Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры металлов в пламени

    Для исследования спектра в пламя горелки вводят на платиновой проволоке или волокне асбеста хлорид исследуемого металла или смесь хлоридов и рассматривают излучение через [c.49]

    Разработан [162] прямой эмиссионный метод, основанный на известном газохроматографическом методе определения фосфора в фосфорсодержащих органических соединениях [161]. В этой работе использовали холодное азотоводородное диффузионное пламя, дающее некоторые преимущества. Фоновая эмиссия ниже, чем в других смешанных пламенах, относительно низкая температура пламени приводит к очень малому возбуждению даже щелочных металлов. Пламя обладает восстановительными свойствами. Более того, за счет низкой температуры и ограниченной подачи кислорода можно наблюдать эмиссию соединений, которые в обычных смешанных пламенах не проявляются. В случае фосфора наблюдают интенсивную зеленую эмиссионную полосу НРО. Излучение следует отнести за счет частицы НРО, переходящей в невозбужденное состояние за счет хемилюминесцентной реакции, возвращающей электроны на их низшие энергетические уровни. На рис. 52 показан эмиссионный спектр НРО, полученный распылением 1,2-10"2 м раствора ортофосфорной кислоты в азотоводородное диффузионное пламя. [c.465]


    В электрической дуге или искре, применяемых для возбуждения спектра, металл электродов плавится, окисляется, испаряется и поступает в пламя электрического разряда. В облаке паров источника света атомы вещества излучают свечение под действием очень высокой темне-тысяч градусов в дуге и десятков [c.12]

    Кирхгоф и химик Бунзен с помощью спектроскопа подробно изучили спектры, даваемые различными металлами. Они установили, что введение любой соли одного и того же металла в пламя горелки всегда приводит к появлению одинакового спектра. (Спектры щелочных и щелочноземельных металлов в пламени схематично изображены на рис. 10, см. цветную вклейку в конце книги.) При внесении в пламя смеси солей нескольких металлов в спектре одновременно появлялись все их линии. [c.28]

    Атомы щелочных и щелочно-земельных металлов при сильном тепловом возбуждении испускают кванты энергии, соответствующей видимой части спектра. Поэтому при внесении солей этих металлов в пламя горелки оно окрашивается в определенный цвет солями лития — в малиново-красный, натрия — в желтый, калия — в бледно-фиолетовый, рубидия — в рубиновый, цезия — в голубой, кальция — в кирпично-красный, стронция — в карминово-красный, бария — в желто-зеленый. Это свойство солей используется в пиротехнике для осветительных ракет и бенгальских огней при этом применяют нитраты как соли, отщепляющие при нагревании О2 и этим способствующие горению. [c.398]

    Внешние электроны атомов щелочноземельных металлов легко возбудимы. В возбужденном состоянии образуют спектральные серии в видимой части спектра и окрашивают пламя горелки в характерные цвета кальций — в оранжевый цвет, стронций — в красный, а барий — в травянисто-зеленый. Бериллий и магний характерных цветов в пламени горелки не дают. [c.313]

    Метод эмиссионной спектрометрии пламени, кратко называемый методом эмиссии пламени, или пламенной фотометрии, основан на регистрации характерных спектров испускания при введении в пламя элементов, обладающих металлическими свойствами. Его широко применяют как удобный и быстрый метод определения микроколичеств металлов в растворах. Однако и неметаллы, в том числе бром, тоже можно определить с помощью пламенной фотометрии, но косвенными методами. [c.149]

    Соединения щелочных и щелочноземельных металлов характерно окрашивают несветящее пламя. При помощи светофильтра, решетки или призмы можно выделить участок спектра их специфического или максимального излучения. Для натрия характеристической является спектральная линия с длиной волны 589 нм. По интенсивности этой линии можно определить концентрацию натрия. [c.245]


    Соединения щелочных и щелочноземельных металлов характерно окрашивают несветящее пламя. При помощи светофильтра или призмы можно выделить участок спектра специфического или максимального излучения. Для калия характеристическая спектральная линия имеет длину волны 770 нм. [c.248]

    Соединения щелочных и щелочноземельных металлов характерно окрашивают несветящее пламя. При помощи фильтра, решетки или призмы можно выделить участок спектра из специфического или же максимального излучения. Для натрия характерна спектральная линия с длиной волны 589 нм. [c.128]

    Экстракцию проводят с целью отделения мешающих компонентов или для выделения и количественного определения интересующего компонента. Например, можно измерять поглощение органического слоя в видимой или ультрафиолетовой области спектра, что позволяет оценивать концентрацию ионов металла в водной фазе. Можно также впрыскивать органическую фазу непосредственно в пламя горелки атомно-аб- [c.505]

    Чувствительность метода. Пламенные спектрофотометры, собранные на основе монохроматоров УМ-2 и СФ-4, оказались достаточно простыми и универсальными приборами, позволяющими определять большое число металлов. Однако при измерении малых концентраций возникают затруднения, вызванные фоном пламени [39.4]. Прежде всего, источником фона является само пламя, в котором возбуждаются радикалы и молекулы О2, СН, Сд. Нестабильность фона пламени существенно ограничивает чувствительность и точность метода. Фон пламени смеси ацетилен—воздух мешает определению элементов, линии которых находятся в области 4000—6000 А в красной же и инфракрасной области фон ничтожно мал. Кроме того, посторонние элементы, присутствующие в растворе, часто дают излучение, спектр которого состоит из молекулярных полос или является сплошным. К числу этих элементов относятся щелочноземельные и редкоземельные металлы, бор, алюминий, медь, фосфор, молибден, ниобий, уран, цинк, бериллий, ванадий, олово, теллур и титан. Следует заметить, что при недостаточной дисперсии прибора и широких входных щелях, излучение соседних линий может привести к завышенным результатам. Экспериментальное сравнение приборов с неподвижным спектром и со сканированием показало, что при сканировании величина фона значительно меньше влияет на точность измерений и на чувствительность метода. [c.304]

    Сущность метода. Исследуемый раствор вводят в виде аэрозоля в пламя горелки, работающей на смеси газов (воздушно-пропано-вой, воздушно-ацетиленовой).Давление воздуха и горючего газа поддерживается постоянным. В пламени атомы металлов возбуждаются и, переходя обратно из возбужденного в нормальное со-5 стояние, излучают свет определенных длин волн. Из спектра эмиссии монохроматором (в простых приборах светофильтрами) выделяются характерные для определяемых металлов линии. Для определения натрия Я,==589 нм, калия Х=768 нм, лития Х=671 нм, стронция А >= 460,7 нм. По интенсивности этих линий судят о концентрации определяемых элементов в пробе, для чего строят калибровочные графики по стандартным растворам солей этих [c.27]

    При фотометрировании обычно используют наиболее интенсивные резонансные линии калия 766,5 и 769,9 ммк, расположенные на границе между видимой и инфракрасной частями спектра. В фотографической спектрофотометрии пламени использовались также фиолетовые линии 404,4 и 404,7 ммк. Дела лись попытки применить их и в фотоэлектрической фотометрии пламени 2 . Вместе с предыдущими линиями они обусловливают характерный сиреневый цвет пламени, в котором испаряются соли калия. Как и в случае натрия, при определении калия по линиям 766,5—769,9 ммк предпочтительнее использовать низкотемпературное пламя смеси светильного газа с воздухом, при котором интенсивность излучения мешающих щелочноземельных металлов значительно уменьшена по сравнению с интенсивностью излучения калия (ср. стр. 130). [c.210]

    Характерным свойством щелочных металлов является легкость, с которой возбуждается световое излучение их атомов. Если не слишком труднолетучие соединения щелочных металлов внести в пламя бунзеновской горелки, то оно окрашивается. При спектроскопическом исследовании в видимой области появляется несколько характерных линий. Как будет показано в разделе Спектры щелочных металлов , легкость, с которой возбуждается световое излучение, и простота строения спектров находятся в тесной связи с сильно электроположительным характером щелочных металлов. [c.182]

    Спектры щелочных металлов. Щелочные металлы или их не слишком труднолетучие соединения окрашивают пламя бунзеновской горелки в характерный цвет, а именно литий— в карминово-красный, натрий — [c.193]

    Спектры пламени щелочноземельных металлов не связаны, "как это имело место для щелочных металлов, со свободными атомами. При более значительной разрешающей силе спектроскопа оказывается, что многие линии спектров пламени щелочноземельных металлов, отличающиеся значительной шириной и отсутствием резкой границы, в действительности состоят из большого числа очень близких линий, из так называемых полос. Ранее уже было отмечено, что полосатые спектры приписывают молекулам. Поэтому в зависимости от того, исследуется ли спектр фторида, хлорида или окисла щелочноземельного металла, получают совершенно различные полосы. Если в пламя на платиновой проволоке внести каплю солянокислого раствора какого-нибудь щелочноземельного металла, то в первый момент возникает спектр хлорида, который, однако, тотчас же переходит в спектр окисла, наряду с которым одновременно появляются также и линии свободного металла. Если вновь смочить платиновую проволоку соляной кислотой, то опять появляется спектр хлорида и т. д. Несмотря на изменяющийся вид спектров пламени щелочноземельных металлов, ими все же можно пользоваться для открытия этих металлов при этом следует обращать внимание главным образом на характерные, особенно отчетливо проявляющиеся линии или соответственно полосы, которые приведены в табл. 51. Указанные в этой таблице длины волн относятся к серединам этих полос (поскольку речь идет не о резких линиях, а о полосах). [c.280]


    Если значительно повысить температуру, т. е. вызвать описанным на стр. 195 способом появление эмиссионных спектров, то получаются резкие линии, соответствующие исключительно излучению свободных атомов. В этом случае получаются также линии и в спектрах бериллия и магния. Эти два металла при внесении их в пламя обычной бунзеновской горелки совершенно не окрашивают его. Линии эмиссионных спектров элементов п елочноземельной группы, служащие для их аналитического определения указаны в табл. 52. [c.281]

    При разработке метода определения следов металлов в моче Уиллис 133] обнаружил, что растворы мочи, распыляемые непосредственно в пламя, вызывают заметную абсорбцию даже при отсутствии в них определяемого элемента. Он пришел к заключению, что это происходит за счет рассеяния света малыми частицами соли, которые находятся в пламени. Эффект проявляется особенно сильно в коротковолновой области спектра. Для устранения эффекта пробу анализируют с использованием длины волны, близкой к аналитической линии, но не испытывающей атомной абсорбции (т. е. линии, на которой не наблюдается абсорбция при использовании разбавленного раствора, содержащего малые количества определяемого вещества). Сигнал кажущейся абсорбции вычитается из сигнала абсорбции аналитической линии перед построением градуировочной кривой. Этот эффект был детально исследован Биллингсом [134]. [c.63]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Атомное поглощение было известно еще в начале прошлого столетия, однако для аналитических целей его начали применять в 1955 г., когда физик Уолш предложил схему прибора. Она состоит из источника света , пламени, монохроматоров 3—5 и блока усиления и регистрации (рис. 30.22). Свет от лампы полого катода,. излучающей дуговой спектр определяемого металла, проходит через пламя горелки и [c.699]

    Металлы группы 1А имеют объемноцентрированную Тип криета,1.и1Ч1ч 14011 кубическую решетку, бериллий и магний—гексаго-отруктуры нальную плотно упакованную структуру, барий — объемноцентрированную кубическую решетку, а кальций и стронций — гранецентрированную (разд. 6.2.2). Внешний электрон или электроны могут быть возбуждены на более высокие энергетические уровни. При обратном переходе на низший уровень выделяется энергия в виде электромагнитных колебаний. Для этих металлов энергии переходов невелики, так что длина волны излучения соответствует видимой части спектра. Поэтому рассматриваемые элементы окрашивают пламя  [c.384]

    Анализируемый р-р вводят в виде аэрозоля в пламя горючей смеси воздуха или МзО с углеводородами (пропаном, бутаном, ацетиленом). При этом р-ритель и соли определяемых металлов испаряются и диссоциируют на своб. атомы. Атомы металлов и образовавшиеся в ряде случаев молекулы их оксидов и гидроксидов возбуждаются и излучают световую энергию. Из всего спектра испускания выделяют характерную для определяемого элемента аналит. линию (с помощью светофильтра или монохроматора) и фотоэлектрически измеряют ее интенсивность, к-рая служит мерой конц. данного элемента. [c.631]

    Спектральный анализ (эмиссионный) — физический метод качественного и количественного анализа состава вещества на основе изучения спектров. Оптический С. а. характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000—10 000°С. В качестве источников возбуждения спектров прп анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Качественный н полуколичественныйС. а. сводятся к установлению наличия или отсутствия в спектре характерных линий и оценки по их интенсивностям содержания искомых элементов. Количественное определение содержания элемента основано на Эмпирической зависимости (при малых содержаниях) интенсивности спектральных линий от концентрации элемента в пробе. С. а.— чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др- МетодС. а. был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Спектроскопия инфракрасная — см. Ифракрасная спектроскопия. Спектрофотометрия (абсорбционная)—физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—iOO нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в С.,— зависимость интенсивности поглощения падающего света от длины волны. С. широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы С.—спектрофотометры. [c.125]

    Отсутствие плохо растворимых солей сильно затрудняет аналитическое определение щелочных металлов. Для анализа этих металов используется пламенно-спектрофотометрический метод, основанный на том, что в видимой части спектра многих металлов, в частности щелочных, имеются характерные для данного металла линии, в результате чего они окрашивают пламя в определенный цвет, характерный только для данного металла. Для натрия характерен желтый цвет пламени, для калия — фиолетовый, для лития — красный и т. д. (прns переходы валентных электронов, см. раздел 3.2). Названия двух щелочных металлов — рубидий и цезий — произошли от цвета окраски пламени (рубиновый и небесно-голубой). [c.133]

    Для легковозбудимых и легкоионизируемых элементов (щелочные и большинство щелочноземельных металлов) наилучшим источником атомизащ1и является пламя (с,п1 до 10 масс. %). Для большинства других элементов наивысшая чувствительность достигается при использовании ИСП (до 10 масс. %). Чуть худшие пределы обнаружения характерны для дуговых источников возбуждения спектров. Высокие пределы обнаружения в искровом разряде (на 1-2 порядка выше, чем в дуговом) обусловлены тем, что он происходит в весьма малой области воздействия на анализируемый образец. Соответственно, мало и количество испаряемой пробы. [c.425]

    Эмиссионная спектроскопия основана на регистрации и анализе спектра, излучаемого пробой вещества, нагретого до высокой температуры (пламя дуги, искра). Метод применяется для обнаружения и определения металлов, многие из которых обнаруживаются при содержании их в пробе 10" —10" 7о. Поэтому метод эффективен для определения примесей и следойых количеств. [c.343]

    В качестве окислителей применяются хлораты или, реже, перхлораты. Наиболее выгодны цветнопламенные окислители, т. е. окислители, содержащие металлы, окрашивающие пламя. Из горючих чаще всего применяются смолы, которые одновременно служат и цементаторами. Иногда для увеличения силы света в составы прибавляется магний или алюминий. Металлы развивают при горении высокую температуру и повышают силу света и яркость его. Однако прибавлевие металлов в количестве более 1—3% к составу не рекомендуется при большем содержании металлов температура реакции настолько повышается, что наступает диссоциация (разложение) молекул монохлоридов бария, стронция и др. на атомы. Цветная окраска пламени обусловливается излучением монохлоридов, а их диссоциация уничтожает окраску. Атомы бария, стронция и меди дают совершенно другой спектр излучения, отличный от спектра излучения монохлоридов. Например, атомарное свечение стронция дает линии в синей и ультрафиолетовой части спектра, а монохлорид стронция излучает в красной его части. Только в тех случаях, когда используется атомарное свечение (например желтый огонь с натрием), можно для увеличения силы света состава добавлять более 3% металла. [c.62]

    Фотометрия пламени. Фотоэлектрические приборы для наблюдения спектров могут быть значительно упрощены, если они применяются для элементов, которые легко возбуждаются в таком источнике света, как газовое пламя. В этом случае образец растворяют в воде или органическом растворителе и ввэдят в пламя посредством распылителя. 5тот метод количественного определения по существу является стадией в разв 1тии известного испытания на пламя щелочных и щелочноземельных металлов. Излучение, испускаемое пламенем, анализируется либо с помощью монохроматора, либо светофильтрами затем выбранные длины волн обнаруживаются фотоэлектрическим путем. [c.104]

    Эмиссионные спектры в пламени довольно просты и состоят из нескольких спектральных линий, отличающихся характерной для каждого элемента длиной волны. Это позволяет по резонансному излучению различать анализируемые металлы, использовать эти спектры не только для качественного, но и для количественного анализа. Последний основан на том, что в определенном интервале концентрации анализируемого вещества интенсивность излучения атомов пропорциональна содержанию их в растворе, введенном в пламя. Характерную для элемента спектральную лийию выделяют с помощью светофильтра, направляют на фотоэлемент, измеряют силу возникшего в нем тока гальванометром и определяют интенсивность излучения. Содержание определяемого элемента находят по градуировочному графику, полученному для серии стандартных растворов. [c.372]

    При высокой температуре, до которой нагреваются электроды, анализируемое вещество испаряется и попадает в пламя дуги. Температура дуги, колеблющаяся обычно в пределах 4000—7000 К, достаточна, чтобы, перевести вещество в атомарное состояние и вызвать возбуждение полученных атомов. Излученный свет после прохождения через устройство (призму или решетку), разлагающее его на компоненты, регистрируют на фотопластинку. Чтобы идентифицировать линии полученного спектра, на той же пластинке регистрируют и эмиссионный спектр железа, для чего используют чистый образец этого металла. Полученные на фотопластинке спектры изучают с помощью специального проектирующего устройства—спектропроектора. Идентичность линий в спектре анализируемой пробы устанавливают с помощью планшетов, на которых указано место аналитических линий различных элементов по отношению к линиям железа (рис. VIII. 3), [c.190]

    Следует остановиться еще на одном гибридном атомизаторе системе проволочное кольцо — пламя. Кольцо диаметром 4 мм из платиновой проволоки диаметром 0,5 мм установлено в керамическом держателе с электрическими контактами. К кольцу подводят электроэнергию с напряжением до 2,5 В, силой тока до 20 А. На кольцо наносят 1—40 мкл анализируемого раствора и сушат электронагревателем. Для сушки 40 мкл водного раствора требуется 2 мин. При ускорении сушки возможны потери определяемых элементов. После сушки кольцо быстро вводят в пламя и включают электронагрев на полную мощность. За время меньше 1 с температура кольца повышается до 1250°С, и происходит атомизация пробы в пламени. Записывают пик абсорбционного сигнала. Для получения ацетилено-воздушного пламени используют горелку со щелью длиной 8 мм и шириной 0,5 мм. Для введения кольца в пламя сконструировано электромагнитное устройство, которое одновременно включает электропитание кольца для атомизации, С одним платиновым кольцом можно сделать свыше 1000 определений. При испарении 40 мкл раствора достигнуты следующие пределы обнаружения (в мкг/мл) кадмий — 0,25, мышьяк—1,5, свинец — 4, сурьма—10 при испарении 10 мкл цинк—1, висмут — 20, теллур — 30, селен — 60, ртуть — 100. Щелочные и щелочноземельные металлы определяют по эмиссионным спектрам. Предел обнаружения (в нг/мл) при испарении 10 мкл раствора составляет литий — 0,06, натрий и стронций—10, цезий — 80, барий — 90, калий — 1000 [98]. [c.58]

    Большой вклад в фоновые помехи вносят молекулярные спектры поглощения на длине волны аналитической линии вследствие неполной атомизации пробы или образования в пламени новых соединений или радикалов. Роль этого вида помех особенно значительна, когда в пламя вводят низкокипящие термостойкие соединения, например галогениды щелочных металлов. При испарении растворов иодида, иодата и перйодата калия в графитовой кювете (200 мкг/г) наблюдается одинаковый спектр, характерный для иодида с интенсивными максимумами около 200 и 240 нм. Это объясняется тем, что иодат и лериодат при нагреве разлагаются с образованием иодида, который испаряется без диссоциации. Характерной особенностью молекулярных спектров галогенидов является сравнительная резкость пиков, особенно в области длин волн меньше 240 нм. Это следует учитывать при измерении и коррекции фона [237]. Важно, что отрицательное влияние фона возрастает по мере уменьшения концентрации определяемого элемента. [c.130]

    Пламя смеси перхлорилфторида IO3F и водорода было изучено с целью выяснения пригодности его для определения кальция и магния 24.25 в спектре этого пламени при введении указанных металлов, кроме атомных линий, установлено наличие молекулярных полос СаС1, aF, Mg l, MgF и отсутствие полос MgO. Температура пламени не определена. Такое пламя представляет интерес ввиду высокого парциального давления в нем атомов хлора и фтора. К тому же перхлорилфторид не ядовит и легко сжижается. [c.27]

    Аналитические сведения. Открытие щелочных металлов проще всего осуществляется на осяовшжя характеристических спектров [12]. Окраска пламени также дает указание. Однако при этом следует иметь в виду, что желтое натриевое пламя может быть вызвано уже следами натрия. Фиолетовое пламя калия скрыто в присутствии натрия, однако его можно видеть и в этом случае, если смотреть на пламя через кобальтовое стекло (т. е. через стекло, окрашенное окисью кобальта в синий цвет), не пропускающее при достаточной плотности желтый свет. [c.228]

    Аллан использовал источник непрерывного спектра и спектрограф с фоторегистрацией для определения наиболее подходящих линий для железа и марганца [4] и для кобальта и никеля [5]. Пламя, содержащее исследуемый металл в большой концентрации, помещали перед спектрографом, и интенсивность полученных абсорбционных линий показывала силу линий. Дэвид этим методом изучал спектр молибдена [6]. Моссотти и Фассел использовали для редкоземельных элементов такую же систему, но вместо фоторегистрации они применяли сканирующий фотоэлектрический спектрометр [7]. [c.14]

    Сейчас считается, что каждый металл может дать пригодные для анализа эмиссионные и абсорбционные спектры при введении раствора в открытое пламя. Металл должен вводиться в пламя в виде раствора, образующего при испарении в пламени только такие соединения, которые диссоциируют при температуре пламени. В некоторых случаях пламенная среда должна быть сильно обогащенной горючим (восстановительной), чтобы предотвратить образование термостойких окислов, которые выводят металл из ато-мизированного состояния. [c.36]

    Хорошо известно, что при введении в пламя газовой горелки солей многих щелочных и щелочно-земельных металлов, наблюдается яркое свечение различных цветов. Более 100 лет тому назад в 1860 г. физик Кирхгоф и химик Бунзен с помощью спектроскопа подробно изучили спектры, даваемые различными металлами. Они установили, что введение любой соли одного и того же металла в пламя горелки всегда приводит к появлению одинакового спектра. (Спектры щелочных и щелочноземельных металлов в пламени схематично изображены на цветной вклейке, стр. 32). При внесении в пламя смери солей нескольких металлов в спектре одновременно появлялись все их линии. [c.29]


Смотреть страницы где упоминается термин Спектры металлов в пламени: [c.38]    [c.388]    [c.16]    [c.172]    [c.94]    [c.98]    [c.306]    [c.178]    [c.428]   
Смотреть главы в:

Основы аналитической химии Часть 2 -> Спектры металлов в пламени




ПОИСК





Смотрите так же термины и статьи:

Спектр пламени



© 2024 chem21.info Реклама на сайте