Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золи ионным обменом

    Определение золы ионным обменом. II. Быстрый метод определения золы в осветленном тростниковом соке [2365]. [c.324]

    В лиофобный золь вводится индифферентный электролит, который не имеет ионов, входящих в ДЭС. В этом случае ион, заряд которого одинаков по знаку с зарядом противоиона будет конкурировать за нахождение в ДЭС, будет происходить ионный обмен в соответствии с уравнением Никольского (5.6). [c.110]


    Приведенные выше замечания применимы к системам, когда 5102 добавляется в виде раствора активного кремнезема, приготовленного, как правило, ионным обменом. Более быстрый рост частиц наблюдается в том случае, когда раствор силиката натрпя непосредственно прибавляется к основному золю , состоящему из зародышевых частиц, из которого непрерывно удаляются ионы натрия за счет использования ионообменной смолы в водородной форме, что будет рассмотрено ниже. В указанном примере кремнезем первоначально находился в системе в виде мономера и олигомеров. Следовательно, не требовалось затрат времени на процесс деполимеризации более высокомолекулярных поликремневых кислот, которые постоянно присутствуют, если кремнезем, вначале приготовляется в виде отдельного раствора активного кремнезема. [c.427]

    В другом патенте Александер и Айлер [80] описали выделение частиц, сформированных по рассмотренному выше процессу, путем их коагуляции с ионами металла (наиример, кальция), промывания осадка для удаления соли натрия и последующей пептизации продукта до иолучения более концентрированного золя кремнезема посредством удаления ионов кальция ионным обменом. [c.448]

    Электродиализ может в конечном счете заменять ионный обмен при приготовлении коммерческих золей, так как щелочь, кислород и водород можно регенерировать, и, следовательно, необходимо удалять гораздо меньшее количество отработанной воды. [c.450]

    Более быстрая очистка может выполняться с помощью электродиализа, при котором ионы переносятся к мембрана.м за счет наложения электрического поля. Предложены различные усовершенствования аппаратуры [128], особенно предназначенной для обессоливания морской воды. Однако в отношении очистки золей кремнезема этот способ не заменяет более дешевый ионный обмен. [c.459]

    Дрексель [246] эмульгировал раствор кремневой кислоты, приготовленный ионным обменом, в н-бутиловом спирте, предварительно насыщенном водой. При этом добавлялся аммиак, чтобы повысить pH до значения, достаточного для превращения в гель капелек водного золя. Такую суспензию затем нагревали, чтобы упрочнить полученный гель. [c.723]

    Ha рис. 1, а косвенно показано, что электрон-ионный обмен при реагировании в минеральной части экибастузского угля и эмиссия электронов из частиц золы могут быть обусловлены диссоциацией исходных минералов на первой стадии, термическими изменениями структуры кристаллов кварца и образованием небольшого количества муллита на второй. [c.179]


    Н. А. Тананаев в капельном анализе, так как бумага частично представляет собой ионообменный сорбент. Ионообменные свойства бумаги обусловлены присутствием в ней ионов Са " ", что доказывается анализом золы после сожжения бумаги (зола содержит до 0,2% СаО). Ионообменную способность можно усилить, пропитывая бумагу золем гидроокиси алюминия. Ионный обмен позволяет разделять [c.151]

    К физико-химическим способам очистки сточных вод следует отнести флотацию мелкодисперсных взвесей, их коагуляцию при помощи коагулянтов и флокулянтов, адсорбцию растворенных примесей (на активированном угле, золе, шлаках), экстракцию их растворителями, отгонку с водяным паром, ионо-обмен и т. п. Флотацию тонких взвесей и их коагуляцию чаще относят к механической очистке, хотя они основаны на физико-хи-мических процессах (см. ч. I, гл. VII). Эти операции, а также фильтрацию производят непосредственно после удаления крупных взвесей приемами грубой механической очистки. [c.276]

    Должны быть разработаны такие методы, которые увеличили бы эффективность смолы и экономичность регенерации. Необходимо увеличить устойчивость смолы, особенно анионообменной. Для эффективности общей очистки смолой высокой емкости при удалении окраски и золы иониты можно применять либо раздельно, либо в виде смеси. Наконец, извлечение побочных продуктов должно быть переведено на ионообменные методы так, чтобы данные, получаемые при обычных операциях, не могли конкурировать с экономией, которую дает ионный обмен. [c.562]

    Разработаны методы определения меди в золах растений [15], в сельскохозяйственных материалах [81], в сплавах наос нове меди [94], в рудах и концентратах [12, 175], в винах [205 175], в химических реактивах [182], в сплавах на основе алю миния [127], в ферромарганце, хромованадиевых и углероди стых сталях [190], в свинце, шлаках, ионно-обменных смолах фотографических и электролитических растворах [175] мето ды определения серебра в свинцовых концентратах [13, 175 в сплавах с применением камеры катодного распыления [160] в рудах [175], в электролитических растворах [175] методы определения меди и серебра в металлическом золоте [246]. [c.117]

    Разработаны методы определения цинка в золах растений [15], в почвах [17], в фосфористых бронзах [190], в винах [205], в меди, алюминии, цирконии, сплавах на их основе [8, 36], в цирконии [210], в кадмии [175], в металлах [248] в биологических объектах [125, 175], в сталях [175], в металлургических образцах [8, 9] в металлическом золоте [246] методы определения цинка и кадмия в рудах, свинце, ионно-обменных смолах, электролитических растворах [175] методы определения кадмия в биологических жидкостях [125], в цинке и цинковых рудах [69, 175], в цирконии с использованием экстракции [36] методы определения ртути в различных объектах [70, 125, 151, 175, 197, 211, 212, 213]. [c.145]

    Ионообменный процесс уступает процессу очистки с использованием костяного угля в отношении обесцвечивания. Хотя ионообменные смолы успешно извлекают некоторое количество окрашенных веществ, цикл до насыщения при удалении окраски короче, чем цикл до насыщения при извлечении золы. Более того, при непрерывном использовании способность к извлечению окраски падает гораздо быстрее, чем способность к извлечению золы. Это противоречие разрешается работой в неоптимальном цикле и применением в последующем других обесцвечивающих веществ, что повышает общую стоимость процесса. Применение обесцвечивающих смол в таком процессе в качестве отдельной операции, а также разделение очистительных и обеззоливающих свойств смол еще недостаточно исследованы. Кроме того, как показывают опубликованные работы, исследованию комбинированных процессов очистки с применением костяного угля и ионного обмена для получения кристаллической сахарозы из неочищенного сахара, в которых ионообменные смолы применяются исключительно для обеззоливания, не уделялось достаточного внимания. Объединение стадии аффинирования с ионным обменом представляет большой интерес, но, с другой стороны, это делает необходимой на некоторой стадии процесса ионообменную обработку сильно окрашенных сиропов с высоким содержанием золы. Эта обработка эквивалентна ионообменной обработке мелассы, которая экономически возможна лишь во время недостатка сахара. [c.546]

    Как известно в настоящее время, большое число органических природных веществ или продуктов их разложения (крахмал, целлюлоза, желатина), а также многочисленные, полученные искусственно неорганические коллоиды (золи серы, берлинской лазури и т. д.) обладают естественной способностью к ионному обмену, которая имеет в технике большое значение. [c.19]

    Введение в коллоидные растворы индифферентных солей сопровождается двумя явлениями 1) ионным обменом между противоионами ДЭС и ионами добавленного электролита 2) сжатием диффузной атмосферы вокруг поверхности частиц. В качестве примера рассмотрим процессы, происходящие при добавлении раствора NaNOa к золю Agi с отрицательно заряженными частицами. В таком золе противоионами могут служить, например, катионы К . Между введенными ионами Na+ и противоионами ДЭС — катионами К" — происходит ионный обмен. Взаимодействие ионов и Na+ с ионами 1 , являющимися потенциалобразующими, примерно одинаково, поэтому их взаимный обмен подчиняется в основном закону действующих масс. Диффузный слой содержит смесь тех и других ионов. Однако здесь проявляется и другая сторона действия электролита. Добавка электролита приводит к повышению ионной силы раствора. Согласно теории Дебая—Хюккеля, с повышением ионной силы раствора уменьщается толщина ионной атмосферы и происходит сжатие диффузной части ДЭС. При этом некоторое число противоионов переходит из диффузного слоя в адсорбционный. Следствием такого распределения противоионов является снижение величины -потенциала (рис. 25.3, /), в то время как величина и знак ф-потенциала поверхности частиц остаются практически постоянными. Влияние электролитов усиливается, если в их составе имеются многозарядные ионы ( u" +, Са" +, АГ +, Th + ). Многозарядные катионы более активно взаимодействуют с отрицательными зарядами (в данном случае с ионами 1 ). Вследствие этого такие ионы вытесняют ионы К" " из Диффузного и адсорбционного слоев в раствор, становясь на их место. При этом падение -потенциала происходит быстрее, чем при действии однозарядных ионов (рис. 25.3,2). При добавлении электролитов с ионами, имеющими заряд 3, 4 и более, может происходить не только снижение -потенциала до нулевого значения, но и перемена знака заряда (рис. 25.3, [c.401]


    Эта эмпирическая установленная закономерность, известная как правило Шульце—Гарди, получила теоретическое обоснование в рамках теории ДЛФО (см. гл. IX, 4), в соответствии с которой в случае сально заряженных частиц золя концентрация электролита, отвечающая полной потере устойчивости, обратно пропорциональна заряду коагулирующего иона в шестой степени. Соответственно для одно-, двух- и трех шрядных ионов согласно теории ДЛФО их коагулирующие способности относятся как 1 64 729. Было замечено, что вблизи порога коагуляции абсолютная величина С-потенциала, независимо от знака заряда коллоидных частиц, оказывается сниженной до 30 мВ (в пределах от 25 до 50 мВ). Тщательные иа ледования коагулирующего действия различных электролитов с одинаковым зарядом коагулирующего иона показали, что 01Ш образуют ряды, близкие к лиотропным, определяемым по участию в ионном обмене и влиянию электролитов на электрюкинетический потенциал (см. гл. VII, 6). [c.357]

    Еще Г. Фрейндлих отмечал особую чувствительность тиксотропных золей к примесям. Восемнадцатичасовой контакт золгя окиси железа с серебряной пластинкой сократил период тиксотропного застывания приблизительно в 30 раз. Большое влияние оказывает на это характер среды. Снижение pH золей окиси железа с 3,86 до 3,11 увеличило время застывания с 82 до 9000 с. Причину усиления тиксотропии мы видим в поверхностном растворении металла и ионном обмене. В пределах диффузного слоя накапливаются перешедшие в раствор ионы, вызывающие ортокинетическую коагуляцию и упрочнение пограничных слоев. Проверка этих представлений при измерениях прочности структур методом тангенциального смещения пластинки показала, что при платиновой пластинке прочность минимальна — 448 дин/см , при переходе к медной пластинке увеличивается до 559 дин/см , а с алюминиевой — до 736 дин/см и более. Аналогичный механизм имеют и,другие случаи взаимодействия глин с металлическими поверхностями. При этом на них образуются характерные коагуляционные сгустки, иногда окрашенные, например, у поверхности раздела с железом. Пластинки, извлеченные из суспензии, покрыты налипшим глинистым слоем, тем большим, чем выше электролитическая активность металла и чем длительнее пребывание их в суспензии. Особенно сильно налипание на алюминии. В слабощелочных суспензиях алюминиевые пластинки в результате обрастания коагулированной глиной приобретают шарообразную форму. [c.245]

    Из золы, богатой Г. (более 1%), его извлекают также обработкой 31%-ной соляной к-той при 105-П0°С. Применяют также метод, по к-рому золу, содержащую менее 1% Г., подвергают пирометаллургнч. обработке в электрич. или циклонных печах сублимат выщелачивают конц, НС1 либо разб. H2SO4, из р-ра Г. выделяют соосаждением, ионным обменом, цементацией или др. способами. [c.531]

    Кондеисац. методы получения золя-это физ. методы, основанные на конденсации пара, замене р-рителя или изменении растворимости с т-рой, и химические, основанные на конденсации новой фазы, возникающей при хи.м. р-ции. Для получения золя необходимо, чтобы одновременно возникло множество центров конденсации или зародышей новой фазы. При этом скорость образования зародышей должна намного превосходить скорость кристаллов. Разработаны методы, использующие экстракцию и ионный обмен, напр., при получении золей ядерного топлива из исходных р-ров соответствующих нитратов. [c.174]

    К физико-химическим методам очистки сточньк вод относятся коагуляция, флокуляция, сорбция, флотация, экстракция, ионный обмен, кристаллизация, электрокоагуляция, электрофлотация. В качестве коагулянтов применяются соли алюминия, железа и магния, известь, шламовые отходы и отработанные отходы отдельных производств. В качестве сорбентов применяются различные искусственные и природные пористые материалы зола, активированный уголь, коксовая мелочь, торф, силикагель и т.д. [c.43]

    Были предложены многочисленные производственные технологические процессы. Например, был приготовлен полисиликат лития из 2,6 %-ного золя кремнезема [103]. Золь получали ионным обменом из силиката натрия с добавлением LiOH для достижения области отношений SIO2 LisO от 2,5 1 до 8 1. Раствор затем концентрировали испарением в вакууме, что позволило повысить содержание кремнезема до 21 %. Как было указано автором, в растворе присутствовал в большей степени кристаллоидный , чем коллоидный, кремнезем. Такой кремнезем получался вследствие того, что исходный золь, вероятно, содержал частицы кремнезема размером 1—2 нм. [c.204]

    Модифицировав процесс, предложенный Бечтольдом и Снайдером, Рул [7] в своем способе начал с аналогичного подщелоченного основного золя. Но затем к такому золю он добавлял раствор иоликремневой кислоты, полученный ионным обменом, причем перед этой процедурой никакой щелочи в систему не вводилось. Таким образом, частицы кремнезема вырастали в среде, имевшей постоянную концентрацию щелочи, необходимую для стабилизирования подобных систем, что обеспечивало получение стабильных концентрированных золей при минимальном ее содержании. Альбрехт [15] заиатентовал способ добавления поликремневой кислоты с оптимальной скоростью в вышеуказанном ироцессе Рула с целью получения частиц кремнезема размером 45—100 нм. Аналогичным способом, но применяя давления выше атмосферного, удавалось получать частицы размером вплоть до 150 нм [16]. [c.424]

    Айлер и Уолтер [19] разработали способ, с иомощью которого 15 %-ный золь можно приготовить непосредственно ионным обменом. По этому способу основной золь в воде или в разбавленном водном растворе силиката натрия нагревают и перемешивают. Затем к нему одновременно добавляют увлажненную, отстоявшуюся, регенерированную ионообменную смолу (предпочтительно слабокислотного типа) и относительно концентрированный раствор силиката натрия. Скорость добавления регулируется так, чтобы поддерживать pH около 9, и, кроме того, она зависит от температуры и относительного количестйа и размера частиц основного золя. Это способствует увеличению размера частиц кремнезема и предотвращает процесс образования зародышей. В способе с применением колонны или псевдо-ожиженного слоя смола непрерывно добавляется в верхнюю часть колонны и перемещается вниз противотоком по отношению к движению золя кремнезема [20]. [c.426]

    С целью изучения роста частиц кремнезема, происходящего за счет добавления мономерного кремнезема к дисперсионной среде из предварительно сформированных зародышей, было исследовано образование зародышевых частиц при pH 8 в процессе старения кремневой кислоты с низкой молекулярной массой, приготовленной из силиката натрия ионным обменом [21]. Очень чистый силикат натрия был получен из этилового эфира ортокремневой кислоты. В этом случае 2,5 %-ный золь, подщелоченный до нужного значения pH, сохраняли при температуре 4°С, чтобы свести к минимуму самопроизвольный рост частиц и промотировать формирование микрогеля, чему способствует высокая концентрация частиц небольшого размера. При нагревании агрегаты такого микрогеля конденсировались, и после усадки из них формировались более или менее плотные сферические частицы диаметром около 100 А. Однако следует отметить, что зародыши получались гораздо более однородными по размеру при медленном ступенчатом нагрейании от 4 до 80°С (в течение 2 ч), чем в случае быстрого нагревания (в течение 10 мин), как это было показано большей однородностью золей, полученных на конечной стадии в результате добавления свежеприготовленного раствора кремневой кислоты, предварительно также отрегулированной до pH 8. [c.426]

    В способе, предложенном Айлером, используются три камеры. Раствор серной кислоты циркулирует вокруг свинцового анода в анодной камере. В катодной камере, в которой производится гидроксид натрия, щелочь циркулирует вокруг катода, сделанного из стали. Камеры располагаются с противоположных сторон двух параллельных, близко расположенных катионообменных мембран, между которыми раствор, используемый в данном способе, быстро циркулирует при температуре 60—90°С. Такой раствор представляет собой золь кремнезема, содержащий приблизительно 0,05 н. Ыа2804, добавляемого в качестве проводящего или дополнительного электролита. Раствор силиката натрия добавляется во в/ходящий поток с целью повышения pH до 9,5. Плотность потока и скорость его течения регулируются таким образом, чтобы на выходе потока из ячейки значение pH не было ниже 8. Выделяемый в свободном состоя-, НИН кремнезем осаждается на частицах кремнезема, которые таким образом растут до желаемого размера. С помощью такого способа можно непосредственно приготовлять 25 %-ный золь кремнезема с частицами размером 15 нм. После этого электролит удаляется ионным обменом, устанавливается значение pH, необходимое для оптимальной устойчивости золя, и золь концентрируется до содержания 30—50 % 8102. [c.450]

    Работа Бёрда [4], в которой натрий удаляется из силиката натрия ионным обменом с последующим концентрированием золя выпариванием при атмосферном давлении, ставшая пионерской в этой области, привела к получению стабилизированных золей кремнезема, содержащих приблизительно 20 % 5102. В дальнейшем [6] удалось осуществить контроль размера формируемых частиц. Другие усовершенствования, введенные Александером [9] и Эткинсом [10] в отношении величин допустимой концентрации соли и оптимального содержания щелочи, дали возможность получить целый ряд концентрированных золей кремнезема, охватывающий широкую область размеров частиц. В указанных работах золи кремнезема приготовляли пропусканием относительно разбавленного раствора силиката натрия через слой ионообменной смолы. Получали достаточно очищенный от натрия кислый золь кремнезема, который затем стабилизировали, и выращивали частицы до желаемого размера. Второй способ, разработанный Уолтером и Айлером 93], заключался в том, что ионообменную смолу в водородной форме и силикат натрия добавляли к слабощелочной водной среде при [c.451]

    И адсорбировались на поверхности кремнезема. Миндик и Ревен [425] приготовляли основные соли металлов в присутствии золя кремнезема смешиванием золя с солью металла и последующим удалением большей части анионов соли ионным обменом. Подобным образом золь с покрытием частиц оксидом титана приготовляли посредством гидролиза титансодержащего органического соединения в стабилизированном кислотой золе кремнезема при pH <2 и последующего нагревания смеси для того, чтобы вызвать осаждение оксида титана на поверхности кремнеземных частиц [426, 427]. Коварик [428] получил патент на частичное покрытие оксидом металла в виде АЬОз. Покрытие получалось смешиванием А12(ОН)5С1 с золем кремнезема и удалением ионов С1- с помощью анионита в бикарбонатной форме. Для устранения хлорид-ионов можно использовать основной ацетат алюминия, стабилизированный борной кислотой [429]. [c.565]

    Существует множество модификаций и сочетаний этих основных приемов ионный обмен, нейтрализация раствора силикатов выращивание. Так как устойчивость образующегося золя зависит от концентрации электролитов в растворе и от его собственной концентрации, то удаление электролита необходимо сочетать с добавлением новых порций питателя. При необходимости получения очень чистых золей, свободных от примесей, главным образом от посторонних катионов, используются другие методы получения растворов кремневой кислоты. Это гидролиз Si U с последующи удалением образующейся НС1, гидролиз алкилсиликатов в воднО-органических смешанных растворах. Очень чистые кремнезол образуются при прямом взаимодействии порошка металлического [c.76]

    Время остудневання в подкисленном растворе силиката натрия может меняться от нескольких секунд до нескольких дней. Оно зависит от чувствительности процесса к pH раствора и, кроме того, в значительной степени от температуры, концентрации кремнезема и концентрации других электролитов. Брэди, Броун и Гафф сообщают, что скорость полимеризации изменяется в четвертой степени от концентрации добавленного электролита. В гелях, приготовленных подкислением щелочных силикатов, минимальное время остуд-невания наблюдается при pH, близких к 8 в этой же области энергия активации имеет максимум [66—70]. Золь 8102, почти освобожденный от электролита, можно приготовить, используя методику деионизации при помощи ионо-обменных смол. Минимальная скорость полимеризации в таком золе наблюдается нри pH, близком 2 [71], л минимальное время остудневания — при pH, равном 5, а не 8. Гото [72] сообщает, что вследствие полимеризации скорость исчезновения кремневой кислоты низкого молекулярного веса в таком [c.32]

    Рис. 1, б косвенно показывает, что электрон-ионный обмен при реагировании в минеральной части бочатского окисленного угля II эмиссия электронов из частиц золы могут быть обусловлены диссоциацией кальцита и многостадийным твердофазный реагированием через променгуточные метастабильные продукты реагирования. Некоторые из них удается обнаружить рентгенографическим анализом закаленных образцов, что нозтюдяет преодолеть основную трудность в изучении механизма хт мичес-кнх реакций — анализировать переходные структуры, участвующие в реакционном процессе. [c.180]

    Однако позднейшие исследования показали, во-первых, что электростатическая теория также не в состоянии объяснить все явления, во-вторых,—самый механизм электролитной коагуляции лиофобных золей все же носит адсорбционный характер, / что при коагуляции в большинстве случаев происходит обмен ионов ионы-коагуляторы, благодаря своей большой адсорбируемости, проникают в адсорбционный слой частицы и одновременно вытесняют из двойного слоя в жидкость одноименно заряженные ионы (противоионы). Именно в этом направлении в тридцатых годах были проведены многочисленные опыты А. И. Рабиновичем и его школой. Теория Рабиновича является как бы синтезом предшествовавших теорий—адсорбционной (а с ней и химической) и электростатической, из которых первая не учитывала электростатических межионных сил, а вторая совершенно игнорировала ионную обменную адсорбцию. [c.147]

    Поглощение одного из ионов в значительно большем количестве, чем другого, вело бы к накоплению огромных электрических зарядов в растворе, и поэтому оно должно компенсироваться эквивалентным переходом других ионов из поглотителя в раствор или образованием их от взаимодействия с растворителем. В первом, наиболее простом случае, мы встречаемся с обменной адсорбцией, часто наблюдаемой на разнообразных поглотителях. Типичными примерами могут служить пер-мутиты, поглощающие из водных растворов преимущественно Са++ и Mg++, отдавая в раствор свои Na+. Этот процесс обратим при обработке концентрированными растворами Na l последние вытесняют ионы кальция и магния обратно в раствор (см. ниже об очистке воды). Также уголь, содержащий золу,, обнаруживает обменную адсорбцию, причем он посылает в раствор ионы солей золы в количестве, эквивалентном количеству поглощенных из раствора ионов. [c.351]

    Ионообменный синтез, несомненно, является наиболее очевидной из всех практических возможностей, открываемых использованием ионитов. Тем не менее в течение многих лет даже после появления (1935 г.) синтетических органических ионитов, которые представили прекрасный инструмент для осуществления этого метода, ионообменный синтез оставался в тени бурио разросшихся ветвей ионообменной технологии — обработки воды, хроматографического разделения элементов, извлечения и очистки ценных компонентов из сложных смесей. Характерно, что работы, специально посвященные ионообменному синтезу, были настолько рассеяны в литературе, что вплоть до начала 1960-х годов некоторые исследователи, применяя этот метод, характеризовали его как предложенный ими оригинальный прием. В советских и зарубежных монографиях общего характера по ионному обмену ионообменный синтез до сих пор вообще не упоминается в числе процессов и областей применения ионообменной технологии, либо отражен очень поверхностно (Кунин и Майерс, 1950 Тремийон, 1965). Несколько чаще в обзорах и моно-графях описываются ионообменное получение и очистка золей окислов и гидроокисей, а также разложение малорастворимых электролитов (наиболее содержательно — Гельферих, 1959). [c.8]

    Согласно [181], стабильный золь получают при упаривании в вакууме 10-ного золя, полученного ионным обменом и подщелоченного до pH = 9 -f- 10, до содержания 30% SiOa и последующей выдержки в автоклаве при 30 ат. [c.119]

    Яблочный сок, выжатый из кожуры и сердцевины, деионизируется для получения мягкого сока, который использовался в военное время как увлажнитель табака. Бак и Моттерн [12] сообщили, что известкованный или неизвесткованный сок, обычным образом обработанный ионным обменом, дает стойкий яблочный сок, из которого извлекается не только большая часть плодовой золы, но также и мышьяк, введенный при использовании инсектицидов. [c.555]


Смотреть страницы где упоминается термин Золи ионным обменом: [c.174]    [c.344]    [c.174]    [c.344]    [c.449]    [c.1089]    [c.208]    [c.293]    [c.112]   
Химия кремнезема Ч.1 (1982) -- [ c.426 , c.430 , c.451 , c.453 , c.458 ]




ПОИСК





Смотрите так же термины и статьи:

Золь

Ионный обмен

Ионный обмен и иониты

Мер золит

Обмен ионов

золы



© 2025 chem21.info Реклама на сайте