Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочное активирование

    Приведенные в табл. 70 данные показывают, что по активности влияния на разжижение промывочных жидкостей полученный щелочной активированный гидролизный лигнин мало уступает известному, широко применяемому реагенту-понизителю вязкости — нитролигнину. [c.150]

    Тетрахлоралканы очищали от соединений железа и других примесей фильтрацией через слой силикагеля марок КСК. кем или A M, окиси алюминия, щелочного активированного угля или отходов производства алюмосиликатно-го катализатора крекинга нефти с Уфимского нефтеперерабатывающего завода. [c.88]


    ОУ-сухой > А-щелочный > Активированный антрацит > КАД > Активированный бурый уголь. [c.116]

    С точки зрения потребителя, моющие средства должны обладать мягким действием и не раздражать кожу, что, естественно, гораздо важнее для составов, применяемых для стирки легких тканей и мытья посуды, чем для рецептур тяжелого типа . В настоящее время есть основания считать, что современные синтетические средства, содержащие активные добавки, мало отличаются в этом отношении от синтетических веществ легкого типа в чистом виде [7]. Это обусловлено меньшей щелочностью активированных синтетических веш,еств по сравнению с активированными мылами, а также наличием таких защитных добавок, как карбоксиметилцеллюлоза. Во всяком случае раздражающее действие на кожу поверхностноактивных веществ, как и всех других компонентов моющих средств для домашнего обихода, играет первостепенную роль в их оценке. [c.389]

    Существует две разновидности процессов демеркаптанизации топлив, в одной из которых катализатор - фталоцианин кобальта - применяется в растворённой в водно-щелочном растворе форме, в другой - катализатор нанесён на твёрдый носитель, в качестве которого обычно используется активированный уголь. [c.21]

    Одной из групп катализаторов, находившей до недавнего времени довольно широкое применение, являются природные катализаторы — глины. Природные глины гумбрин, флоридин, каолин и другие — естественные алюмосиликаты калия, натрия и магния. Их применяют в качестве катализаторов нроцессов крекинга нефти, а также для других процессов, катализируемых твердыми кислотами. Кислые природные алюмосиликаты, например гумбрин, требуют только размола или размола и формования. Нейтральные глины, такие как каолин, необходимо предварительно активировать. Активирование глин заключается в обработке их горячей кислотой, в результате чего происходит растворение щелочных компонентов глины, а нерастворимая часть превращается в гидратированный кислый алюмосиликат, содержащий способные к обмену атомы водорода. [c.186]

    В качестве носителей исследованы также активированные угли, силикагель, окись магния в качестве активного компонента — окиси тория, марганца, вольфрама, молибдена, ванадия, хрома а в качестве промоторов — окиси бериллия, молибдена, кремния, щелочных и щелочноземельных металлов. [c.217]

    В результате электрохимических исследований установлено, что увеличение скорости коррозии в кислых средах связано с облегчением катодной реакции восстановления водорода. В щелочной среде повышение скорости коррозии алюминиевых сплавов сопровождается резким разблагораживанием потенциалов, вызванным растворением окисной пленки на поверхности сплава и переходом его в активное состояние. В сильнощелочных средах потенциал активированной поверхности смещается в отрицательную сторону до тех пор, пока не достигается потенциал выделения водорода из молекул воды. [c.101]


    Иа химии лигнина известно, что при автоклавировании природных лигнинов в щелочной среде они приобретают активные функциональные группы. Такие лигнины частично растворяются в растворах щелочи. Менее известно влияние щелочи на активность гидролизного лигнина. При высоких температурах и давлениях в этом случае также получаются растворимые продукты. Однако ранее практически не исследовалась возможность использования гидролизного лигнина, активированного щелочными реагентами, в качестве реагента, улучшающего свойства промывочных жидкостей. [c.149]

    Активированный в щелочной среде при температуре 110° С гидролизный лигнин сушили при температуре 60° С до остаточной влажности 50% и затем применяли для обработки промывочных жидкостей. [c.150]

    Механизм щелочного активирования изучен недостаточно. По-видимому, он зависит от природы щелочи и от температуры процесса. Некоторые исследователи считают [7], что, спекая со щелочами при температуре не выше 750—800°, получают соединения типа НзгВеЗЮд, не растворимые в воде, но взаимодействующие с серной кислотой  [c.197]

    При применении пластификатора очень важное значение имеет сохранение его цвета в процессе переработки пластифицированного полимера и при эксплуатации готового изделия. В этой связи большое влияние на цвет пластифйкатора оказывает технология его получения. Особенно это относится к способу очистки сложного эфира от примесей катализатора этерификации (серной кислоты, арилсульфокислот, алкилатов металлов) и продуктов его этерификации. Так, при взаимодействии арилсульфокислот со спиртами образуются термостойкие диалкилсульфаты, разлагающиеся с образованием радикала сильной кислоты, которая вызывает ос-моление органических соединений. Смолообразные продукты способствуют изменению первоначального цвета пластификаторов. Для сохранения цвета пластификатор-сырец осветляют различными способами [59, 65—76]. Так, эфир-сырец обрабатывают озоном при 10—100 °С с последующим восстановлением (водородом А присутствии никеля Ренея, сульфитами щелочных металлов и пр.) и дополнительной промывкой водными растворами гидроок- сидов щелочных металлов [65, 68]. Сообщается об осветлении сложного эфира воздухом или кислородом [66]. Чаще всего эфир-сырец подвергают действию сухой кальцинированной соды [68, 69] или ее 10%-ным водным раствором [70], 0,1—5%-ным водным раствором гидроксида, карбоната или бикарбоната аммония, натрия, калия [71]. Применяется также обработка сложного эфира оксидами, гидрооксидами щелочно-земельных металлов [72], активированным оксидом алюминия или оксидом алюминия с примесью оксида кремния [73]. Готовый пластификатор дополнительно обрабатывают сорбентами в индивидуальном виде или в виде смеси с оксидами натрия, магния, алюминия, кремния, железа, взятыми в количестве до 10% от массы эфира в токе инертного газа при 100—150°С в течение 0,1—3 ч [74]. Для тех же целей может применяться щелочной активированный уголь [75] или ионообменные смолы [76]. [c.105]

    Бис (О, 0-диметилфосфат) N. N -димeтил-4, 4 -дипиридилия. Смесь 0,02 г-мол 4, 4 -дипиридила, 0,04 г-мол триыетилфосфата и 10 мл воды нагревают при 90—100° 5 часов в присутствии 0,1 г щелочного активированного угля марки А . По окончании реакции уголь отфильтровывают, фильтрат упаривают в вакууме и оставшееся в остатке масло выдерживают в высоком вакууме 0,2 мм при 40—50°. 2—3 г этого технического продукта дважды промывают при перемешивании 50 мл метилэтилкетона при этом масса кристаллизуется. К кристаллам вновь прибавляют 50 мл метилэтилкетона и по каплям абсолютный этанол до полного растворения кристаллических продуктов. Затем к полученному раствору прибавляют 150—200 мл метилэтилкетона и выделившиеся при этом кристаллы отфильтровывают. Подобную операцию повторяют трижды. Получают соед. № 4 (см. таблицу). Вещество очень гигроскопично. [c.311]

    Догидрохлорирование дихлорэтана может осуществляться нри номощи спиртово щелочн, нри этом с 95%-ным выходом получается очень чистый хлорвинил. Термическое дегидрохлорирование идет при температуре 300— 350° в присутствии катализатора, нанример активированного угля, окиси алюминия и т. д. Хлорвинил моя ет получаться также присоединением хлористого водорода к ацетилену. Он кипит при —13,8°, упругость его паров при 25° составляет 2,66 ат. [c.181]

    До развития методов искусственного синтеза глицерин получали щелочным олгылением масел и жиров. При омылении образуется смесь ныла (натриевых солей жирных кислот) с водным раствором глицерина. Мыла высаливают хлористым натрием, глицерин получают из раствора путем повторного сгущения и кристаллизации осажденного хлористого натрия. Полученный 80%-ный темный глицерин очищается перегонкой и обработкой активированным углем. [c.192]

    Для устранения вредного действия смолистых веществ и других примесей А. М. Кулиев с сотрудниками считают, что сырье, идущее на карбамидную депарафинизацию, целесообразно подвергать кислотно-щелочной очистке [38]. А. В. Дружинина и В. Г. Николаева рекомендуют сырье предварительно подвергать гидроочистке [44, 45]. На заводе в Хейде [36] для удаления веществ, тормозящих комплексообразование, раствор карбамида очищают активированным углем. [c.147]


    Рисц с сотрудниками [68] указывают на преимущества катализатора состава 75% AI2O3 — 25% Сг Од, приготовленного путем совместного осаждения, перед катализаторами, приготовленными осаждением GrjOj на активированную окись алюминия. Равновесные выходы в этом случае достигались нри 500° С. Многими исследователями [11, 23, 29, 59] описывается нрименение щелочных или щелочноземельных добавок к катализатору для уменьшения коксообразования. Наиболее часто указывается на добавление с этой целью 1% KgO. Избирательность алюмохромовых катализаторов повышается также путем прокаливания их при высоких температургах для уменьшения коксообразования. [c.196]

    В процессах обессеривания лигроинов и газойлей при давлении 18— 30 ат и температуре 260—427° [4, 13] в качестве катализатора широкое применение нашел молибдат кобальта на активированной окиси алюминия. При этих условиях происходит гидрогенизация олефиновых углеводородов, но практически не идет гидрогенизация присутствующих в сырье ароматических углеводородов. Добавление солей щелочных металлов к этому катализатору подавляет гидрогенизацию олефиновых углеводородов, ие тормозя, однако, гидрогенизации сернистых соединений 5]. При более высокой температуре или при более низком давлении становится заметной реакция дегидрогенизации присутствующих в лигроине нафтенов до ароматических углеводородов и водорода (как в гидроформинге). При регулировании рабочих условий процесса можно обеспечить образование небольшого избытка водорода сверх того количества его, которое необходимо для обеспечения гидрогенизации олефинов и обессеривания [2] процесс становится независимым от внешнего поступления водорода. При этих условиях управление тепловым режимом реактора осуществляется легче, так как теплота, выделяющаяся при экзотермической реакции гидрогенизации олефинов и сернистых соединений, почти компенсируется теплотой, поглощаемой при эндотермической реакции дегидрогенизации. Однако при таких, более жестких условиях работы скорость гидрогеиизации олефинов [5] может снижаться, приближаясь к равновесию олефин — парафин, и появляется тенденция к отложению угля на катализаторе. Необходимость чередования процесса с регенерацией путем продувки воздухом для удаления с катализатора углеродистого осадка ограничивает процесс, сокращая продолжительность рабочих периодов по сравнению с процессом типичной обычной гидрогенизации. [c.279]

    В отличие от описанного способа щелочно-кислотного переосаждения, когда дифенилолпропан растворяется в растворе гидроокиси щелочного металла и осаждается затем кислотой, известен способ, по которому из щелочи добавлением солей осаждают производное дифенилолпропана и отделяют его фильтpoвaниeм Этот процесс основан на понижении растворимости динатриевых производных дифенилолпропана в растворах щелочей при добавлении растворимых солей сильных минеральных кислот (Na l), как отмечалось выше. Осажденное таким образом динатриевое производное отфильтровывают , промывают насыщенным раствором Na l и растворяют в воде в четырехкратном количестве), после чего добавляют кислотный оса-дитель для выделения свободного дифенилолпропана. Концентрация используемой щелочи обычно составляет 20% весовое соотношение дифенилолпропана и раствора гидроокиси натрия равно 1 4. При таком способе очистки продукт получается окрашенным и для его обесцвечивания водный раствор производного дифенилолпропана обрабатывают активированным углем. [c.165]

    Такими основаниями являются гидроксиды щелочных металлов. Дегидрогалогенирование в их присутствии проходит только в тех случаях, когда в соединении имеется протон, активированный электроноакцепторным заместителем или находящийся в бензильном или винилогичном к бензильному положению. Такие МФК-реакции очень похожи на обсуждавшиеся выше реакции в гомогенных условиях, при которых выделяется газообразный НС], и в том и в другом случае используются одинаковые ката- [c.240]

    Щелочная система 50%-ный водный гидроксид натрия BuiNHSOi и активированные субстраты [c.244]

    Отношения 0/(А1 + 51) = 2 и [Ыа(или К) + 2Са1/А1 = 1 имеют одно и то же теоретическое значение. При экстракции кислотой щелочные или щелочноземельные катионы заменяются эквивалентным числом протонов, т. е. получаются НА151з0в или Н2А1251зО , которые служат очень активными кислотными катализаторами (активированные глины). Томас [44] дал общую теорию кислотных на основе смешанных окислов катализаторов, обладающих двумя катионами с различными зарядами (и) и координационными числами (с)  [c.51]

    Промышленный процесс окислительной демеркаптанизации топлив был разработан в 1960 году фирмой UOP (Universal Oil Produ tion) под названием Мерокс-демеркаптанизация и к 1991 году число работающих установок достигло 1450. В процессе Мерокс окисление меркаптанов проводится кислородом воздуха в щелочной среде в присутствии металлофталоцианиновых катализаторов. Катализатор окисления может быть нанесен на твердый стационарный носитель (активированный уголь), либо растворен или суспензирован в щелочном растворе [90,91,114-116.  [c.20]

    Промышленные испьггания процесса демеркаптанизации бензина и фракции 180-240 С дизельного топлива проводили с использованием катализатора ИВКАЗ, нанесенного на уголь марки АГ-3 из 10%-ного водного раствора едкого натра. Насыщение активированного угля проводили путем циркуляции раствора катализатора (5 г/л) в течение 3-х часов при температуре 25 С через слой угля, загруженного в реактор. Диаметр реактора - 2438 мм, высота- 10668 мм. Уголь в реакторе занимает объем 46,8 м После нанесения фталоцианина кобальта на носитель водно-щелочной раствор полностью удалялся из реактора в отдельную емкость. [c.80]

    Аллиловый спирт (жидкость т. кип. 96,2 °С) применяют для произво гства аллиловых эфиров фталевой, фосфорной и других кислот (эти эфиры являются мономерами) он служит промежуточным веществом в одном из способов синтеза глицерина. Кроме щелочного гидролиза хлористого аллила можно получать аллиловый спирт гидролизом водой в присутствии катализатора (хлорид одновалентной меди в солянокислой среде). Метод пригоден только для реакционноспособных хлорпроизводных аллильного типа, когда для замещения достаточно активирования молекулы за счет образования комплекса с СигСЬ  [c.179]

    Газ, отобранный из пиролизера, проходит через медный сосуд, заполняемый вначале известным количеством воды и погруженный в бак с циркулирующей холодной водой. В воде, которая находится в сосуде, газ барботирует и оставляет в ней большую часть содержащейся в нем смолы и влаги. Затем газ проходит через два стеклянных холодильника (охлаждение производится посредством внешней циркуляции воды), а потом через два электрофильтра тоже стеклянных, в которых он полностью освобождается от увлеченных им пузырьков. Температура газа, измеряемая на входе и выходе электрофильтров, почти постоянная и приблизительно равна 25 С. Этот газ насыщен парами воды и имеет тот же химический состав, что и газ, измеренный в счетчике основной схемы. После этого газ проходит через две колбы со щелочным раствором феррицианида, где он оставляет весь содержащийся в нем НаЗ, а затем проходит через две сушильные колонны, содержащие СаС1.2 (предварительно обработанный в СО а), перед поступлением в два цилиндра, заполненных активированным углем, в которых при комнатной температуре адсорбируются все жидкие углеводороды (а также нафталин и некоторые газообразные углеводороды, которые по массе составляют 1,5% от массы адсорбированных продуктов). [c.496]

    На установки карбамидной депарафинизации направляют только гидроочищенное сырье, за исключением дизельного топлива из мангышлакской нефти и ставропольской, которое тщательно контролируют до поверхностному натяжению. Ингибиторы можно удалять из сырья адсорбционным способом (адсорбент - активированный уголь, алюмосиликат), кислотно-щелочной обработкой, глубокой гидроочисткой и др. [c.94]

    В качестве природных катализаторов для ряда процессов (кре кинг, этерификация, полимеризация, производство серы из серии стых газов и другие) могут быть использованы боксит, кизельгур железная руда, различные глины [200—206]. Природные катализа торы дешевы, технология их производства сравнительно проста Она включает операции размола, формовки гранул, их активацию Применяют различные способы формовки (экструзию, таблетиро ввние, грануляцию на тарельчатом грануляторе), пригодные для получения гранул из порошкообразных материалов, увлажненных связующими. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой растворо м"щелочи йли кислоты при повышенных Температурах. При активации, как правило, увеличивается поверхность контактной массы. Наибольшее применение в промышленном катализе нашли природные глины монтмориллонит, каолинит, бейделлит, бентониты и др. Они представляют собой смеси различных алюмосиликатов и продуктов их изоморфных замещений, а также содержат песок, известняк, окислы железа, слюду, полевые шпаты и другие примеси. Некоторые природные алюмосиликаты, например, каолин, обладают сравнительно высокой каталитической активностью в реакциях кислотно-основного катализа уже в естественном виде, после сушки и прокаливания. Большинство других требует более глубокой предварительной обработки кислотой при соответствующих оптимальных условиях (температура, концентрация кислоты, продолжительность обработки). В активированных глинах возрастает содержание SiOa, а количество КагО, СаО, MgO, AI2O3 уменьшается. Часто для уменьшения потерь алюминия в глинах к активирующему раствору добавляют сол , алю.мниия [46]. [c.168]

    Дегидрирование изобутана в изобутилен. Эффективные катализаторы для превращения низших алканов в алкены — это окислы металлов VI группы, способные к активированной адсорбции водорода при повышенных температурах. На практике наибольшее распространение получили катализаторы на основе окиси хрома, нанесенной на окись алюминия. Наиболее активна аморфная форма окиси трехвалентного хромаСгаОз, содержащая некоторое количество соединений шестивалентного хрома. Роль окиси алюминия помимо основной функции носителя заключается в тормозящем действии на процесс кристаллизации окислов хрома, приводящий к потере активности катализатора. Кислотная функция окиси алюминия, наличие которой ускоряет реакции изомеризации и крекинга, подавляется добавлением небольших количеств щелочных металлов, в частности окиси калия. В некоторых случаях катализаторы дегидрирования алканов Q—Се промотируются редкоземельными элементами, например NdjOa, уменьшающих период разработки . Катализаторы на основе окиси алюминия неустойчивы к действию влаги, поэтому распространенный прием повышения степени превращения (и селективности) за счет снижения парциального давления углеводо- зодов при разбавлении сырья водяным паром в данном случае неприменим. [c.351]

    Реакции углерод-углеродного присоединения, катализируемые основаниями, представляют интерес, поскольку они позволяют с хорошим выходом синтезировать углеводороды и родственные соединения в результате простого одностадийного процесса. Реакции идут в относительно мягких условиях в присутствии щелочных металл ов (диспертированных или на носителях). В случае олефинов, имеющих в молекуле активированную двойную связь, эффективным катализатором может быть грег-бутоксид калия, растворенный в диметилсульфоксиде. [c.174]

    Для удаления оксида углерода (IV) и сероводорода АВС промывают в башнях с насадкой щелочными реагентами, образующими с ними нестойкие термически соли водным раствором этаноламина или горячим, активированным добавкой диэтано-ламина, раствором карбоната калия. При этом протекают, соответственно, реакции  [c.193]

    Фирмой "Kallog" 8] ра.чработан метод получения горячего восстановительного газа при стехиометрическом количестве водяного пара на никелевом катализаторе, активированном щелочными металлами. Этот газ прямо вдувается в доменную печь или агрегат прямого восста новления руды. [c.270]

    Более удачными по сравнению с простыми абсорберами были установки, в которых газы пропускают через слои смоченного активированного угля и затем через смоченные пластмассовые насадки. Туда же добавляли газообразный аммиак для создания щелочной среды. Установку, производимую фирмой Керам Хеми [436], промывали каждую неделю для удаления раствора нитрата и пыли, оседающей на катализаторе. [c.155]

    Показано, что активированный оксид алюминия и молекулярные сита (алюмосиликаты щелочных металлов) тоже могут применяться в процессах непрерывного удаления сероводорода при температуре до 250 °С. В работах Монро и Мэдсина [587] было установлено, что эти вещества могут конвертировать 70—95% сероводорода в элементарную серу из газового потока (концентрация 0,5% НгЗ)  [c.168]

    Для придания этим катализаторам устойчивости по отношению к высокотемпературной обработке и действию водяного пара необходимо возможно полнее удалить все ионы щелочных металлов. Такие катализаторы не содержат окиси железа, что делает возможньш[ их использование в качестве крекирующих катализаторов для высокосернистых нефтяных фракций. По сравнению с глинами такие катализаторы отличаются более высокой термостабильностью, что обеспечивает их устойчивость при регенерации. Сравнение каталитических свойств аморфных алюмосиликатов и активированных монтмориллонито-вых глин показывает следующее. При проведении крекинга над аморфными алюмосиликатами получаемые продукты характеризуются лучшим качеством, но худшим распределением продуктов по составу. Кроме того, реакции, протекаюпше в присутствии аморфных алюмосиликатов, характеризуются более низким процентом превращения за проход. В то же время попытки увеличить степень превращения за счет применения более жестких условий приводят к так назьгоаемому "глубокому крекингу, при котором происходит крекинг бензина до газа и кокса и рост процента превращения достигается в результате образования кокса и газа, но не бензина. При проведении крекинга с участием обработанного кислотой монтмориллонита "глубокий" крекинг наблюдается при более высоких степенях превращения, чем в случае аморфных алюмосиликатов. [c.51]

    Во всех опытах действие активированного (щелочного акгиви-ровашюго гидролизного лигнина — ЩАГЛ) лигнина, полученного при температуре прогрева 110° С, на показатели промывочных жидкостей, приготовленных из дружковского глинопорошка, сравнивали с действием промышленного продукта — нитролигнина (НЛ), производства Андижанского гидролизного завода, примерно той же влажности (51%). Некоторые данные лабораторных исследований приведены в табл. 70. [c.150]


Смотреть страницы где упоминается термин Щелочное активирование: [c.37]    [c.15]    [c.15]    [c.43]    [c.59]    [c.273]    [c.412]    [c.242]    [c.243]    [c.167]    [c.87]    [c.54]   
Смотреть главы в:

Теория и практика ионного обмена -> Щелочное активирование




ПОИСК





Смотрите так же термины и статьи:

Об адсорбции активированным углем хлоридов щелочных металлов в водных растворах (совместно с А. А. Баландиным)



© 2025 chem21.info Реклама на сайте