Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефти масс-спектрометрия

    Молекулярная масс-спектрометрия как аналитический метод впервые была использована в 1940 г. при исследовании углеводородов нефти масс-спектрометр был применен для количественного определения компонентов смесей газообразных и легкокипящих фракций нефтей. Усовершенствование метода определения индивидуального состава смесей газообразных углеводородов позволило распространить его на смеси соединений более высокого молекулярного веса. Однако резкий рост количества изомеров при увеличении числа углеродных атомов в молекуле ограничил возможности определения индивидуального состава вследствие большой аналогии масс-спектров отдельных компонентов. Поэтому методы исследования сложных смесей развивались в двух направлениях. [c.3]


    Углеводородный состав нефтей и битумов по данным масс-спектрометрии [c.133]

    Несмотря на сильную степень окисления, структурные характеристики УВ парафино-нафтеновой фракции нефти площадей Шор-Су и Северный Риштан существенно разные, что связано с их генетическими различиями. По данным масс-спектрометрии, в парафино-нафтеновой фракции нефтей Шор-Су отмечается высокое содержание парафинов (71 %), а в нефти Северного Риштана — низкое (12—6 %). Нефти в обоих случаях отобраны в открытых выходах на поверхность. [c.157]

    Метод идентификации состава нефтяных фракций с помощью жидкостно-адсорбционной хроматографии [2 2] ис позволяет проводить четкое деление углеводородов и сернистых соединений нефти, выкипающих выше 300"С, по числу ароматических колец. Поэтому фракции, выделяемые методами адсорбционной хроматографии, должны более глубоко исследоваться по составу. Сочетание этого метода со спектроскопией УФ-, ЯМР-, масс-спектрометрией может [c.34]

    Особенно высокое место среди новых способов установления состава и строения органических соединений завоевала масс-спектрометрия. Самым эффективным средством структурного анализа индивидуальных соединений, содержащихся в различных природных смесях органических веществ, в том числе и в нефти, стала хромато-масс-спектрометрия, сочетающая большую разделяющую способность хроматографических методов и идентификационную мощь масс-спектрометрии. [c.4]

Таблица 4.5. Состав азотистых оснований из некоторых нефтей и нефтяных фракций по данным масс-спектрометрии (нормировано на 100%) Таблица 4.5. <a href="/info/418668">Состав азотистых</a> оснований из <a href="/info/1469961">некоторых нефтей</a> и <a href="/info/33954">нефтяных фракций</a> по <a href="/info/1012639">данным масс</a>-спектрометрии (нормировано на 100%)
    Масс-спектрометрия низкого разрешения (12 эВ) отдельных фракций нефтяных ванадилпорфиринов показала наличие в каждой из них непрерывного набора гомологов нескольких гомологических рядок (рис. 5.6). Анализ масс-спектров фракций порфиринов ряда нефтей позволяет сделать некоторые обобщения. [c.154]

    Очень важные сведения об алифатических фрагментах в молекулах нефтяных ВМС получили Ал. А. Петров и сотрудники [381 ],, подвергавшие нативные асфальтены термолизу при 350°С в течение двух — четырех часов и анализировавшие образовавшиеся углеводороды с помощью газовой хроматографии и масс-спектрометрии. Они нашли, что при термодеструкции асфальтенов образуются парафиновые углеводороды нормального и изопреноидного строения, содержащие до 35 атомов С в молекуле. Распределение отщепляющихся парафинов было довольно близким к составу алканов из дистиллятных фракций нефтей метанового типа. Среди алифатических продуктов термолиза значительно преобладали н.алканы, максимум в распределении которых приходился на [c.198]


    Установлено [77], что парафины, выделенные из гидрогенизатов масляных фракций сернистых нефтей, состоят в основном из н-алканов в них практически отсутствует сера и не обнаружены ароматические углеводороды. Нафтеновые углеводороды представлены в виде конденсированных колец. В табл. 11 приведен химический состав парафина с температурой плавления 53—54 °С, определенный хроматографией в сочетании с масс-спектрометрией. Этот парафин содержал 57 углеводородов. [c.44]

    Определяемое методом масс-спектрометрии [10] распределение насыщенных молекул в соответствии с числом циклов в молекуле (0—5 циклов) дает достаточно подробную характеристику насыщенных углеводородов в исследуемых нефтях. При желании можно провести соответствующий масс-спектрометрический анализ и ароматических углеводородов (см. главу 4). Кроме того, масс-спектро-метрия позволяет определять общее содержание алканов отдельно нормального и отдельно разветвленного строения. Близкая схема анализа была использована также в работах Французского института нефти, посвященных характеристике большого числа нефтей [5]. [c.11]

    Надежная качественная расшифровка хроматограмм была выполнена при помощи добавки эталонных углеводородов и хромато-масс-спектрометрии. При воспроизведении этих работ можно воспользоваться индексами удерживания разветвленных алканов, приведенных в конце этой главы в табл. 20. Использование значений индексов удерживания для анализа алканов нефтей всегда удобно, так как нормальные алканы обычно имеются в большинстве нефтей и доступны как эталоны. Опыт работы показал, что значения индексов удерживания разветвленных алканов достаточно хорошо воспроизводимы и мало зависят от условий хроматографирования, чего, к сожалению, нельзя сказать об индексах удерживания цикланов и ароматических углеводородов. [c.37]

    Относительно простой состав метилзамещенных алканов в нефтях группы позволил провести качественное и количественное определения углеводородов этого типа и в более высококинящих фракциях. В работе [13] сообщалось об определении этих углеводородов методом ГЖХ с использованием высокоэффективных капиллярных колонок. Метилзамещенные алканы большой молекулярной массы определялись методом молекулярной масс-спектрометрии [14]. Ти- [c.49]

    Сопоставляя данные табл. 21 и 22 с данными табл. 24—27, можно прийти к выводу о том, что настояш его равновесия среди структурных изомеров пет, а потому всякие расчеты температуры нефтеобразования обречены здесь на неудачу. Столь же далеки от равновесия и нафтеновые цикланы состава Сю. Из-за серьезных методических трудностей состав этих углеводородов в нефтях был детально расшифрован совсем недавно благодаря наличию большого числа эталонных углеводородов методом хромато-масс-спектрометрии [6). Всего в нафтеновых нефтях во фракции Сю (150—175 С) было определено 87 углеводородов, принадлежащих главным образом к шестичленным нафтенам Хроматограмма этой фракции, а также распределение углеводородов по группам приведены на рис. 25 и в табл. 28. [c.81]

    О глубине и направлении превращения нефтей судили по количественному и качественному изменению состава насыщенных углеводородов, определяемому методами ГЖХ и масс-спектрометрии. Про- [c.216]

    Эта реконструкция позволяет избежать длительных операций, связанных с выделением и концентрированием полициклических алканов нефтей. На рис. 90 в качестве примера приведены такие реконструкции, выполненные путем хромато-масс-спектрометрии насыщенных углеводородов с т. кип. >400° С двух нефтей Старогрозненского месторождения. Несмотря на совершенно различный химический тип этих нефтей (одна — типа А , вторая — тина Б ), распределение гопанов в них близкое, что указывает на единый источник их образования. [c.254]

    В последние годы значительные успехи в области исследования строения углеводородов были получены при помощи ряда физических методов исследования. Особенно большую роль сыграли такие методы, как ядерно-магнитный резонанс, молекулярная и масс-спектрометрия, газовая хроматография и термическая диффузия. Однако, кроме физических методов исследования, не меньшее значение имеют и химические методы, прогресс которых в последнее время, может быть, был и не столь внешне блестящ, но все же весьма существен. Бесполезно, на наш взгляд, определять преимущества тех или иных методов исследования, так как только разумное их совместное использование может привести к успеху, особенно в анализе столь сложных, многокомпонентных смесей, какими являются насыщенные циклические углеводороды нефти. Характерно, что в одной из последних больших монографий, посвященных установлению структуры органических соединений, уделяется одинаковое внимание как физическим, так и химическим методам исследования [Ц. [c.312]


    В пользу реальности таких фрагментов свидетельствует тот факт, что сравнительно недавно из дизельных фракций оренбургской и арланской нефти методом масс-спектрометрии были выделены вещества, близкие по составу к этим фрагментам  [c.214]

    Асфальтены, в отличие от смол, не растворимы в алканах, имеют высокую степень ароматичности, которая в совокупности с высокой молекулярной массой гетероциклических соединений приводит к значительному межмолекуляриому взаимодействию, способствующему образованию надмолекулярных структур. Наличие надмолекулярной структуры асфальтенов является одной из важнейших особенностей этих компонентов и, в целом, определяет сложности их аналитического исследования. Если смолы можно легко разделить на узкие фракции то для разделения асфальтенов нужны специальные растворители, обладающие различной полярностью, а также специальные приемы, включающие гидрирование, термодеструкцию, озонолиз, а также набор современных методов (ИК- и УФ-спектроскопия, ЯМР-, ЭПР- и масс-спектрометрия, люминисцентный и рентгеноструктурный анализы) [19, 22, 23]. Например, экспериментами по гидрированию смол с М 600-800 и асфальтенов с М 1700 в мягких условиях [23] было показано, что из них могут быть получены углеводороды, по составу и свойствам приближающиеся к соответствующим углеводородам, вьвделенным из высокомолекулярной части нефти. Основное их отличие в более высокой цикличности, повышенном содержании серы и меньшем содержании атомов углерода с алифатическими связями. Это свидетельствует о наличии прямой генетической связи между высокомолекулярными углеводородами, гетероатомными соединениями, смолами, асфальтенами. [c.19]

    Для оценки информативности генетических показателей нами было проведено сопоставление генетических типов нефтей Тимано-Печорской, Волго-Уральской и Прикаспийской НГП, в каждой из которых была проведена генетическая типизация нефтей. В качестве параметров, отражающих генетические различия нефтей, использовались наиболее стабильные показатели, которые характеризуют особенности структур парафиновых УВ (по данным ИКС), ароматических УВ (УФС или масс-спектрометрия), нафтеновых УВ (масс-спектрометрия), содержание и состав металлопор-фириновых комплексов. [c.39]

    Нафтеновые углеводороды масляных фракций различаются не только по числу колец в молекуле, но и по их природе. При помощи масс-спектрометри ческого анализа в масляной части нефти установлено присутствие пяти- и шестичленных нафтеновых углеводородов, содержание которых зависит от характера нефти и пределов выкипания фракции. Исследование парафино-нафтено-вых фракций масел ряда нефтей, выкипающих в одинаковых пределах [8] показало, что в них преобладают пятичленные нафтены. Соотношение шести- и пятичленных колец в смесях нафтеновых углеводородов можно вычислить, исходя из того, что при одной и той же молекулярной массе их плотности резко различаются Расчеты показали, например, что, нафтено.вые углеводороды смазочных масел нефти месторождения Понка состоят больше чем на половину из гомологов циклопентана. Исследования фракций нефти месторождения Тексас показали, что соотношение циклогексановых и циклопентановых колец в нафтеновых углеводородах колеблется в широких пределах (от 4 1 до 1 9) и за- висит от пределов выкипания фракции. [c.10]

    Термолитический подход к деструкции молекул нефтяных асфальтенов использовали авторы работ [377—381], изучавшие ме тодом ГЖХ состав углеводородов, образующихся при кратковременном воздействии на ВМС нефтей температур порядка 300— 400°С. Дж. Кнотнерус [382] провел обширное исследование превращений модельных углеводородов, а также смол и асфальтенов различного происхождения при температуре около 600°С, применив сочетание последовательно соединенных пиролизера, реактора гидрирования пиролизата и газового хроматографа. Он нашел, что при столь высоких температурах происходит глубокий распад насыщенных структур и новообразование колец за счет циклизации алифатических цепей. По его мнению, метод пиролиза пригоден для качественного сопоставления различных битумов, но не для углубленного изучения их состава и строения. Для сохранения нативной природы фрагментов рекомендовано проводить термическую деструкцию в высоковакуумном пироли-зере, непосредственно связанном с ионным источником масс-спектрометра т. е. в условиях крайне слабого развития радикально-цепных реакций [379, 383, 384]. [c.44]

    По данным [496 ] средняя молекула алкилтиофенов из фракции 150—250°С арланской нефти содержит одну сравнительно, длинную (Сз—Ся), одну более короткую (С,—Сз) цепи и 1—2 метильные группы. По результатам оптической и масс-спектрометрии и гидродесульфурирования сделан вывод о том, что среди этих алкил-тиофенов нет монозамещенных, что лишь около 10 % их имеют заместители в а-положении к атому серы и что в их алифатических цепях нет гем-диметильных и изопропильных групп [467, 472]. До 40% тиофенов в этой фракции составляли СС с 2 = 6, которые, по данным осколочной масс-спектрометрии, являлись скорее цик-поалкил, чем циклоалканотиофенами [496]. [c.67]

    Присутствие бициклических нафтеновых кислот в нефти предполагалось уже давно, но точно доказано лишь в последнее десятилетие с помощью масс-спектрометрии [9, 312]. Найдено, что кислоты с двумя сконденсированными циклами — одни из наиболее распространенных нафтеновых кислот в керосине 200— 300°С нефти месторождения Нефтяные Камни их концентрация близка к концентрации моноциклических кислот [606], а в калифорнийской нефти даже превышает последнюю [9]. Нет никаких указаний на наличие в нефти кислот с некопдепсированными нафтеновыми кольцами. [c.99]

    Совместное рассмотрение данных масс-спектрометрии и ЯМР спектроскопии выявило некоторые структурные характеристики моно- и диароматических кислот нефти. В октагидрофенантренкар-боновых кислотах ароматические кольца слабо замещены, т. е. располагаются, видимо, с краю трициклической системы, а не в ее середине иначе ароматический цикл был бы тетразамещенным. [c.102]

    Каждый из найденных в нефти типов азотистых оснований включает несколько групп, различающихся по степени водородной ненасыщенности и принадлежащих к той или иной изобарной серии nHjn—zN. С помощью низковольтной масс-спектрометрии установлено присутствие в нефти серий с г = 5—27. Помимо алкилпиридинов (z = 5), алкилхинолипов (z = 11) и высших алкплбензологов, среди оснований распространены соединения, содержащие в молекуле, но крайней мере, одно нафтеновое кольцо [20—22, 306, 524]. Примеры таких анализов приведены в табл. 4.5. [c.127]

    Применение в исследовании порфириновых концентратов метода масс-спектрометрии низкого разрешения позволило установить, что во всех нефтях УОП представлены набором гомологов пяти рядов, причем наибольшее количество УОП приходится на два основных ряда [51, 319, 819]. Соединения первого ряда (М) соответствуют алкилпорфиринам с различным количеством углеродных атомов в боковых алкильных цепях (схема 5. 1, а). [c.148]

    Недавно предложен метод определения открытых положений в ископаемых порфиринах, основанный на реакции электрофиль-ного замещения пиррольных атомов водорода в молекулах порфиринов на атомы брома [833]. На синтетических ванадилпорфириновых комплексах показано, что реакция проходит исчерпывающе и достаточно селективно. По разработанной методике проведено бромирование порфириновых концентратов нефтей Западной Сибири и Южного Узбекистана. Состав продуктов [357] селективного бромирования установлен методом фракционной разгонки в масс-спектрометре по полному ионному току. При этом установлено, что молекулы ванадилпорфиринов нефтей содержат от одного да трех открытых положений на пиррольных кольцах, причем относительное содержание таких соединений достигает 70% общего количества нефтяных ванадилпорфиринов и меняется для ра лич-ных нефтей. Распределение порфиринов, содержащих одно и два незамещенных пиррольных положения в молекуле, для гомологов ряда М одной из нефтей Западной Сибири приведено на рис. 5.2. Несколько неожиданным оказалось, что пиррольные протоны характерны нё только для низкомолекулярных ванадилпорфиринов. [c.151]

    Для более детального изучения структурных особенностей ва-падилиорфиринов, входящих в состав фракций, использовали осколочную масс-спектрометрию (70 эВ) [832, 842] и масс-спектро-метрию метастабильных ионов [843]. Особенностью масс-спектро-метрического поведения алкилпорфиринов обусловлено применение для анализа смесей нефтяных порфиринов [842] методики, основанной на выделении группового масс-спектра [847]. Это позволило высказать предположение о наличии у высокомолекулярных Гомологов нефтяных порфиринов длинных алкильных цепей, по крайней мере до 11 —12 атомов углерода. Такое предположение подтверждено на основании анализа масс-сиектров метастабильных ионов (метод DADJ) [848] и метода дефокусировки [849—851] ванадилпорфиринов нефтей и их фракций [819, 842, 843]. В этих л е работах показана принципиальная воз.можность присутствия открытых пиррольных положений не только у гомологов с низкой молекулярной массой, но также и у гомологов, имеющих более 8 метиленовых групп в алкильных заместителях порфинного цикла.  [c.156]

    Дпя определения элементного состава хлорорганических соединений нефти применен метод деструктивной масс-спектрометрии в интервале температур 150-300 °С. Исследованы концентраты хлорорганических соеданений - асфальтены, выделенные из арланской и самотлорской нефтей до и после обработки щелочью. Предполагалось, что при обработке щелочью должны быть удалены хлорорганические соединения полностью или частично. Расшифровка низкомолекулярной части массч пектра позволила однозначно идентифицировать ионы хлора с массами 35 и 37 и НС1с массами 36 и 38, образующихся при диссоциативной ионизации сложных органических молекул, содержащих хлор. [c.120]

    В начале 60-х годов были разработаны новые мощные аналитические методы (ГЖХ, хромато-масс-спектрометрия), совершенно изменившие наши представления о составе и строении нефтяных углеводородов, а отсюда и о принципах и методах классификации нефтей. Безусловным открытием века явилось обнаружение в нефтях большого числа так называемых реликтовых углеводородов (хемофоссилий). К таким углеводородам мы будем относить все углеводороды, сохранившие характерные черты строения исходных [c.8]

    В предыдущей главе были рассмотрены некоторые групповые характеристики нефтей. Настоящая глава, как и две следующие, посвящена индивидуальным углеводородам нефтей, т. е. содержит результаты работ, выполненных на молекулярном уровне. Все полученные ниже данные были достигнуты с применением наиболее современных методов исследования, таких, как ГЖХ с использованием капиллярных колонок и программирования температуры и хромато-масс-спектрометрия с компьютерной обработкой и реконструкцией хроматограмм по отдельным характеристическим фрагментным ионам (масс-фрагмептография или масс-хроматография). Широко использовались также спектры ЯМР на ядрах Большинство рассматриваемых далее нефтяных углеводородов было получено также путем встречного синтеза в лаборатории. При этом применялись как обычные методы синтеза, так и каталитический синтез, приводящий к получению хорошо разделяемых смссеп близких по структуре углеводородов, строение которых устанавливалось спектрами ЯМР на ядрах Идентификация любого углеводорода в нефтях считалась доказанной, если пики на хроматограммах (чаще всего использовались две фазы) совпадали, а масс-спектры этого пика и модельного (эталонного) углеводорода были при этом идентичны. [c.34]

    Алканы принадлежат к числу наиболее хорошо изученных углеводородов любой нефти. Отличительной чертой нефтяных углеводородов этого класса являются их достаточно высокие концентрации, особенно концентрации некоторых ключевых структур. К таким структурам относятся, например, нормальные алканы, моноыетил-замещенные алканы с различным положе ием замещающего радикала, а также алканы изопреноидного типа строения, или изопренаны [7]. Самое замечательное это то, что относительное содержание таких углеводородов мало зависит от их молекулярной массы и мы вправе говорить о различных гомологических рядах алканов в нефтях. Гомологичность эта распространяется на достаточно большие пределы выкипания нефтяных углеводородов. В то же время, несмотря на большие успехи в области изучения алканов на молекулярном уровне, следует иметь в виду, что, как показали масс-спектрометри-ческие данные, некоторая часть разветвленных алканов элюируется в виде горба . Состав и строение этих углеводородов пока еще не исследованы. Можно лишь предположить, что, как уже указывалось, они представлены структурами весьма разветвленными (имеющими [c.41]

    Углеводороды серии I и II элюируются на хроматограммах на обычном месте выхода монометилалканов с метильным заместителем, расположенным в середине молекулы. Состав и строение этих углеводородов были доказаны методом хромато-масс-спектрометрии. Количество рассматриваемых углеводородов в нефтях колеблется в пределах 10—90% от содержания нормальных алканов, элюирующихся в тех же интервалах. Типичная хроматограмма насыщенной -фракции 200° — к.к. для рассматриваемых нефтей приведена на рис. 20. Перечень найденных в нефтях метилалканов данной серии помещен в табл. 18. [c.57]

    Наилучшим методом определения изопреноидных углеводородов является ГЖХ, проводимая в режиме линейного программирования температуры с применением высокоэффективных капиллярных колонок, или хромато-масс-спектрометрия. Хорошие результаты дает также предварительное концентрирование изопреноидных алканов путем клатратообразования с тиомочевипой. Изопреноидные алканы нефтей весьма различны по своей молекулярной массе и поэтому находятся в различных по температурам выкипания фракциях. Самый низкомолекулярный нефтяной изопреноид — [c.62]

    Имеются мпогочисленные данные о распределении ароматических углеводородов по типам структур. В табл. 44 приведены некоторые сведения о составе ароматических углеводородов в нефтях различных месторождений Советского Союза. Данные эти получены методом масс-спектрометрии (матричный анализ) и представляют собой своеобразный паспорт, характерный для данной группы неф- [c.152]

    Более наглядное представление об изменениях, происходящих в углеводородном составе нефтей, может быть получено методами ГЖХ и масс-спектрометрии. Так, на начальных стадиях окисления нефти месторождения Дунга (опыт 1) происходит избирательное удаление нормальных алканов состава ia—Сго (рис. 82, б). Однако [c.234]

    Рассмотренный материал по микробиологическому окислению нефтей нуждался в дополнительных доказательствах того, что нефти типа Б были когда-то нефтями типа А , т. е. они содержали н.алканы и утратили свое химическое лицо вследствие процессов биодеградации. Такие данные были получены при исследовании продуктов пиролиза асфальтенов [31—33]. Было найдено, что асфальтены — остатки не превратившегося в нефть керогена — содержат информацию о всех типах структур, характерных для данной нефти и образовавшихся при ее генезисе. Это оказалось ценным, особенно после того, как было доказано, что углеводородная часть асфальтенов не подвержена микробиологическому окислению [32, 33]. При нагреве (300° С) в течение нескольких часов асфальтены образуют углеводороды ( 20%), газ и нерастворимый в обычных растворителях пиро-битум. Образующиеся углеводороды можно исследовать обычными способами (ГЖХ и масс-спектрометрия). Анализируя углеводороды, полученные из асфальтенов нефтей типа Б, можно определить первоначальный химический состав этой нефти, в том числе такие важные геохимические показатели, как распределение нормальных алканов и изопреноидов, соотношение пристан/фитан, и относительное распределение стеранов и гопанов [33, 34]. [c.247]

    Кроме указанных выше соединений изучен групповой и индивидуальный углеводородный сосгав битумоидов дисперсного органического вещества и нефтей. Методами газожидкостной хроматографии и масс-спектрометрии изучен индивидуальный состан легких углеводородов Се—Сд. Количественные сооТни1ИС г1и> и. закономерности индивидуального уг еводородного состава битумо дов осадочных пород оказались совершенно такими же, как и для нефтей. [c.30]

    Изопреноидные углеводороды. Наиэолее важным открытием в области химии и геохимии нефти за лоследние два десятилетия было обнаружение в нефтях алифатических изопреноидных углеводородов. Первые публикации об этом относятся к 1961 — 1962 гг. Затем изопреноидные углеводороды были обнаружены в различных нефтях, бурых углях и сланцах, в современных осадках и в битумоидах дисперсного органического вещества осадочных пород различного возраста. Число публикаций о содержании изопреноидных углеводородов в различных каустобиолитах растет из года в год. Благодаря особому строению, характерному для насыщенной регулярной цепи полиизолрена, эти соединения получили название биологических меток или биологических маркирующих соединений. Действительно, особенности их строения и высокая концентрация в различных нефтях убедительно свидетельствуют в пользу биогенной природы последних. Методами капиллярной газожидкостной хроматографии и химической масс-спектрометрии обнаружены все 25 теоретически возможных углеводородов изсиреноидного строения, каждый из которых определен количественно. [c.39]

    Масс-спектрометрия дает ценную информацию и о составе отдельных групп соединений, предварител >но выделенных пз сред-[гих и высокомолекулярных фракций не([)ти. В частности, с помощью масс-спектров изучено распределение аренов по типам от С,.Н2, -б до С Н2, -24 для различных нефтей, азот- и кислородсодержащих соединений, определено содержание изопреиоидов. [c.95]


Смотреть страницы где упоминается термин Нефти масс-спектрометрия: [c.26]    [c.121]    [c.108]    [c.112]    [c.116]    [c.383]    [c.26]   
Геология и геохимия нефти и газа (1982) -- [ c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте