Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические методы модификации носителей

    Для иммобилизации фермента используют два метода химическую модификацию фермента введением групп, снижающих его растворимость, и физический захват фермента инертным носителем, например крахмалом или полиакриламидом (гл. 6). Для изготовления электродных датчиков более всего подходит химическая иммобилизация. [c.121]

    Поставленные задачи решаются на основе современных методов исследования ферментов. Практическая направленность занятий связана с освоением различных методов регистрации скоростей ферментативных реакций, включающих использование сопряженных ферментных систем и метода радиоактивного анализа. С целью определения активности мембранных ферментов осваиваются техника получения различных субклеточных структур и приемы работы с различными типами детергентов. Проблемы структурного анализа ферментов решаются с привлечением методов избирательной химической модификации белков, флуоресцентных методов, а также методов ковалентной и адсорбционной иммобилизации на различных носителях, включая искусственные фосфолипидные мембраны (липосомы). Кроме того, осуществляется практическое знакомство с различными аспектами кинетического исследования ферментов осваиваются различные способы оценки кинетических параметров, ингибиторный анализ, проводится исслс- [c.329]


    Большие возможности совершенствования промышленной биотехнологии заключены в развитии и интенсификации не только основной стадии — ферментации, но и последующих этапов разделения, очистки и получения товарных форм препаратов. Здесь прогресс крупнотоннажного микробиологического синтеза связан с грамотным применением и модификацией известных процессов химической технологии, таких, как разделение суспензий, выпарка, сушка, ионный обмен, кристаллизация, экстракция и особенно мембранные методы ультрафильтрации, обратного осмоса, диализа и т. п. Отметим, однако, что биотехнология должна и уже начала развивать свои специфические методы выделения биологически активных веществ, основанные на биологических взаимодействиях. Например, чрезвычайно перспективна хроматография культуральных жидкостей на носителях, несущих антитела к имеющемуся в растворе антигену, что позволяет выделить чистый биопрепарат из растворов практически любой концентрации и сложности. [c.139]

    Распределительная жидкостная хроматография имеет один немаловажный недостаток. Дело в том, что неподвижную жидкую фазу трудно длительное время удерживать в связи с твердым носителем. Постепенно она вымывается элюентом, и эффективность хроматографической системы снижается. Поэтому в последние годы получили широкое распространение методы химической модификации поверхности твердой матрицы носителя, иа которой фиксируется слой гид- [c.169]

    Для целей ковалентной иммобилизации ферментов полиакриламидный носитель активируют одним из способов либо в готовый полимер вводят функциональные группы методом химической модификации, либо полимеризуют соответствующее функциональное производное мономера. [c.21]

    Идея применения ферментов в качестве лекарственных средств (фармакологии ферментов) всегда казалась заманчивой. Однако их нестабильность, короткий период полураспада, нежелательные антигенные свойства, связанные с белковой природой ферментов и опасностью развития аллергических реакций, трудности доставки к пораженным органам и тканям (мишеням) существенно ограничивали возможности использования ферментных препаратов. В разработке методов иммобилизации ферментов (см. ранее) наметились конкретные пути преодоления указанных трудностей применение водорастворимых, биосовместимых носителей, например полимолочной кислоты (легко разлагается в организме), использование методов химической модификации и микрокапсулирования, приготовление MOHO- и поликлональных антител и ферментсодержащих липосом и т.д. [c.168]


    В обычной аффинной хроматографии для иммобилизации субстратов в качестве носителей используются агароза и сшитая сефароза. В качестве сшивающего агента обычно выступает ВгСМ, а мостик образован а,о)-диамином. Эти полисахаридные носители подвержены биодеградации, и, следовательно, органические полимерные гели более удобны в качестве матрицы и допускают более широкий набор химических модификаций. Именно эти причины побудили Уайт-сайдса и сотр. разработать новый метод иммобилизации ферментов в сшитых органических полимерных гелях [126]. По своей простоте и универсальности этот метод превосходит ранее предложенные. Особенно ценен он при иммобилизации относительно лабильных ферментов для использования в ферментерах большого размера при проведении реакций органического синтеза, катализируемых ферментами. [c.257]

    ХИМИЧЕСКИЕ МЕТОДЫ МОДИФИКАЦИИ НОСИТЕЛЕЙ [c.165]

    Чтобы устранить или, по крайней мере, свести до минимума нежелательную активность, присущую большинству твердых носителей, применяют различные методы химического и физического воздействия на них. Это воздействие получило название модификации носителей. [c.181]

    Химические методы, применяемые для выделения полинуклеотидов или нуклеиновых кислот, могут быть основаны на специфической реакционной способности минорных компонентов или концевых групп. Эти группы могут быть непосредственно или после предварительной химической модификации связаны с нерастворимым носителем или такой молекулой, которая резко изменяет физические свойства полинуклеотида (растворимость, коэффициенты распределения или седиментация и т. д.). Подобные методы нашли применение для выделения и фракционирования транспортных РНК. [c.16]

    Приготовление антигенов или направленно модифицированных носителей часто представляет значительную трудность для тех, кто не имеет специальной химической подготовки. Поэтому мы прежде всего рассмотрим механизмы некоторых основных реакций усвоив эти начальные знания, нам легче будет применить известные методы при изучении новых систем. Все методы модификации, описанные в этой главе, широко используются, и их легко приспособить для работы с самыми разнообразными антигенами и носителями. Однако, приступая к новому синтезу, нужно строго соблюдать следующие условия  [c.149]

    Главным отличительным признаком химических методов иммобилизации является то, что вследствие химических взаимодействий в молекуле фермента возникают новые ковалентные связи, в частности между ним и носителем. Препараты иммобилизованных ферментов, получаемые с использованием химических методов, обладают, по крайней мере, двумя существенными достоинствами. Во-первых, формирующаяся ковалентная связь между ферментом и носителем обеспечивает высокую прочность образующих конъюгатов. Во-вторых, химическая модификация ферментов способна приводить к существенным изменениям их свойств (субстратной специфичности, каталитической активности и стабильности). [c.88]

    Другим возможным способом классификации является систематизация по типам полимерных носителей реакционноспособных групп. Особую важность при этом приобретает вопрос активации полимеров. В предыдущем разделе были подробно рассмотрены методы введения различных реакционноспособных групп в полимерные структуры. Приведенные примеры можно обобщить в виде схем для наиболее распространенных полимеров. На рис. 2.3 приводятся данные по полимерным реакциям таких распространенных и стабильных материалов, как полиэтилен и полипропилен. Эти полимеры практически не участвуют ни в каких ионных реакциях, число вводимых в них активных групп обычно незначительно. Как правило, модифицированные структуры очень устойчивы и имеют гидрофобный характер. Однако даже такой чрезвычайно стабильный промышленный пластик, как полипропилен, может быть использован в качестве полимера-носителя в очень тонких реакциях (например, в фиксации ферментов). Модификацию полиэтилена и полипропилена можно осуществлять непосредственно в процессе переработки, поскольку многие технологические процессы (формование волокон, пленкообразование) проводятся из расплава, что создает богатые возможности для введения других активных мономеров, получения привитых и блок-сополимеров и т. д. Сшитый сополимер стирола и дивинилбензола может подвергаться различным химическим превращениям (рис. 2.4). Эти материалы будут подробнее рассмотрены в разд. В.З, посвященном полимерным реагентам. Введение групп типа ЗОзН придает полистиролу гидрофильность и позволяет получить растворимый полимер, однако, если такие группы вводятся в сшитый полимер, реакция протекает в очень неоднородных условиях и число присоединенных групп сильно зависит от размера частиц, их пористости, состояния поверхности и т. д. Очевидно, что в процессах ионообмена выгодно иметь возможно большее число таких групп. Для получения большей ионообменной емкости необходимо вводить группы —80 зН и —Ы КзХ почти в каждое фенильное ядро. При использовании полистирола в качестве носителя (при твердофазном синтезе пептидов, ферментативном катализе, катализе переходными металлами и т. д.) требуется, чтобы количество введенных групп превышало 10%. Химическая модификация полистирола (рис. 2.4) может быть осуществлена [c.44]


    При помощи современных физико-химических методов (рентгено-структурнып анализ, спектроскопия, парамагнитный резонанс и др.) единственным соединением, которое удалось обнаружить в чистом (не на носителе) алюмокобальтмолибденовом катализаторе был молибдат кобальта — С0М0О4, существующий в двух модификациях, переходящих друг в друга приблизительно при 35 и 420 °С. Молибден в обеих модификациях находится в октаэдрических системах. Одна из модификаций, менее симметричная, имеет незави- [c.300]

    КОСТИ последний вулканизировался химическим методом, что приводило к значительному усложненгш методики. Каучук смешивали в равных количествах с твердым носителем, в эту смесь добавляли вулканизируюш ий агент (перекись бензоила), а поело вулканизации всю массу измельчали вновь. При радиационном же способе вулканизации методики модификации поверхности значительно проще каучук наносят таким же способом, как и неподвижную жидкость, т. е. каучук растворяют в легколетучем растворителе и этим раствором смачивают сорбент, а затем растворитель испаряют. После этого сорбент с нанесенным на его поверхность каучуком подвергается радиационной вулканизации у-излучения Со . При этом доза облучения (28,8 млн. рентген) с целью максимального снижения набухания вулкапизита в стационарной жидкости приблизительно в 3 раза превышает дозу, необходимую для вулканизации полимера данного молекулярного веса [2]. Следует отметить, что при радиационной вулканизации получается более термостойкий продукт, чем при химической, так как отсутствуют остатки вулканизирующих агентов [2, 3]. [c.265]

    Однако в связи с тем, что в газо-жидкостной хроматографии на поверхность твердого носителя нанесена пленка НЖФ, взаимодействие хроматографируемых соединений с поверхностью твердого носителя происходит из раствора в условиях конкурентного взаимодействия молекул НЖФ и анализируемого соединения с адсорбционными центрами твердого носителя. Поэтому табл. VI- непосредственно характеризует взаимодействие разделяемых соединений с твердым носителем только при использовании в качестве НЖФ неполярных углеводородных соединений типа сквалана, гексадекана, апиезонов, а также, возможно, неполярных метилсилоксановых масел типа 5Е-30, ДС-220 и т. п. В других случаях необходимо учитывать взаимодействие полярной НЖФ с твердым носителем. Так, при использовании полярных НЖФ, характеризующихся более сильным взаимодействием с адсорбционными центрами твердого носителя, чем хроматографируемое соединение, специфической или химической адсорбции анализируемых соединений не происходит. Это явление лежит в основе метода модификации твердого носителя путем небольших добавок полярных соединений к неполярным НЖФ [10, с. 40] для подавления адсорбции хроматографируемых соединений. [c.130]

    Основой любого фермента является белок, представляющий собой компактную конструкцию из одной или нескольких полипептидных цепей, ковалентно связанных (сшитых) дисульфид-ными мостиками. Помимо белка ферменты иногда мо1ут содержать и небелковые компоненты простетические группы неорганической и органической природы, липиды (в липопротеидах) и углеводы (в гликопротеидах). Конечно, в общем случае химические методы иммобилизации нацелены на модификацию функциональных групп в белковой части молекулы фермента. Однако при выборе процедуры иммобилизации для конкретного фермента целесообразно учитывать и специфические особенности строения его молекулы. В этой связи укажем на хорошо известный и яркий пример ковалентной иммобилизации гликопротеидов. Относительно простым методом — окислением перйодатом натрия в мягких условиях — в полисахаридную часть фермента вводятся альдегидные группы, посредством которых на следующем этапе и осуществляется химическое взаимодействие с носителями или сшивающими агентами, содержащими аминогруппы (образованием азометиновых связей, оснований Шиффа). [c.82]

    Различные модификации и разновидности оксида алюминия широко применяются для приготовления катализаторов [1271. Используемый в качестве носителя бифункциональны.х катализаторов риформинга, промотированный хлором или фтором ok hj алюминия играет важную роль в катализе, поскольку на нем протекают кис-лотно-каталнзируемые реакции. Поэтому большое значение имеют физико-химические свойства оксида алюминия, а также содержание в нем примесей. Регулированиесвойств окснда алюминия достигается за счет изменения методов и условий синтеза исходной гидроокиси и ее последующей обработки (промывки, формовки, сушки и прокаливания). [c.63]

    Основное ограничение рассмотренного варианта ПИА, когда микрообъемы пробы вводятся в ламинарный поток носителя и реагента, называемого нормальным ПИА связано с тем, что химические реакции и физические процессы должны протекать достаточно быстро. Дпя устранения этого предложено использовать такие модификации ПИА, как методы остановленного потока и замкнутой спирали . Эти методы позволяют увеличить время пребывания пробы в проточной системе. При методе остановленного потока , выбирая определенные момент и интервал остановки потока, можно задавать определенную скорость и время 1фотекания химической реакции в течение этой остановки. Обычно поток останавливают, когда зона образца или ее часть находятся в смесительной спирали или реакторе, или в проточной ячейке детектора. В последнем случае детектор регистрирует приращение сигнала во времени, что позволяет не только повысить степень протекания реакции, но и оценить ее [c.415]

    Первая контролируемая модификация белка была проведена в середине 60-х годов Кошландом и Бендером. Для замены гидроксильной группы на сульфгидрильную в активном центре протеазы — субтилизина они применили метод химической мо дификации. Однако, как выяснилось, такой тиолсубтилизин не сохраняет протеазную активность. Вообще говоря, методы химической модификации не только жестки и неспецифичны они плохи еще и тем, что с их помощью невозможно вызвать множественные желаемые изменения, особенно если модифицируемые аминокислотные остатки погружены в глубь третичной структуры белка. Для этого нужна белковая инженерия, основанная на генетической инженерии. Сегодня она осуществляется при помощи двух хорошо освоенных методов (гл. 7). Так, сайт-специфический мутагенез осуществляется следующим образом. Клонируют ген того белка, который интересует исследователя, и встраивают его в подх.одящий генетический носитель. Затем синтезируют олигонуклеотидную затравку с желаемой мутацией, последовательность которой из десяти — пятнадцати нуклеотидов в достаточной степени гомологична определенному участку природного гена и поэтому способна образовывать с ним гибридную структуру. Эта синтетическая затравка используется полимеразами для начала синтеза комплементарной копии вектора, которую затем отделяют от оригинала и используют для контролируемого синтеза мутантного белка. Альтернативный подход основан на расщеплении цепи, удалении подлежащего изменению сайта и замещении его синтетическим аналогом с желаемой последовательностью нуклеотидов. [c.183]

    Модификация ФАВ в системе процессов органический синтез-биосинтез или биосинтез—органический синтез также включает, причем на нескольких стадиях, методы ТФХБТ. Специальной областью использования этих методов являются процессы физикохимической модификации ФАВ, например сорбционной иммобилизации, а также комплексообразования в растворе. Модифицированные таким образом ФАВ не подвергаются химическим превращениям, однако приобретают новые свойства, что позволяет осуществить стабилизацию ФАВ, придать им новые особенности, в частности превратить с помощью высокомолекулярных носителей в препараты пролонгированного действия или вещества, способные локализоваться в определенных органах человека или животных. [c.8]

    Предлагаемая вниманию читателя книга видных канадских ученых Харриса и Хэбгуда является первой книгой на русском языке, посвященной газовой хроматографии в условиях изменения температуры. В настоящее время в Советском Союзе, как и в других странах мира, газовая хроматография стала одним из самых распространенных методов физико-химического анализа. За последние 3—4 года существенно возросло количество выпускаемых приборов, резко расширился круг проблем, к решению которых привлекаются газохроматографические методы. На этом ( не представляется удивительным малое распространение такой богатой по своим возможностям модификации газовой хроматографии, как хроматография при повышении температуры колонки. В значительной степени такое отставание связано с отсутствием книг, в которых достаточно подробно были бы изложены вопросы теории, аппаратурного оформления и применения этого интересного метода. Книга Харриса и Хэбгуда в значительной мере восполняет этот пробел. В отличие от большинства известных книг по газовой хроматографии, являющихся по своему характеру компиляциями большого числа источников, монография Харриса и Хэбгуда в первую очередь оригинальное произведение. В ней исключительно логично и ясно изложена созданная авторами теория хроматографии при программировании температуры. В первых пяти главах авторы последовательно рассматривают влияние изменений температуры на многочисленные параметры, определяющие процесс изотермической хроматографии, и на этой основе строят изящную теорию взаимосвязи параметров удерживания со скоростью потока газа-носителя и скоростью изменения температуры. Подробно рассматриваются вопросы степени разделения веществ и э ективности колонки в условиях изменения ее температуры. В гл. 6 рассмотрена взаимосвязь параметров удерживания в хроматографии с программированием температуры с особенностями строения веществ. В гл. 7 изложены важные сведения, касающиеся основных требований к газу, твердым носителям и жидким фазам, применяемым в процессе. Там же обсуждены источники ошибок при количественных [c.5]

    Приступая к разделению белков, необходимо тщательно подобрать pH, ионную силу, температуру, электролит и носитель, поскольку от перечисленных условий зависят физико-химические и биологические свойства каждого отдельного белка. Формирование высших структур (т. е. вторичной, третачной и четвертичной), а также надмолекулярных агрегатов обусловлено ионными и гидрофобными взаимодействиями и образованием водородных связей. Эти же взаимодействия определяют и процесс разделения. Очевидно, условия хроматографии должны быть такими, чтобы выделенный продукт сохранил определенные представляющие интерес свойства, каковые, как правило, связаны ссохра-нением его нативного состояния и биологической активности. В то же время для определения физических свойств субъединиц белка часто его необходимо денатурировать и с этой целью подвергнуть жесткой обработке (например, мочевиной или гидрохлоридом гуанидина) с последующей химической модификацией (например, расщепить дисульфидные связи и блокировать сульф-гидрильные группы). Таким образом, конкретная задача определяет выбор метода разделения белков. Следует также отметить, что в процессе разделения нативных белков участвуют функциональные группы, расположенные на поверхности. Однако если белки полностью или частично денатурированы, появляются новые группы, ранее скрытые внутри макромолекулы, которые могут изменить не только силу, но и природу взаимодействия белка с сорбентом. В результате при хроматографиче- [c.104]

    Для исследования специфического связывания биологически активных макромолекул с клеточными рецепторами широко применяются методы аффинной хроматографии. Основной недостаток обычных аффинных сорбентов — низкая эффективность использования специфических рецепторов при их химической пришивке к пористому инертному носителю, а также потеря нативности и некоторых физиологических функций рецепторов из-за процедуры химической модификации. В литературе описан метод получения аффинных сорбентов на основе фрагментов клеточных мембран эритроцитов, лимфоцитов и гепатоцитов, иммобилизованных в матрицу полиакрилонитрила. Эти сорбенты проявляют высокую тканеспецифическую селективность связывания своих природных белков-лигандов (Грушка и др., 1988 Чернова, Гуревич, 1996). Аналогичные сорбенты могут быть использованы для определения селективности связывания пептидов и НПК с клеточными мембранами определенной дифференцированной ткани. [c.180]

    Перечисленным требованиям соответствуют многие носители, в том числе и широко используемые в биохимических лабораториях для очистки и разделения белков. В связи с этим первоначально в гетерогенных методах ИФА применялись такие носители, как целлюлоза, сефароза, сефадекс, биогель, силохррм, пористое стекло, оксиды металлов. Эти материалы обладают высокой емкостью, легко подвергаются химической модификации, имеют хорошие гидродинамические свойства. Неорганические носители (силохром, пористое стекло) не подвержены воздействию микрофлоры, что позволяет использовать иммобилизованные, на них антитела длительный срок без применения консервантов. Одним из немногих (но существенных) недостатков гранулированных носителей является сложность их точного дозирования и трудность промывок без потерь используемых в анализе микроколичеств иммуносорбента. Особенно остро эти вопросы встают при необходимости проведения не единичных, а массовых анализов. [c.202]

    В 34 главах изложены методы определения, выделения и очистки антител (включая дансилироваиие, двумерную хроматографию, изоэлектрофокусирование, электрофорез в полиакриламидном геле и изотахофорез) методы определения констант равновесия (равновесный диализ, равновесная фильтрация и седиментация) способы маркировки реагентов изотопами и флуоресцентными красителями и определение компонентов клеточной поверхности меры предосторожности при работе в изотопной лаборатории методы химической модификации белков, гаптенов и нерастворимых носителей приемы получения аитн-сывороток к аллотипам и антигенам гистосовместимости и получения антител доминирующего клонотипа методы оценки гистосовместимости и реакций в смешанной культуре лимфоцитов методы разделения клеток на гелях, несу- [c.7]

    Были предложены и другие подходы, заменяющие этапы центрифугирования при проведении реакций химической модификации оснований в методе Максама-Гилберта [Jagadeeswaran, Kaul, 1986 Boland et al., 1994]. Так, в первой из этих работ использовалась обращенно-фазо-вая хроматография с носителем jg, что обеспечило быстрое удаление химических реагентов после завершения первого этапа модификации оснований. Далее элюированные с помощью ацетонитрила модифицированные препараты ДНК высушивали и подвергали стандартному гидролизу пиперидином, однако его удаление представляло уже определенную проблему из-за плохого связывания ДНК с носителем jg в присутствии пиперидина (даже разбавленного в 10 раз после завершения [c.38]


Смотреть страницы где упоминается термин Химические методы модификации носителей: [c.253]    [c.77]    [c.39]    [c.511]    [c.190]    [c.107]    [c.99]    [c.48]    [c.38]   
Смотреть главы в:

Твердых носителей в газовой хроматографии -> Химические методы модификации носителей




ПОИСК





Смотрите так же термины и статьи:

Метод носителей

Метод химической модификации

Модификация носителя



© 2025 chem21.info Реклама на сайте