Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства кислорода. Горение и окисление

    Краткая характеристика элементов подгруппы кислорода. Кислород. Получение кислорода и его свойства. Кислород как окислитель. Горение в кислороде и воздухе. Продукты горения простых и сложных веществ. Дыхание и горение как процессы окисления. Интенсификация с помощью кислорода металлургических и других химических процессов. [c.198]


    Если сравнить химический состав Земли с составом Вселенной, то, казалось бы, между ними не должно быть существенных различий, за исключением, пожалуй, водорода, который легко уходит из атмосферы в межпланетное пространство. К сожалению, судить о составе Земли можно лишь по составам атмосферы, гидросферы и земной коры, изученной в глубину не более чем на 20 км. Главная химическая особенность этих трех сфер — необычайно высокое содержание кислорода, что объясняется уже не строением ядер его атомов, а его химическими свойствами. Атомы кислорода способны образовывать прочные химические связи с атомами многих элементов, в том числе кремния и алюминия. В процессе образования земной коры эти элементы накапливались в ней благодаря легкоплавкости их соединений со щелочами. В итоге на поверхности нашей планеты выкристаллизовалась твердая кремнекислородная оболочка. Кислород, не считая воды, входит в состав 1364 минералов. В атмосфере кислород появился около 1,8 млрд. лет назад в результате действия на минералы микроорганизмов. В настоящее время выделение кислорода растениями за счет фотосинтеза возмещает его убыль в атмосфере в ходе процессов окисления, горения, гниения, дыхания. По числу известных природных соединении (432) второе место занимает кремний. Далее по распространенности атомов в земной коре следуют алюминий, натрий, железо, кальций, магний и калий  [c.201]

    СВОЙСТВА КИСЛОРОДА. ГОРЕНИЕ И ОКИСЛЕНИЕ [c.70]

    Кислород в молекуле Н2О2 имеет степень окисления —1 за счет смещения электронной пары связи Н О к атому кислорода, а его валентность равна двум, что видно из графической формулы Н2О2. Пероксид водорода проявляет очень слабые кислотные свойства. Пероксиды металлов — ионные соединения, из них НзгОз образуется при горении металлического натрия на воздухе, а пероксиды щелочно-земельных металлов в реакциях взаимодействия их гидроксидов с Н2О2  [c.65]

    Кислород. Строение атома и химические свойства. Реакции окисления и горения. Окисление кислородом в нейтральной и щелочной среде. Методы получения кислорода. [c.153]

    Большинству органических соединений присущи восстановительные свойства. Это обусловлено тем, что степень окисления углерода в большинстве органических соединений довольно низка (во всяком случае ниже +4). Соединения, содержащие углерод и степени окисления +4, обычно не подвергаются окислению, если только они не содержат других окисля.ющихся элементов. Так, например, диоксид углерода, тетрафторид Ср4, тетрахлорид ССЦ, фреоны СРгС12, фосген СОСЬ и т. п. соединения обычно (по крайней мере под действием кислорода) не окисляются такие же соединения, как, например, сероуглерод С5о, легко окисляются, но только за счет содержащейся в их составе серы. Углеводороды и многие другие водородсодержащие органические вещества в атмосфере кислорода обычно сгорают с образованием таких конечных продуктов окисления, как диоксид углерода и вода. Таким образом, при горении органических соединений окислению обычно подвергаются как углерод, так и водород. Под действием более слабых окислителей или даже кислорода, но в мягких условиях многие органические соединения окисляются не до конечных продуктов, а с образованием соединений, содержан1Их углерод в некоторых промежуточных степенях окисления--Н1, +2, +3. Так, [c.140]


    Соединения, содержащие 0-0-группу, генетически образующиеся из молекулярного кислорода — основного активного компонента земной атмосферы, играют важную роль во многих природных процессах. Их участие в процессах горения, окисления, радикальной полимеризации, органическом синтезе и других, использующих их свойство окислителя и способность легко распадаться на свободные радикалы, обусловило широкое применение органических пероксидов в лабораторной и промышленной практике. Разнообразное строение и высокая реакционная способность позволили использовать пероксиды в качестве моделей и объектов при исследовании многих фундаментальных проблем химии  [c.3]

    Наиболее важным химическим свойством кислорода является его способность соединяться с большинством простых веществ с выделением теплоты и света. Чтобы вызвать горение веществ в кислороде, часто приходится нагревать их до определенной температуры — температуры воспламенения, так как при обычной температуре кислород является довольно инертным веществом (связь между атомами кислорода характеризуется значительной прочностью). Наряду с горением известны многочисленные процессы медленного окисления при участии кислорода дыхание живых организмов, ржавление металлов, гниение, тление и др. Выделяющаяся при [c.256]

    Если эти реакции протекают быстро, с выделением тепла и света, то их называют горением. Соединения элементов с кислородом называют окислами. Резко выраженная способность соединяться с другими веществами, т. е. производить окисление, является основным химическим свойством кислорода. [c.41]

    Химические свойства кислорода. Окисление. Горение [c.28]

    Углекислый газ обладает всеми свойствами кислотных оксидов. Однако вследствие того что соответствующий ему гидроксид — угольная кислота очень неустойчива, при растворении в воде СОг практически с ней не взаимодействует. Так как в СОг углерод,имеет степень окисления +.4, то гореть или поддерживать горение он не может. Для него не характерны ни окислительные, ни восстановительные свойства, хотя некоторые активные металлы могут гореть в атмосфере СОг, отнимая у него кислород  [c.246]

    Этими опытами впервые было установлено, что процесс окисления ртути состоит в соединении ее со здоровой частью воздуха. Результаты своих опытов он изложил в докладе Академии наук 26 апреля 1775 г., а 8 августа 1775 г. он еще раз повторил доклад, в котором впервые разъяснил, что воздух состоит иа двух газов чистого воздуха , способного поддерживать горение, дыхание и окислять металлы, и воздуха, не обладающего этими свойствами. Названия кислород и азот были даны им позднее Здесь же А. Лавуазье объяснил состав постоянного воздуха , т. е. углекислого газа, который образуется при горении кислорода с углем. [c.88]

    Горению веществ в кислороде воздуха всегда предшествует медленный процесс окисления В зависимости от свойств горючих веществ начало окисления их возникает при различной температуре. Те вещества, окисление которых наступает при низкой температуре, представляют большую опасность, так как при некоторых условиях процесс медленного окисления может перейти в горение. Вещества с такими свойствами обычно относятся к группе самовозгорающихся веществ. Возникновение процесса медленного окисления и переход его в горение связаны с понятием скорости химической реакции. [c.61]

    Когда в конце 20-х годов этого века Н. Н. Семенов [1] для объяснения открытого Харитоном [2] критического предела воспламенения смеси паров фосфора с кислородом предложил новый вариант химических цепных механизмов, мало кто сомневался, что даже если это объяснение и окажется справедливым, оно оставит в химии не более существенный след, чем экзотические цепные схемы галоидирования, разработанные Боденштейном [3] за 15 лет до этого. Ближайшие же годы показали, однако, что нововведение Н. Н. Семенова — гипотеза о возможности разветвления цепи последовательных химических элементарных актов — позволило вскрыть совершенно новое, до того времени неизвестное химикам свойство превращающихся молекулярных систем. Очень скоро было показано, что разветвленный цепной механизм характерен не только для окисления фосфора, водорода, СО, фосфина, СЗз и НаЗ, но и для окисления самых разнообразных углеводородов и лежит в основе химизма всех процессов горения [4]. Позднее было найдено, что ряд полимеризационных процессов протекает через разветвленные цепи [5], а в самое последнее время установлено, что некоторые процессы фторирования также подчиняются этим законам [6, 7 . [c.214]

    Рассмотрим далее некоторые закономерности ингибирования горения. Прежде всего необходимо отметить, что ингибированию в основном подвержены процессы горения, связанные с цепным разветвленным характером окисления. Такими свойствами обладают горючие системы, в которых в качестве окислителя участвует кислород (воздух). [c.57]


    К физическим процессам относятся а) нагрев и испарение жидкого топлива на этот процесс влияет качество распыления, создаваемая турбулентность, тепловые свойства топлива (теплоемкость, теплота испарения), температура и давление в цилиндре двигателя б) нагрев образовавшихся паров топлива до температуры самовоспламенения. К химическим процессам относятся а) окисление компонентов топлива кислородом воздуха этот процесс самоускоряется из-за повышения температуры но мере выделения теплоты реакции б) газификация, состоящая в химическом расщеплении компонентов топлива с образованием более простых частиц. Последние в дальнейшем также подвергаются окислению. Вскоре после того, как скорость выделения тепла при реакции окисления превысит скорость теплоотдачи в окружающую среду, в цилиндре двигателя начинается горение. [c.47]

    Мышьяк и сурьма по большинству химических свойств напоминают фосфор. Например, оба эти элемента образуют га.погениды состава МХ3 и МХ5, структура и химические свойства которых близки соответствующим галогенидам фосфора. Соединения этих элементов с кислородом также очень сходны с соответствующими соединениями фосфора, однако они не так легко достигают своей высшей степени окисления. Так, при горении мышьяка в кислороде образуется продукт формулы А540й, а не А540,о- Высший оксид мышьяка можно получить окислением А540б каким-либо сильным окислителем, например азотной кислотой  [c.327]

    Объемный состав окислов азота объясняет сущность различия закиси от окиси. Закись образована со сжатием, окись без него, ее объем равен сумме объемов азота и кислорода, в ней находящихся. При окислении, если бы таковое совершалось прямо, 2 объема закиси с 1 объемом кислорода дали бы не 3, а 4 объема окиси. Эти отношения необходимо принимать в расчет, сравнивая теплоту образования, способность поддерживать горение и другие свойства NO и N O. [c.526]

    SO . т.-е. селенистый SeO и теллуристый ТеО —ангидриды. Оба последние, в отличие от серы, — тела твердые, получаются, как и SO , прямо при горении самих простых тел и при действии на них окисляющих веществ. Они образуют мало энергические кислоты с ясными свойствами двуосновных кислот - однако не только в физических свойствах, но и в прочности, и в способности к дальнейшему окислению, замечается у них характерное различие от SO , подобное тому, которое известно в ряду галоидов, но только в обратном смысле там мы видели, что иод легче соединяется с кислородом, чем бром и хлор, образуя более прочные кислородные соединения, здесь, — напротив того, SeO и ТеО трудно окисляются, а восстановляются легко, даже при помощи сернистой кислоты. [c.231]

    В химическом отношении аммиак довольно активен он вступает во взаимодействие со многими веществами. Б аммиаке азот имеет самую низкую степень окисленности (—3). Поэтому в реакции, связанные с дальнейшим понижением степени окисленности азота, аммиак не вступает он обладает только восстановительными свойствами. Если пропускать ток МНз по трубке, вставленной в другую широкую трубку (рис. 115), по которой проходит кислород, то аммиак можно легко зажечь он горит бледным зеленоватым пламенем. При горении аммиака образуется вода и свободный азот  [c.396]

    Например, тонкодисперсная платина (так называемая платиновая чернь) катализирует реакцию окисления водорода кислородом — в ее присутствии эта реакция идет с заметной скоростью даже при комнатной температуре. Это свойство платиновой черни используется в топливных элементах— устройствах, где химические реакции непосредственно используются для получения электрического тока, минуя горение. На этом же свойстве тонкодисперсной платины основан так называемый водородный электрод— очень вал<ный рабочий инструмент при изучении растворов. [c.55]

    Химические свойства. Белый и красный фосфор активно взаимодействуют с галогенами с образованием различных галогенидов фосфора. Белый фосфор светится в темноте вследствие протекающей даже при пониженных температурах реакции окисления его паров кислородом воздуха. Тонко измельченный белый фосфор самопроизвольно возгорается при комнатной температуре, компактный белый фосфор загорается при нагревании до 50 °С. Температура воспламенения красного фосфора 210 °С, черный фосфор загорается примерно при 500 °С. При горении фосфора образуется оксид  [c.427]

    Наиболее важное химическое свойство кислорода — его способность соединяться с большинством простых веществ с выделением теплоты и света. Чтобы вызвать горение веществ в кислороде, часто приходится нагревать их до определенной температуры — температуры воспламенения, так как при обычной температуре кислород является довольно инертным веществом (связь между атомами кислорода характеризуется значительной прочностью). Наряду с горением известны многочисленные процессы медленного окисления при участии кислорода дыхание живых организмов, ржавление металлов, гниение, тление и др. Выделяющаяся при этом теплота рассеивается в окружающее пространство, но в определенных условиях она может скапливаться и тогда происходит воспламенение. Так, самовоспламе  [c.272]

    При описании свойств кислорода и водорода было сказано, что кислород является окислителем, а водород — восстановителем. Процесс присоединения к веществу кислорода был назван окислением, а процессе отнятия кислорода от вещества — восстановлением. В настоящее время процессы окисления и восстановления рассматриваются с другой точки зренНя реакциями окисления и восстановления называют такие реакции, при ко то рых происходят п е р е м е щ е ни я электронов от одних атомов или по нов к д р у г ж м атомам или и он а м. Окисляется тот атом или ион, который в этих реакциях теряет электроны, а восстанавливается тот атом или ион, который нри этом получает электроны. При описанном раньше горении магния в кислороде, при котором образуется окись магния MgO, 2 валентных электрона атома магния переходят к атому кислорода. Магний становится положительно заряженным Mg +, кислород становится [c.79]

    Кисломд. Строение атома и химические свойства. Реакции окисления в горения. Окисление кислородом в нейтральной и щелочной среде. Методы получения кислорода. Озон. Строение молекулы и химические свойства. Способы получения озона. [c.146]

    Регенерируемость характеризует способность катализатора легко восстанавливать его активные свойства после выжига кокса, отлол ившегося при крекинге на поверхности катализатора. Регенерируемость катализатора в основном зависит от скорости подвода кислорода к зоне окисления кокса и отвода продуктов горения. По этой причине обычно крупнопористые катализаторы легче регенерируются, чем мелкопористые. [c.208]

    Пример 2.5. Рассчитать температуру частицы нефтяного кокса (углерода) т = 5 мм и скорость выгорания этой частицы в КС песка с таким же диаметром частиц с — 0,92 мм и температурой I = 900 °С. Горение происходит в диффузионной области, т. е. лимитруется скоростью диффузии кислорода. Окисление углерода соответствует реакции С + Ог = СОг. В расчетные формулы подставляются теплофизические свойства воздуха при средней температуре между температурами слоя и горящей частицы, поэтому необходимо предварительно задаться температурой частицы / =1100 °С Тогда / = 0,5 (/-Ь = 1000 С р , = [c.118]

    Реакции окисления, в которых атмосферный кислород реагирует с горючими газами и парами, настолько хорошо известны и часто протекают так быстро, что, естественно, возникает тенденция рассматривать молекулу кислорода как весьма реакционноспособную. В действительности она химически весьма инертна по отношению к другим молекулам, а быстрота процессов горения обусловлена реакцией кислорода со свободными радикалами в стадии роста цепных реакций [1]. Цепные реакции протекают также и при медленном окислении насыщенных, ненасыщенных углеводородов, их производных и некоторых неорганических веществ как в растворах, так и в чистых жидкостях. Цепной характер этих автоокисли-тельных реакций был впервые установлен Бэкстрёмом путем сравнения фотохимического и термического окисления альдегидов и сульфита натрия (см. стр. 359). Подобно всем цепным реакциям, скорости этих реакций можно увеличить, добавляя катализаторы, дающие соответствующие свободные радикалы при термическом или фотохимическом разложении или за счет реакции переноса электрона их скорости можно уменьшить введением ингибиторов, которые заменяют активные радикалы неактивными или молекулами. Некатализируемые реакции автоокисления обычно идут медленно, потому что медленной является начальная стадия взаимодействия между реагентами, приводящая к образованию свободных радикалов. Однако при некоторых обстоятельствах реакции автоокисления обнаруживают самоускорение или автокатализ, обусловленный бирадикальными свойствами молекулы или атома кислорода. Поэтому представляет интерес рассмотреть некоторые общие особенности реакций автоокисления в связи с реакционно-способностью молекулы кислорода. [c.444]

    Термодинамические свойства углеводородов и продуктов их окисления представляют особый интерес ввиду того, что ценность углеводородов как горючего зависит от разности менеду величиной их внутренней энергии и соответствуюш ими величинами продуктов сгорания. Однако ввиду того, что при сгорании не все реакции протекают до конца, т. е. до образования двуокиси углерода и воды, возникает также необходимость знать термодинамические свойства многих устойчивых и неустойчивых промежуточных соединений углерода, водорода и кислорода, образуюш,ихся при горении. Животные также получают необходимые им тепло и энергию за счет процесса окисления, сопровонгдаюш егося попутным образованием многочис-денных нестойких и устойчивых промежуточных продуктов. Растения завершают вторую часть этого цикла. Используя солнечный свет в качестве первичного источника энергии для процесса фотосинтеза, растения жадно поглощ ают двуокись углерода из атмосферы, связывают ее с водой и синтезируют соединения, менее деградированные в энергетическом отношении. После того как этот процесс образования менее деградированных соединений пройдет через целый ряд стадий, определенное промежуточное соединение (например, сахар) может являться вполне подходящим горючим для осуществляемого в организмах животных цикла деградации. Таким образом, процессы, ведущие к рассеиванию энергии или к накоплению ее, постоянно протекают с образованием многочисленных общих промежуточных соединений, содержащих углерод, водород и кислород. Эти соединения играют ваншую роль, поскольку они охватывают всю [c.458]

    Селитра представляет бесцветную соль, имеющую особый прохладительный вкус. Она легко кристаллизуется длинными, по бокам бороздчатыми, ромбическими шестигранными призмами, оканчивающимися такими же пирамидами. Ее кристаллы (уд- вес 1,93) не содержат воды. При слабом накаливании (339°) селитра плавится в совершенно бесцветную жидкость. При обыкновенной температуре в твердом виде КЫО малодеятельна и неизменна, но при возвышенной температуре она действует, как весьма сильное окисляющее средство, потому что может отдать смешанным с нею веществам значительное количество кислорода. Брошенная на раскаленный уголь, селитра производит быстрое его горение, а механическая смесь ее с измельченным углем загорается от прикосновения с накаленным телом и продолжает сама собою гореть. При этом выделяется азот, а кислород селитры идет на, окисление угля, вследствие чего и получаются углекалиевая соль и углекислый газ (или окись углерода) 4КЫО - С = = 2К СО ЗСО - -2№. Явление зависит от того, что при этом отделяется много тепла и раз начавшееся горение может само собою продолжаться, не требуя накаливания. Подобное же горение происходит и при нагревании селитры с серою и различными другими горючими телами. Напр. 2КЫО -(-25= = К ЗО О . В особенности замечательно окисление таких металлов, которые способны давать с избытком кислорода кислотные окислы, остающиеся при этом в соединении с окисью калия в виде калиевых солей. Таковы, напр., марганец, сурьма, мышьяк, железо, хром и др. Эти элементы, как С и 5, вытесняют свободный азот. Низшие степени окисления этих металлов, сплавленные с селитрою, переходят в самые высшие степени окисления. Понятно, после этого, что в химической практике и технике селитра употребляется во многих случаях как окислительное средство, действующее при высокой темпе[>атуре. На этом же основано применение ее для обыкновенного пороха, который есть механическая смесь мелко измельченных серы, селитры и угля. Относительное содержание этих веществ меняется, смотря по назначению пороха и по свойству угля, употребленного для состава (уголь берется рыхлый, не совершенно прокаленный и потому содержащий водород и кислород). При горении образуются газы, а именно — преимущественно азот, углекислый газ и окись углерода, которые и производят значительное давление, если свободный выход образующихся газов чем-либо прегражден. [c.29]

    Для получения сварного шва, близкого к основному металлу по составу п свойствам, электродуговую сварку проводят под слоем флюса. Это позволяет предохранить металлы от окисления и выгорания. Автогенную сварку ведут, используя теплоту сгорания ацетилена в кислороде. Большой тепловой эффект этой реакции позволяет развивать очень высокую температуру в зоне горения. В результате кромки соединяемых деталей подплавляются, образуя прочный монолитный шов. [c.21]

    Большинство веществ при определенных условиях способно вступать во взаимодействие с кислородом воздуха, т. е. окисляться. Быстро протекающий процесс окисления, в результате которого выделяется большое количество тепла, нагревающего продукты окисления до высоких температур, называется горением. Однако к топливу можно отнести только те горючие материалы, которые при горении выделяют большое количество тепла на единицу массы или объема, не теряют своих тепловых свойств при длительном- хранении, относительно легко загораются, не выделяя при горении вредных веществ. Топливо может находиться в трех агрегатных состояниях твердом, жидком и газообразном. По происхождению его подразделяют на естественное (натуральное) и искусственное топливо. К естественному (натуральному) твердому топливу относят растительное (дрова, солома и др.) и ископаемое (торф, уголь, горючие сланцы и др.) топливо, к жидкому—нефть, к газообразному — природный, попутный и нефтяной газы. К искусственному твердому топливу относят топливо, полученное при термохимической переработке натурального топлива (древесный уголь, торфяной и угольный кокс) и меха1Г ческой обработке натурального топлива (брикеты из древесньи опилок, торфа, угля и других материалов), к жидкому — топливо, полученное при термической переработке нефти, смол (бензин, керосин, мазут) и химической переработке натурального топлива (бензин, керосин, дизельное топливо, мазут, коллоидное топливо), к газообраз- [c.6]

    Одной из экологически чистых технологий переработки низкосортных углей может стать их конверсия в воде, находящейся в сверхкрити-ческом Т> 647 К,/ > 22,1 МПа) состоянии, СКВ, Перспективными являются 1) экстракция углеводородов из углей 2) частичное окисление и гидрирование органической массы углей при диссоциации воды 3) горение углей в смеси СКВ с кислородом с целью получения острого водяного пара. Уникальные свойства СКВ [1,2] обеспечивают эффективность этих процессов (неограниченную растворимость органических соединений, газофазность химических реакций, простоту отделения минеральной части и др.), а низкая температура (<1100 К) препятствует образованию вредных окислов N0 , и SO . [c.128]


Смотреть страницы где упоминается термин Свойства кислорода. Горение и окисление: [c.13]    [c.386]    [c.132]    [c.52]   
Смотреть главы в:

Химия -> Свойства кислорода. Горение и окисление




ПОИСК





Смотрите так же термины и статьи:

Горение в кислороде

Кислород свойства



© 2025 chem21.info Реклама на сайте