Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры веществ в ближней ИК-области

    Исследованием спектров несколько сотен углеводородных органических систем и теоретическими исследованиями установлено экспоненциальное распределение интенсивностей высокомолекулярное многокомпонентность веществ. [16, 17]. Поэтому спектр в ближней УФ- и видимой области целесообразно аппроксимировать распределением  [c.86]

    Инфракрасная (ИК-) спектроскопия — это один из методов оптической спектроскопии. С помощью ИК-спектроскопии определяют строение молекул и вещества в целом, так как в инфракрасной области расположено большинство колебательных и вращательных спектров молекул. Инфракрасная область — это длинноволновая часть спектра с длинами волн от 0,75 до 300 мкм причем часть спектра в интервале длин от 0,75 до 2,5 мкм называют ближней, от 2,5 до 15 мкм — средней и от 15 до 300 мкм — далекой областью. Этому делению соответствуют ИК-спектрометры, определенные оптические материалы, из которых готовят призмы, источники и приемники электромагнитного излучения. [c.185]


    Серийные ИК-спектрометры записывают процент пропускания света образцом (который легко пересчитать в оптическую плотность) и осуществляют линейную развертку по волновым числам (реже по длинам волн). Если требуется точно установить положение полос поглощения в спектре вещества, то достаточно перед записью спектра образца записать спектр пленки полистирола, который дает сильные полосы при 906, 1028, 1494, 1603, 2925 и 3028 см . В дальней ИК-области калибровку можно провести по вращательному спектру какого-либо газообразного вещества, а в ближней ИК-области — по обертонам валентных колебаний жидких соединений (для бензола 1,143 и 0,874 мкм). [c.205]

    Вся область, занимаемая электронными полосами, условно подразделяется на ближнюю инфракрасную (1200—750 нм), видимую (750—400 нм), ближнюю ультрафиолетовую (400—300 нм), среднюю ультрафиолетовую (300—200 нм) и далекую ультрафиолетовую (вакуумную) области спектра. Каждая спектральная область характеризуется своей техникой эксперимента — источниками и приемниками света, материалом оптических деталей и т. д. Наиболее высокочастотные полосы лежат в далекой ультрафиолетовой области. Здесь расположены переходы, обусловленные возбуждением наиболее прочно связанных а-электронов. Такие переходы имеются у всех молекул, содержащих простые связи. Поэтому в этой области практически невозможно подобрать прозрачное вещество, которое можно было бы использовать в качестве растворителя, и приходится исследовать молекулы в газообразном состоянии. Кроме того, начиная с 200 нм, коротковолновое излучение поглощает молекулярный кислород, содержащийся в атмосфере, а начиная с 160 нм, — атмосферный азот. Следовательно, приборы, предназначенные для работы в далекой ультрафиолетовой области, должны быть вакуумированы, поэтому далекая ультрафиолетовая область спектра называется иначе вакуумной ультрафиолетовой областью. [c.67]

    СПЕКТРЫ ВЕЩЕСТВ В БЛИЖНЕЙ ИК-ОБЛАСТИ [c.11]

    Достаточно широки возможности применения спектров в ближней ИК-области для изучения состава органических веществ. Некоторые отличия в полосах поглощения метильной и метиленовой групп используют для определения нормальных и изомерных углеводородов. Обертоны метильной группы при 1,19 мкм и метиленовой группы при 1,21 мкм имеют почти постоянную интенсивность, отнесенную к одной группе. Это свойство используют для определения числа указанных групп, а по количеству концевых метильных групп определяют молекулярную массу полимеров. Предложен метод определения содержания ароматических соединений в смесях углеводородов по отношению коэффициентов поглощения ароматических и алифатических СН-групп. Этот метод использован при анализе бутадиен-стирольного сополимера [48]. Содержание ОН-групп в полимерах определяют по полосе поглощения при [c.27]


    Ближнюю ИК-область спектра по степени интенсивности полос поглощения делят на три диапазона. В диапазоне 0,80—1,30 мкм (12 500—7700 СМ ) проявляются слабые полосы 2-ых обертонов, в диапазоне 1,30—1,60 мкм (7700—6250 см Ч — более интенсивные полосы 1-ых обертонов и в диапазоне 1,60—2,50 мкм (6250— 4000 см- ) — наиболее интенсивные полосы поглощения комбинационных колебаний. Спектры веществ обычно регистрируют отдельно для каждого диапазона, подбирая при этом оптимальные для каждого диапазона длины кювет. Если нужно получить спектр вещества во всей ближней ИК-области, то оптимальную длину кюветы подбирают по пропусканию образца в интервале 1,9— [c.177]

    Группа методов электронной УФ спектроскопии охватывает оптические спектры не только в ультрафиолетовой (УФ), но и в видимой (ВИ) и самой ближней ИК областях, связанные с переходами между различными электронными состояниями атомов и молекул. Электронные переходы атомов и связанные с ними спектры в указанных областях являются основой атомного эмиссионного и абсорбционного спектрального анализа. Высокотемпературный нагрев вещества, например, в вольтовой дуге или искровом разряде, как это делается при эмиссионном спектральном анализе, переводит образец в парообразное, обычно атомарное состояние, причем атомы химических элементов, входящих в состав вещества, возбуждаются. Излучение, возникающее при переходах атомов в основное электронное состояние, и дает линейчатый спектр, используемый для качественного и количественного элементного анализа, который, как и вся группа связанных с ним спектральных методов, здесь рассматриваться не будет. [c.294]

    Колебательный спектр вещества за счет коротковолнового лазерного излучения в видимой области спектра исследуют, применяя метод инфракрасной (ИК) спектроскопии. По спектрам 5102 (в виде стекла и различных кристаллических модификаций) методом ИК-спектроскопии (рис. 5.4, а) можно выявить различие между кварцевым стеклом, кварцем и высокотемпературными модификациями 5102 [66]. В стекле выявляются четкие области ближнего порядка элементов и расшатанные вплоть до исчезновения дальнего порядка решетки. [c.161]

    Поскольку приборы СФ-4, СФ-4Д, СФД-2 имеют кварцевую оптику, возможность изучать спектры поглощения веществ в видимой, ультрафиолетовой и ближней инфракрасной областях спектра в интервале длин волн от 220 до 1100 нм. Для обеспечения заботы в широком интервале длин волн в приборах имеются два источника освещения водородная лампа для измерений в области 220—350 нм и лампа накаливания для измерений в области 320— 1100 нм. [c.474]

    Спектроскопия в видимой и ультрафиолетовой области. Прибор состоит из тех же узлов, что и при исследовании ИК-спектра. Источники излучения — лампы накаливания и разрядные трубки. Кюветы и призмы делают из веществ, пропускающих излучение. Для видимой области это стекло, для ближней ульт- [c.150]

    Энергия, сообщаемая поглощающей свет молекуле хлора, чрезвычайно велика. Вычислено, что действие УФ-лучей на хлор оказывает такое же влияние, как нагрев до 1500°С. Хлор поглощает лучи в ближнем УФ-свете и в фиолетовой области видимого спектра с длиной волн 250—450 нм. Фотохимический процесс используют для хлорирования жидких углеводородов. Газообразные углеводороды целесообразнее хлорировать каталитическим или термическим путем. Фотохимическому хлорированию подвергаются и высшие алканы. К веществам, обрывающим цепную реакцию, относятся кислород и оксид азота. [c.201]

    У окрашенных веществ максимум поглощения света в большинстве случаев находится в видимой области спектра, однако он может быть и в ближней ультрафиолетовой области, как, например, у хромата калия (см. рис. 4.3, кривую /), или в ближней инфракрасной области, как у раствора сульфата меди (кривая 2). [c.181]

    Как указывалось выше, поглощение вещества в ближнем ультрафиолете и видимой области связано с возбуждением я-> л - или п-> л -переходов. Эти переходы реализуются только в молекулах, содержащих ненасыщенные группировки. Атомную группировку (включающую хотя бы одну кратную связь), которая придает соединению способность к избирательному поглощению в ближнем ультрафиолете или видимой области, называют хромофором. Хромофоры разделяются на изолированные и сопряженные. К первым относят группировки с одной кратной связью, такие, как С=С, С=0, и т. п., а ко вторым — структурные элементы, представляющие собой системы сопряженных кратных связей. Соединение, содержащее сопряженный хромофор, поглощает в более длинноволновой области и с большей интенсивностью, чем соединение, включающее те же, но изолированные кратные связи. В последнем случае спектр полифункцио-нального соединения можно трактовать просто как результат суммирования поглощения соответствующих изолированных хромофоров. Некоторые из хромофоров (например, сопряженный хромофор С=С—С=С) обеспечивают поглощение в ближнем ультрафиолете за счет только п, -перехода, другие (как изолированный хромофор С=0) — за счет и—> л -перехода, а третьи (например, сопряженный хромофор С=С—С=0) — вследствие реализации как так и п- п -переходов. [c.49]


    Интенсивность полос поглощения. Для аналитических целей широко используют спектры поглощения веществ в ультрафиолетовой, видимой, и ближней инфракрасной областях. Появление этих спектров связано с электронными или колебательными переходами. Обычно спектры поглощения получают при комнатной температуре, когда практически все молекулы находятся в невозбужденном колебательном и электронном состояниях. Поэтому вероятность поглощения фотона и перехода в возбужденное состояние зависит только от свойств самой молекулы — величин дипольного момента и соответствия правилам отбора. Чем чаще совершается такой переход, тем сильнее поглощение света данной длины волны, тем больше интенсивность полосы поглощения. [c.313]

    Оптическую плотность и коэффициент погашения определяют обычно для максимума абсорбционной полосы. Коэффициент погашения зависит, конечно, от длины волны для участков спектра, где вещество не поглощает, коэффициент равен нулю чем сильнее поглощение, тем больше значение е. Для сильных колебательных полос в ближней инфракрасной области величина молярного коэффициента погашения достигает 1500. Электронные полосы для переходов, разрешенных правилом отбора, в ультрафиолетовой и видимой областях еще более интенсивные — для самых сильных е> 100 ООО. [c.315]

    Важным преимуществом при использовании спектров комбинационного рассеяния является возможность работать в видимой или в ближней ультрафиолетовой области, тогда как при использовании тех же переходов в абсорбционной спектроскопии нужно использовать менее удобную инфракрасную технику. Особенно сильно сказывается это преимущество, когда соответствующие инфракрасные полосы имеют Я > 20—25 мк. Действительно, в спектрах комбинационного рассеяния интерес представляет не абсолютное значение частоты (или длины волн) линии, а разность частот спутника и основной несмещенной линии, которая соответствует возбуждающему свету. Поэтому, выбирая удобную длину волны для возбуждения, получаем в той же области и спектр комбинационного рассеяния. Длина волны спутников при этом, конечно, зависит от длины волны возбуждающего света, но разность частот во всех случаях остается для данного вещества строго постоянной. [c.340]

    Кварцевым спектрофотометром СФ-4 (или СФ-4А) измеряют оптическую плотность или светопропускание и снимают спектры поглощения жидких и твердых прозрачных веществ в диапазоне длин волн 220—1100 ммк, т. е. в ультрафиолетовой, видимой и ближней инфракрасной областях спектра. Прибор состоит из а) монохроматора с кварцевой призмой, поворотом которой на выходную щель монохроматора направляется свет желаемой длины волны б) усилителя с отсчетным устройством, с помощью которого измеряется интенсивность монохроматического излучения, прошедшего через кюветы в) стабилизатора напряжения, обеспечивающего стабильность ультрафиолетового светового потока, излучаемого водородной лампой. [c.83]

    Почему оба вещества прозрачны в ближней УФ-области электромагнитного спектра  [c.52]

    Оптико-спектроскопические методы, используемые в промышленном контроле, могут быть разделены на две основные группы электронная спектроскопия (спектроскопия в ультрафиолетовой и видимой областях спектра) и колебательная спектроскопия (спектроскопия в инфракрасной, ближней инфракрасной (ВИК) областях спектра, а также рамановская спектроскопия). В УФ и видимой областях спектра поглощение обусловлено переходами между атомными или молекулярными электронными энергетическими уровнями. Переходы между электронными энергетическими уровнями могут происходить только в том случае, если энергия падающего фотона соответствует разности энергий соответствующих уровней. Эти энергетические уровни для ближней ультрафиолетовой и видимой областей имеются в изолированных атомах, отдельных неорганических ионах, органических соединениях, содержащих сопряженные двойные связи, и большом числе разнообразных молекулярных веществ. Поглощение в ультрафиолетовой и видимой областях очень сильное, поэтому возможно определение концентраций на уровне нескольких частей на миллион. Однако полосы поглощения обычно очень широкие по сравнению с [c.656]

    В спектрофотометрических методах применяют сложные приборы - спектрофотометры, позволяющие проводить анализ как окрашенных, так и бесцветных соединений с помощью избирательного поглощения монохроматического света в видимой, ультрафиолетовой или ближней инфракрасной областях спектра. Поскольку спектр поглощения каждого вещества имеет вполне определенную форму, спектрофотометр может быть применен как для качественного, так и для количественного анализа. [c.184]

    Кварцевая проточная кювета (объемом 0,5—0,1 см ), лампа — источник УФ-излучения. С одной стороны кюветы имеется заслонка для установки прибора на нуль, с другой ее стороны — фотоумножитель. Применяется для измерений при 254 нм в непрерывном анализе. Линейная шкала поглощений (О — 0,5 или О — 2,5), которую можно использовать для регистрации результатов с помощью отдельного записывающего устройства. Может быть использовано для управления устройством отбора фракций. Сменные детекторы. Предусмотрена возможность работы в различных спектральных диапазонах. Однолучевая схема путем выделения (фильтрами) спектральной линии при 254 нм, излучаемой ртутной лампой низкого давления диапазон видимого света 410—700 нм с использованием клинообразного интерференционного фильтра с полушириной полосы пропускания 25 нм ближняя ИК-область спектра (700—950 нм) —с применением клинообразного интерференционного фильтра с полушириной полосы пропускания 40 нм. Двухлучевая схема (по выбору 254 или 280 нм) используется с применением флуоресцирующего кристалла в качестве источника (полуширина 17 нм). В модели 660 для анализа непрерывного потока вещества можно выбирать различные линии спектра излучения ртути (254, 313, 364, 405, 435, 546, 679 нм). Выбор нужной линии осуществляется с помощью сменных фильтров. [c.408]

    Установите строение соединения С4Н10О по его ИК- и ПМР-спектрам (в ближней УФ-области вещество прозрачно) (рис. 10 и рис. И). [c.59]

    Спектры иоглощеиня растворов неорганических веществ ближней инфракрасной области. [c.118]

    Большинство приложений электронной спектроскопии основано на исследовании спектров в интервале длин волн 2100— 7500 А, так как именно этот интервал доступен для большей части регистрирующих спектрофотометров. В настоящее время производятся сравнительно недорогие приборы, охватывающие интервал 1900—8000 А. Много ценных сведений дает изучение спектров в ближней инфракрасной области 8000—25 ООО А. Во всем интервале 1900—25 000 А можно исследовать спектры паров, чистых жидкостей или растворов. Твердые вещества применяются для снятия спектра в виде монокристаллов или дисков, формуемых из смесей с КС1 или Na l, спрессованных под гидравлическим прессом до получения прозрачного диска [12]. Спектры твердых порошкообразных тел могут быть изучены в несколько более узком интервале (4000—25 ООО А) в виде спектров отражения или спектров суспензий твердых веществ [12]. [c.170]

    Каротиноиды обычно считаются нефлуоресцирующими. По данным Вильштеттера и Штоля [97], это справедливо как для каротиноидов листа, так и для каротиноидов бурых водорослей (например, для фукоксантола). Однако Роговский [95] сообщил, что им наблюдалась флуоресценция каротина в нетролейном эфире в области около 505 — 600 мц, и Дере [105] установил, что при —180 в растворе каротина в ксилоле можно обнаружить три отдельные полосы флуоресценции. Клейн и Линзер [100] упоминают о зеленой флуоресценции спиртовых растворов каротина. Стрейн [104] нашел в. хроматограммах экстрактов из листа в нетролейном эфире флуоресцирующий слой, расположенный под слоем а-каротина и состоящий из неизвестного бесцветного вещества, вероятно углеводорода, без резких полос поглощения в видимой области спектра или ближнем ультрафиолете. Цехмейстер и сотрудники [107] нашли, что в огромном большинстве экстрактов из не содержащих хлорофилла органов различных растений присутствует флуоресцирующий бесцветный углеводород нолиенового типа с резкими полосами поглощения у 331, 348 и 367 мц (в нетролейном эфире). Этот углеводород, названный фитофлуеном (вероятно, Hg ), может представлять собой исходный продукт при образовании каротинов или продукт их гидро-генирования в нем имеется семь двойных связей, но, по всей вероятности, лишь пять из них конъюгируются. [c.210]

    Из правила зеркальной симметрии следует, что для получения эффекта флуоресценции молекулы органического вещества в интервале видимых длин волн не безразлично, в какой области частот данная молекула поглощает свет. В большинстве случаев необходимо, чтобы молекула имела спектр поглощения в ближней ультрафиолетовой области или в коротковолновой части видимого света. Ж- де Мент исследовал больше 3000 органических веществ, из которых нашел не больше 400 флуоресцирующих. Большинство из них имели спектры поглощения в области длин волн около 365 ммк. К такому же выводу пришли П. В. Данкворт и И. Айзен-бранд , которые считают, что данные об абсорбции света веществом являются лучшим руководством при выборе флуоресцирующих веществ . [c.43]

    Применение ИК-излучения в ближней области спектра для контроля влажности сыпучих и твердых материалов имеет ряд преимуществ по сравнению с кондуктометрическим, диэлькометриче-ским, ЯМР, ЭПР и радиоактивным методами. К ним в первую очередь относятся более высокая чувствительность, меньшая зависимость результатов анализа от таких факторов, как структура и химический состав вещества, температура, толщина и плотность анализируемого образца, возможность бесконтактного анализа. [c.228]

    Парафиновые и нафтеновые углеводороды, как недавно установлено Е. И. Свенцицким [65, 67], в практических условиях кислородом воздуха окисляются довольно медленно, поэтому они и не обладают гербицидным действием. Напротив, значительный гербицидный эффект ароматических и ненасыщенных соединений обусловлен тем, что при фотохимическом окислении они быстро образуют токсичные для растений вещества. Действие нефтепродуктов может проявляться лишь при достаточно высоком содержании в них ароматических соединений. В этом случае опасные для растений вещества могут получаться в результате сопряженного окисления различ1ных углеводородов с ароматическими соединениями [65, 67], причем наиболее легко окисляются соединения, имеющие спектр поглощения в области, близкой к спектру солнечных лучей у поверхности Земли. Доказано, что скорость окисления различных ароматических соединений связана со спектрами абсорбции света этими соединениями. Наиболее быстро идет окисление тех веществ, максимум поглощения которых лежит в видимой или в ближней ультрафиолетовой части спектра, в пределах длин волн солнечного света у поверхности Земли. Фитоцидные продукты получаются также при взаимодействии углеводородов с озоном [68], всегда. присутствующим в небольших количествах в атмосфере. [c.62]

    Таким образом, большинство полимеров имеет -много полос поглощения в ИК-области спектра. Однако они могут найти примепе-ние как прозрачные материалы либо в отдельных астках спектра ( окна прозрачности ), либо в тонком слое в тех случаях, когда они используются как покрытия. Спектры поглощения полимерных материалов в ИК-области даны в Приложении 1, в ближней ИК-области — в Приложении 2. Спектры поглощения полимеров, мономеров, растворителей, стабилизаторов и других веществ в области [c.33]

    Возможны переходы с несвязывающей атомарной орбитали на молекулярную орбиталь с большей энергией переходы и п- о. Полосы п->л -переходе в наблюдаются в ближней УФ и видимой областях спектра и часто называются -полосами. Полосы п а -переходов наблюдаются в дальней, а иногда и в ближней УФ-областях. Переходы п- л являются запрещенными и их интенсивности значительно ниже интенсивностей переходов л я и я уст (коэффициент поглощения для разрешенных переходов 10 и более, для запрещенных — меньше 10 ). В УФ-области в вакууме наблюдаются переходы с орбитали в основном состоянии на одну из орбиталей с очень высокой энергией, приводящие к образованию молекулярных ионов. Метод эмпирической идентиф икадии я->л -и п л -переходов основан на их поведении при растворении вещества в различных растворителях. Для л я -переходов при увеличении полярности растворителя наблюдается (хотя и не всегда) сдвиг /С-полосы поглощения в длинноволновую часть спектра. Исключением является обратный сдвиг Я -полосы поглощения для некоторых ароматических молекул (смещение полосы поглощения в длинноволновую часть спектра называют батохромным сдвигом, в коротковолновую часть — гипсохромным). Для п я -переходов при увеличении полярности растворителя наблюдается гипсохром-ный сдвиг соответствующей -полосы поглощения, причем сдвиг на гораздо большую величину, чем для /С-полос. В табл. 1 показано влияние растворителей на спектр окиси мезитила. Обычный батохромный сдвиг полос, обусловленных я- -л -переходами, вызван взаимодействием с растворителем, которое несколько увеличивает свободу движения электронов в молекуле. Однако при л л -переходах изменения в распределении электронов более значительны, соответственно увеличиваются изменения в расположении ядер. Согласно принципу Франка — Кондона, процесс перехода в новое электронное состояние происходит за 10 с за это время ядра не успевают изменить своего взаимного расположения, поэтому наблюдаемый переход происходит при более коротких длинах волн, когда ядра еще не успели занять своего нового положения. [c.9]

    Спектрофотометрпческие определения производят на спектрофотометрах, работающих в узкой области оптимального светопоглощения, а это значительно увеличивает точность определения веществ. Спектрофотометрия применима как для анализа одного вещества, так и для анализа систем, содержащих несколько поглощающих компонентов. Спектрофотометры разных марок позволяют работать не только с окрашенными растворами, которые поглощают свет в видимой области спектра (400—760 нм), но и с бесцветными, которые поглощают излучение в ультрафиолетовой (200—400 нм) или ближней инфракрасной (760—1100 нм) областях. Спектрофото-метрию широко применяют при анализ комбинированных лекарственных препаратов и субстанций. [c.140]

    Подобный вращательный спектр имеет любая молекула, обладающая дипольным моментом. Частота (волновое число) первой самфй длинноволновой линии зависит от массы молекулы и ее размерив. При увеличении массы и размера молекулы расстояние между уровнями уменьшается и весь спектр смещается в сторону больших длин волн, например для фтористого водорода (о 1=41,9 см (Х=239 мк), для хлористого водорода ю 1=20,8 см (Х=481 мк) и для бромистого водорода (1)1=16,9 см (Х=592 мк). Для самых легких молекул вращательные спектры частично попадают в ближнюю инфракрасную область. Для большинства веществ они расположены в далекой инфракрасной и в микроволновой областях. [c.289]

    Существенный интерес представляет определение воды в сухом растворителе. Метод К- Фишера непригоден, если концентрация воды ниже 0,002% (1 ммоль/л). Для определения содержания воды в некоторых циклических сложных эфирах использовали метод газовой хроматографии [224], однако введение в хроматограф растворов электролитов приводит к накоплению солей в испарителе, а иногда и к неправильным результатам из-за термического разложения электролитов. Аналитическое определение воды при длине волны 1900 нм в ближней ИК-области спектра [225] можно применять для таких растворителей, как пропиленкарбонат, однако метод непригоден для многих обычно используемых растворителей. Описан [226] метод, осповаииый на реакции воды с тетраацетатом свинца в бензоле образующийся при этом диоксид свинца определяют спск-трофотометрически при длине волны 499 им в кювете (2 мл) можно обнаружить 2,5-10 % вещества. Метод применим для ряда растворителей, а также для некоторых растворов, обычно используемых в электрохимии. [c.200]

    Фотоколориметрня—количественное определение концентрации вещества по по глощению света в виднмой и ближней ультрафиолетовой области спектра. Погло щение света измеряют па фотоэлектрических колориметрах. [c.145]

    Фотометрический анализ — это группа методов аналитической химии, основанных на измерении поглощения электромагнитного излучения в видимой и ближней ультрафиолетовой области спектра растворами анализируемых веществ. Понижение интенсивности монохроматического излучения зависит от концентрации поглощающего вещества и толщины слоя раствора. Эта зависимость выражается законом Бугера (основной закон светопоглощен ия)  [c.125]

    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др. В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами—-фенилаланином 260 >/а), тирозином и триптофаном 280 причем спектры поглощения могут быть даже использованы для аналитического определения этих аминокислот. Нуклеиновые кислоты и нуклеопротеиды обладают настолько резким максимумом поглощения при 260—265 м]х, что при помощи фотографирования в ультрафиолетовом микроскопе легко определить их содержание в отдельных клетках (Врумберг). Зависи-кюсть ультрафиолетовых спектров поглощения от pH, состава среды, от образования комплексов с другими соединениями позволяет исследовать изменения состояния растворенных веществ так, по смещению максимума поглощения с 280 до 260—265 м было обнаружено образование комплекса между белками и гюлисахаридами (Розенфельд). Линейные полимеры обычно не имеют интенсивных полос поглощеття в видимой и ближней ультрафиолетовой областях спектра. [c.61]

    В третьем методе анализа ассоциированных объектов их спектры записывают при условии полной ассоциации. Это можно сделать, используя в качестве растворителя либо основание Льюиса (или кислоту в зависимости от условий), либо само исследуемое вещество. Например, полипропиленгликоли можно проанализировать на гидрок-сидные группы in situ [22], так как группы ОН образуют внутри-, молекулярную водородную связь с кислородом простого эфира, и возникающая в результате этого полоса поглощения достаточно точно подчиняется закону Бугера — Бера. Для коррекции величины оптической плотности группы ОН может оказаться необходимым независимое определение воды. В ближней ИК-области в качестве ассоциирующего растворителя для связывания гвдроксвдных групп и гарантии воспроизводимости анализа часто используется хлороформ. Простые и сложные полиэфиры анализировались с целью определения гидроксидного числа в области 2—3,2 мкм, при этом в качестве растворителя применялся Q4, содержащий 10 % H I3 [54]. Смеси [c.269]


Смотреть страницы где упоминается термин Спектры веществ в ближней ИК-области: [c.126]    [c.238]    [c.332]    [c.9]    [c.127]    [c.55]    [c.269]   
Смотреть главы в:

Приборы и методы анализа в ближней инфракрасной области -> Спектры веществ в ближней ИК-области




ПОИСК





Смотрите так же термины и статьи:

область спектра



© 2024 chem21.info Реклама на сайте