относятся также гетерополикислоты. [c.47]

    В проведенном недавно весьма существенном исследовании [74а] некоторые хелатные кольца с металлами были уподоблены гибким карбо-циклическим кольцам и стереохимические принципы, определяющие поведение последних ( конформационный анализ ), были применены к комплексным соединениям. Таким путем было предсказано, что конфигурация /)-[Со((1-рп)з] соответствует XXXVII, и было систематизировано сте-реохимическое поведение других комплексов металлов. [c.199]


Смотреть страницы где упоминается термин Анализ комплексов металлов: [c.130]    [c.83]    [c.331]    [c.315]    [c.51]    [c.612]    [c.353]    [c.56]    [c.236]    [c.56]    [c.364]   
Смотреть главы в:

Хелатообразующие ионообменники -> Анализ комплексов металлов




ПОИСК





Смотрите так же термины и статьи:

Комплексы металлов комплексы металлов

Металло-азо-комплексы

Металлов комплексы



© 2025 chem21.info Реклама на сайте