Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

МЕТАЛЛОВ Двойной электрический слой и электродные потенциалы

    Если процесс восстановления протекает на катоде с малым перенапряжением выделения водорода, первая стадия процесса не должна определять кинетику суммарного процесса, а потенциал катода можно считать близким к равновесному. В этом случае строение двойного электрического слоя и адсорбция поверхностноактивных веществ не будут сказываться на кинетике процесса, и определять закономерности последней будет замедленность химической стадии восстановления органического вещества атомарным водородом. Если же процесс протекает на катоде с высоким перенапряжением выделения водорода, определять кинетику восстановления будет замедленность первой электрохимической стадии, и кинетические закономерности восстановления не будут отличаться от наблюдаемых для перенапряжения выделения водорода на этом металле. Плотность тока в этом случае не будет существенно зависеть от концентрации органического вещества в электролите. Подобные кинетические закономерности наблюдаются также при использовании, так называемых, переносчиков водорода, каталитических добавок ионов металлов переменной валентности, таких как титан, ванадий, хром, церий и т. д. Подобные добавки применяют в тех случаях, когда электродный процесс восстановления органического соединения требует значительно большего перенапряжения, чем восстановление иона металла переменной валентности, например в то время как восстановление органического вещества происходит без затруднений в растворе под действием который окисляется до Естественно, что кинетика суммарного процесса восстановления органического соединения в этом случае будет определяться замедленностью процесса восстановления ионов металла переменной валентности. [c.445]


    Если пластинку из металла погруз ть в раствор его соли, то на границе раздела фаз возникает двойной электрический слой. Образовавшаяся пограничная разность потенциалов получила название электродного потенциала. Математическая зависимость между величиной скачка потенциала на границе соприкосновения металла и раствора и концентрацией (точнее, активностью) ионов этого металла в растворе выражается следующим уравнением  [c.120]

    Если свободная энергия ионов металла в металле больше, чем в растворе, например цинка, находящегося в растворе сернокислого цинка, то ионы металла перейдут из металла в раствор и образуют положительную обкладку двойного электрического слоя (рис. 3, а). Отрицательная обкладка такого двойного электрического слоя образуется оставшимися вблизи поверхности металла свободными электронами. Силовое поле двойного слоя, образующегося на границе раздела фаз, препятствует такому переходу, оно отталкивает ионы металла в направлении к металлу. Таким образом, когда ионы металла переходят из металла в раствор, они должны совершать работу против сил поля, создаваемого двойным электрическим слоем. Эта работа, энергия для которой черпается из разности свободных энергий, тем больше, чем больше разность потенциалов двойного слоя. Переход ионов может продолжаться до тех пор, пока разность потенциалов в двойном слое не достигнет той величины, которая соответствует разности между свободными энергиями ионов металла в металле и в растворе. Затем устанавливается равновесие. Этому состоянию соответствует равновесный электродный потенциал. [c.32]

    Как уже отмечалось, при погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающая между металлом и окружающей его жидкой средой, называется электродным потенциалом. Этот потенциал является характеристикой окислительно-восстановительной способности металла в виде твердой фазы. Заметим, что у изолированного металлического атома (состояние одноатомного пара, возникающее при высоких температурах и высоких степенях разрежения) окислительно-восстановительные свойства характеризуются другой величиной, называемой ионизационным потенциалом. Ионизационный потенциал — это энергия, необходимая для отрыва электрона от изолированного атома. [c.79]

    А. Н. Фрумкиным было показано, что образование двойного электрического слоя на границе металл/раствор обусловлено величиной и знаком разности потенциалов между металлом и раствором и, когда заряд электрода по отношению к раствору становится равным нулю, двойной ионный слой исчезает. Электродный потенциал такого электрода (с нулевым [c.427]


    Строение двойного электрического слоя (д. э. с.) имеет большое значение в кинетике электродных процессов. Равновесные потенциалы не зависят от строения д. э. с. Это объясняется тем, что равновесные электродные потенциалы определяются химическими потенциалами атомов металла в глубине электрода и ионов металла в глубине раствора электролита. Скорость электрохимической реакции, ее механизм и влияние на нее различных факторов зависят от строения двойного электрического слоя. Двойной электрический слой может образоваться при обмене ионами между электродом и раствором электролита. Если химический потенциал ионов в растворе электролита больше, чем атомов в металле, то выделившиеся на поверхности электрода ионы притягивают к себе анионы из раствора. Одной обкладкой д. э.с. служат положительные заряды со стороны металла, другой обкладкой — отрицательные заряды анионов со стороны раствора. Наоборот, если химический потенциал атомов в металле больше химического потенциала его ионов в растворе, то. перешедшие из металла в раствор ионы притянутся к его поверхности избыточными электронами. При этом также об- разуется двойной электрический слой, но с противоположным расположением заряда. Обкладка д. э. с. со стороны металла заряжена отрицательно (избыточные электроны), а со стороны раствора электролита — положительно (катионы). [c.299]

    Электродные реакции протекают в объеме между поверхностью электрода и первым ионным слоем в растворе. Таким образом, на энергию активации электродной реакции будет влиять не весь потенциал, создаваемый ионным двойным слоем, а лишь та часть его ср = ср —которая падает в плоской части двойного электрического слоя, где — потенциал на расстоянии одного ионного радиуса от поверхности металла, а ср — суммарный потенциал. Разность потен-диалов (<1 1) между слоем, находящимся на расстоянии одного лонного радиус а от поверхности металла, и толщей раствора может возникать как вследствие диффузного строения двой-лого электрического слоя, так и вследствие специфической адсорбции ионов поверхностью металла. [c.92]

    При погружении любого металла в раствор электролита на границе раздела металл— раствор возникает-разность потенциалов, называемая электродным потенциалом. Причины возникновения электродного потенциала могут быть различными. Так, например, при погружении цинковой пластинки в воду или в раствор соли цинка полярные молекулы воды, действуя своими отрицательными полюсами на положительные ионы кристаллической- решетки металла, извлекают их и переводят в раствор. На поверхности металла остаются электроны, заряжая ее отрицательно. Гидратированные ионы металла, перешедшие в раствор, притягиваются заряженной поверхностью пластинки и располагаются вблизи нее. В результате этого образуются два слоя с противоположными зарядами — так называемый двойной электрический слой. Его можно уподобить плоскому микроконденсатору, у которого отрицательной обкладкой является металлическая [c.169]

    При специфической и ориентированной адсорбции двойной электрический слой, в отличие от случая обмена ионами, целиком расположен внутри одной из фаз. Обмен ионами, специфическая и ориентированная адсорбции могут сопутствовать друг другу, что приводит к сложному строению двойного электрического слоя. Например, при одновременном обмене ионами и значительной специфической адсорбции возможна перезарядка поверхности с изменением знака г 3 -потенциала (рис. 12.3). Скачок потенциала между металлом и раствором называют абсолютным электродным потенциалом. [c.230]

    У поверхности металла свободные электроны являются носителями отрицательного заряда. У поверхности металла образуется двойной электрический слой, характеризующийся разностью (скачком) потенциалов между поверхностью металла и слоем раствора, прилегающего к поверхности металла. Причина возникновения скачка потенциалов - переход катионов из металла в электролит (рис. 3.1, а) или из электролита на металл (рис. 3.1, б) (так называемый электродный потенциал металла). [c.28]

    Переход ионов из металла в раствор и наоборот будет продолжаться до тех пор, пока разность потенциалов в двойном электрическом слое (А ) не достигнет значения, которое соответствует разности между свободными энергиями ионов металла в металле и в растворе. Этому состоянию соответствует равновесный электродный потенциал. [c.31]

    В практических условиях электрод сравнения не может быть проведен к границе двойного электрического слоя, он располагается иа значительном расстоянии от нее. Поэтому в измеряемую величину включается омическая составляющая разности потенциалов, которая возникает за пределом двойного электрического слоя и электродом сравнения. Это падение напряжения не является перенапряжением, оно не определяет ни характер, ни скорость электродных реакций на металле. Поэтому при измерениях, связанных с контролем минимальных и максимальных поляризационных потенциалов, падение потенциала за пределами двойного электрического слоя нужно исключать. Присутствие омической составляющей приводит во многих случаях к ошибочным заключениям относительно защищенности трубопровода. [c.129]


    При погружении малоактивного металла — меди, например,— в раствор ее соли будет иметь место обратный процесс, т. е. переход ионов металла из раствора в кристаллическую решетку металла. В данном случае поверхность металла приобретает положительный заряд, а прилегающий к ней слой раствора—отрицательный (за счет избытка в растворе анионов). Здесь также возникает двойной электрический слой и, следовательно, определенный электродный потенциал. Таким образом, при погружении металлов в растворы их солей более активные из них (2п, Мд, Ре и др.) заряжаются отрицательно, а менее активные (Си, Ag, Аи и др.) положительно. Потенциал каждого электрода зависит оТ природы металла, концентрации (точнее активности) его ионов в растворе, а также от температуры. Если цинковую и медную пластинки соединить проводником электричества, то электроны с цинковой пластинки устремляются по нему к медной, в цепи появляется электрический ток, который может быть измерен гальванометром О. [c.156]

    Можно было ожидать, что если движущиеся частицы имеют, например, металлический характер, то величина диффузной части двойного электрического слоя должна равняться скачку потенциала на границе металл — раствор, т. е. термодинамическому потенциалу <р. Однако на самом деле это не так. Опыт показывает, что значение отличается от соответствующих электродных потенциалов. [c.229]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и химическим свойствам хемосорбционных слоев на металлах. При этом были использованы измерения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Так, например, было установлено, что адсорбция йода на платине сопровождается значительным проникновением его в глубь металла. Поскольку связь между металлом и адсорбированными атомами имеет дипольный характер, образование атомных слоев приводит к нарушению строения двойного электрического слоя вплоть до изменения знака потенциала. Характерно также заметное снижение емкости двойного слоя, вызванное созданием адсорбционных слоев. [c.348]

    К катодной пассивности близко примыкает явление адсорбционной поляризации, приводящее к снижению тока в присутствии некоторых поверхностно активных веществ, обнаруженное М. А. Лошкаревым. При этом поверхностно активные вещества образуют на катоде сплошной слой, почти не проницаемый для разряжающихся ионов, что ведет к резкому торможению или полному прекращению роста кристаллов. Возникающая при этом химическая поляризация может достигнуть необычайно больших значений, далеко превосходя все известные ее величины для катодного выделения металлов из чистых растворов их простых солей. Как показали исследования, явление адсорбционной поляризации охватывает многие электродные процессы. Образование адсорбционных слоев вблизи точки нулевого заряда обычно сопровождается явлением низкого адсорбционного-тока, который определяется скоростью проникновения реагирующих частиц из объема раствора в двойной электрический слой. М. А. Лошкарев с сотрудниками описал многочисленные случаи,, когда предельно низкие значения тока в очень широкой области потенциалов не зависят от потенциала. [c.350]

    Изучение кинетики адсорбции поверхностно активных веществ при достаточной скорости электродной реакции показывает, что концентрирование различных веществ на электродах, а значит, и состояние адсорбционного слоя очень сильно зависят от конкретных условий электролиза, свойств металла и раствора и, следовательно, от строения двойного электрического слоя (потенциала ионного слоя). [c.354]

    Благодаря высокой электролитической упругости растворения цинка, часть ионов цинка перейдет в раствор и в результате металл зарядится отрицательно (накопление на пластинке электронов), а окружающий пластинку слой раствора зарядится положительно. В системе, на границе раздела твердой и жидкой фазы, возникает двойной электрический слой, которому в равновесном состоянии отвечает определенное напряжение или потенциал, называемый электродным потенциалом. [c.204]

    Для неактивных металлов, например, меди, равновесная концентрация ионов металла в растворе очень мала. Если погрузить медную пластину в раствор соли с концентрацией ионов большей, чем равновесная (1), то будет наблюдаться обратный процесс перехода ионов меди из раствора на металлическую пластинку. Медная пластинка заряжается положительно, раствор — отрицательно за счет остающихся в растворе избытков анионов (рис. 16). В этом случае также возникает (на границе раздела твердой и жидкой фаз) двойной электрический слой, которому соответствует определенная разность потенциалов или электродный потенциал. Из сказанного следует вывод реакция (1) идет тем легче слева направо, чем более активным является металл и чем меньше его энергия ионизации. Неактивные металлы (реакция (1) протекает справа налево) заряжаются тем больше положительным зарядом, чем меньше активность металла. [c.19]

    Если же взять пластинку из малоактивного металла, например меди, и погрузить ее в раствор соли меди, то будет преобладать обратный процесс ионы металла будут терять свою гидрат-ную оболочку и переходить из раствора в кристаллическую решетку металла, заряжая пластинку положительно. Сам раствор за счет остающегося избытка анионов при этом заряжается отрицательно (рис. 19, б). В результате также возникает двойной электрический слой, а значит и определенный электродный потенциал. [c.286]

    Металл, погруженный в электролит, называется электродом. Наибольшая принципиальная трудность, связанная с использованием уравнения Нернста, обусловлена невозможностью измерить потенциал одного единственного электрода. Например, если попытаться определить путем измерения электродный потенциал 2п/2п , т.е. разность потенциалов между металлическим цинком и раствором соли цинка, в который он погружен, необходимо металл и раствор соединить проводником с измерительным прибором. Соединить прибор с металлом нетрудно, гораздо сложнее присоединить к прибору раствор. Это соединение можно осуществить только с помощью металлического проводника, который опускается в раствор. Но как только металл проводника (например , медь) приходит в соприкосновение с раствором, на его поверхности образуется двойной электрический слой и, следовательно, появляется разность потенциалов. Итак, при помощи измерительного прибора можно определить не электродный потенциал одного электрода (металла), а разность потенциалов между двумя электродами (в данном случае разность потенциалов между цинковым и медным электродами). Поэтому при измерении электродных потенциалов металлов выбирают некоторый электрод сравнения, потенциал которогсГ словно принят за нуль. Таким электродом сравнения служит стандартный водородный электрод (рис. 3.2). Он представляет собой платиновую пластину, покрытую тонко измельченной "платиновой чернью , погруженную на платиновой проволоке в стеклянный 32 [c.32]

    В растворе вблизи заряженной поверхности электрода скапливаются ионы, имеющие заряд, противоположный по знаку заряду поверхности. Поэтому образуется двойной электрический слой (рис. 2), напоминающий по схеме конденсатор, у которого одна обкладка — поверхность металла, а вторая — слой ионов, находящихся в растворе вблизи поверхности электрода. Разность потенциалов между обкладками конденсатора и представляет собой так называемый электродный потенциал . Потенциал металлического электрода зависит от свойств металла, концентрации раствора, температуры и валентности ионов. [c.12]

    Электродный потенциал, представляющий собой скачок потенциала на фазовой границе металл-электролит , определяет характер и скорость электрохимических процессов. Этот скачок пространственно локализован в области двойного электрического слоя на границе металл-электролит . [c.19]

    Принципиально для конструирования гальванического элемента и яревращения убыли изобарно-изотермического потенциала — ДОг лри электрохимическом процессе в электрическую форму энергии можно использовать любую окислительно-восстановительную реакцию ионного типа. Рассмотрим работу никелево-цинкового (N1—2п) гальванического элемента (см. рис. 27). Электрический ток в нем возникает вследствие окислительного процесса, протекающего на границе Zn — раствор, содержащий ион Zп + (на цинковом электроде), и восстановительного на границе N1 — раствор, содержащий ионы N 2+ (на никелевом электроде). Цинковая и никелевая пластинки, опущенные в растворы своих солей, посылают в раствор разное количество ионов. Прн установившемся равновесии разность потенциалов на границах 2п — раствор и N1 — раствор по величине ле равна одна другой. Поверхность цинка имеет больший отрицательный заряд, чем поверхность никеля. Цинк обладает большей способностью посылать свои ионы в раствор, чем никель. При процессе 2п = 2п +-Ь2е —ЛОт больше, чем —АСг при процессе N1 = = Ы12+-(-2( . Когда цинковую пластинку с никелевой соединяют -проводником первого рода — медью, электроны с цинка перетекают а никель. Равновесие двойного электрического слоя на никелевом электроде нарушается, электродный процесс принимает обратное направление, иоиы N1 + из раствора переходят на никелевую пластинку. Нарушенное равновесие восстанавливается за счет того, что в раствор поступает новая порция ионов Zn + и разряжается эквивалентное число ионов N1 +. Снова возникает разное количество зарядов на цинковой и никелевой пластинках и переход электронов и т. д. В итоге на цинковом электроде протекает окислительный процесс Zп = Zп2+-t-2e(Zn). Электроны от цинковой пластинки переходят к никелевой 2e(Zn)- 2e(Ni). На никелевом электроде идет восстановительный процесс N +- -26(Ni) = N1. Запись пе(Ме) указывает, что электроны остаются в металле. [c.124]

    ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, разность электростатич. потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение Э. п. обусловлено пространств. разделением зарядов противоположного знака на границе раздела фаз и образованием двойного электрического слоя. На фанице между металлич. электродом и р-ром электролита пространств, разделение зарядов связано со след, явлениями переносом ионов из металла в р-р в ходе установления электрохим. равновесия, кулоновской адсорбцией ионов из р-ра на пов-сть металла, смещением электронного газа за пределы положительно заряженного ионного остова кристаллич. решетки, специфич. (некулоновской) адсорбцией ионов или полярных молекул р-рителя на электроде и др. Последние два явления приводят к тому, что Э. п. не равен нулю даже при условиях, когда заряд пов-сти металла равен нулю (см. Потенциал нулевого заряда). [c.424]

    В результате платина получает положительный заряд, а раствор у поверхности ее — отрицательный заряд за счет образовавшегося избытка ионов С1 . Равновесие в двойном электрическом слое выразится уравнением Ре +е s f Pe2. " Таким образом, возникает положительный потенциал на платине, который будет тем выше, чем больше окислительная способность катиона. И, наоборот, чем сильнее восстановительная активность иона, тем вероятнее отдача электрона им в кристаллическую решетку платины и возникновение отрицательного заряда на ней. Так появляется отрицательный потенцйал на платине в растворе, содержащем ионы Ст . В двойном слое устанавливается равновесие Сг з Сг + е. Потенциал платины в разобранных двух примерах определяется соотношением активных концентраций окисленной и восстановленной формы ионов и характеризует окислительновосстановительную способность каждой из систем Ре , Pe Pt и Сг2, r Pt. Потому потенциал и получил название окислительновосстановительного. Отметим, что это название сохранилось за потенциалами систем только в тех случаях, когда в электродной реакции не участвуют непосредственно металлы газы, хотя очевидно, что во всех случаях причиной возникновения скачка потенциала является окислительно-восстановительный процесс на поверхности электрода, приводящий к образованию двойного электрического слоя и потенциала в нем. Следовательно, потенциал характеризует окислительно-восстановительные свойства системы. [c.195]

    Так появляется отрицательный потенциал на платине в растворе, содержащем ионы Сг +. В двойном слое устанавливается равновесие Сг +ч=з=Сг ++е-. Потенциал платины в данных примерах определяется соотношением активных концентраций окисленной и восстановительной форм ионов и характеризует окислительно-восстановительную способность каждой из систем Fe +, Fe + Pt и Сг2+, r3+ Pt. Потому потенциал и получил название окислительно-восстановительного. Необходимо отметить, что это название сохранилось за потенциалами систем только в тех случаях, когда в электродной реакции ие участвуют непосредственно металлы и газы, хотя очевидно, что во всех случаях причиной возникновения скачка потенциала является окпслительно-восстанови-тельный процесс на поверхности электрода, приводящий к образованию двойного электрического слоя и потенциала в нем. Следовательно, потенциал характеризует окислительно-восстановительные свойства системы. [c.241]

    С другой стороны, электродный потенциал Ме"1Ме можно представить как сумму скачков потенциала в двойных электрических слоях у данного и водородного электродов и вольта-поте[1Циала между этим металлом и нулевым водородным электродом. [c.544]

    Л. Н. Фрумкин и сотр. показали, что перенапряжение перехода определяется строением двойного электрического слоя на границе раствор — металл. Можно полагать, что электрохимическая реакция протекает только при непосредственном соприкосновении реагирующих частиц с электродом, так как переход электронов на значительное расстояние маловероятен. С этой точки зрения следует считать ре-акционноспособными частицы, расположенные только в плотной части двойного электрического слоя (см. 174). Поэтому при расчете перенапряжения следует учитывать не электродный потенциалу и концентрацию реагирующих веществ в массе электролита, а падение потенциала и концентрацию реагирующих ионов в плотной части двойного слоя. Тогда в уравнение (184.17) входит дополнительный член, содержащий фгпотенциал  [c.508]

    Если сумма скачков потенциала в рассмотренных четырех двойных электрических слоях равна нулю, то на поверхности металла имеется так н зываемый абсолютный нуль потенциала. Потенциалы, вычпсленныг по отношению к этому нулю, называются абсолютными потенциалами. Абсолютный нуль потенциала не может быть вычислен теоретически или определен экспериментально. Однако, как выяснилось, нет необходимости знать абсолютные значения потенциалов. Для термодинамических расчетов достаточно знать условные равновесные потенциалы, измеренные по отношению-к стандартному водородному электроду. Для исследования кинетики электродных процессов должен быть известен условный потенциал по отношению к так называемому потенциалу нулевого заряда, который для каждого металла и растворителя имеет определенное значение. [c.300]

    Уравнения электрокапиллярной кривой названы так потому, что выражаемые ими зависимости экспериментально проверялись Лнпиманом с иомощь о прибора, называемого капиллярным электрометром (рис. П. 9). При исследовании зависимости поверхностного натяжения от потенциала двойного электрического слоя в качестве одной из фаз наиболее удобно применять металлическую ртуть, поверхиостиое натяжение которой легко измерить, например, капиллярным методом, и в то же время удобно изменять межфазный потенциал с помощью внешнего источника тока. Кроме того, ртуть являете. почти идеально поляризуемым электродом, т. е. таким электролом, на котором не протекают электродные реакции при прохол., еини тока, и поэтому изменение заряда электрода вызывает только изменение его потенциала. Это обусловлено тем, что благородные металлы почти совсем не отдают своих ионов в раствор. Малое содержание их в растворе делает невозможным и обратную реакцию (восстановления). [c.50]

    Таким образом, в системе металл — вода на границе раздела фаз возникает двойной электрический слой, блокирующий поверхность металла. Образовавшаяся пограничная разность потенциалов получила название электродного потенциала (лат. ро1еп11а — возможность, мощь). [c.225]

    Если начальная скорость перехода ионов из раствора на металл больше скорости перехода ионов с металла в раствор, металл заряжается положительно, а раствор у поверхности металла — отрицательно за счет избытка анионов. Вследствие электростатического взаимодействия уменьшается скорость перехода иоиов из раствора на металл и yвeличивaef я скорость обратного процеса. Обе скорости сравниваются образуется двойной электрический слой (рис. 124, б) и возникает определенный скачок потенциала. Двойной электрический слой способствует возникновению электродного потенциала. [c.288]

    Советским электрохимикам удалось создать тонкую экспериментальную методику исследования электродных процессов оо-строение поляризационных кривых в стационарных и нестационарных условиях, метод с использованием переменных токов, ос-циллографический метод, позволяющий установить временную зависимость потенциала электрода при пропускании тока постоянной силы, метод меченых атомов и др. Новые инструментальные методы раскрыли перед исследавателями более широкие горизонты. Так, было показано, что основным фактором, определяющим возникновение скачка потенциала на границе между металлом и раствором, является двойной электрический слой из зарядов металла и ионов раствора. Было найдено, что на условия появления и величину скачка потенциала между металлом и раствором большое влияние оказывает адсорбция и ориентация дипольных молекул. Сопоставление данных, полученных при изучении электрокапиллярных я влений, пролило яркий свет на роль поверхностно активных и коллоидных веществ, адсорбирующихся на поверхности электродов. [c.3]

    Электрохимические реакции, протекающие на iлpalHИlцe раздела двух фаз, совершаются при наличии двойного электрического слоя из зарядов, находящихся в металле, и ионов другого знака в растворе. Подобные ионные двойные слои, возникающие на границе соприкосновения фаз, приводят к глубоким изменениям физико-химических свойств поверхностных слоев. Процесс ионного обмена протекает таким образом, что значение электродного потенциала отвечает термодинамическому равновесию между металлом и электролитом. [c.6]

    Под строением двойного слоя понимают распределение зарядов в его ионной обкладке. Упрощенно ионную обкладку можно условно разделить на две части 1 — плотную, или гельмгольцев-скую, образованную ионами, практически вплотную подошедшими к металлу, 2 — диффузную, созданную ионами, находящимися на расстояниях от металла, превышающих радиус сольватированного иона. Толщина плотной части — порядка 10 см, диффузной — 10- —10 см. Величина скачка потенциала на границе раствор — металл складывается из падения потенциала в плотной части двойного слоя и падения потенциала в диффузной. Строение двойного электрического слоя определяется общей концентрацией раствора. С ее увеличением процессы, способствующие формированию диффузной части, ослабляются, размеры ее уменьшаются, двойной слой сжимается. В концентрированных растворах диффузная часть практически отсутствует и двойной электрический слой подобен плоскому конденсатору, что соответствуе т модели Гельмгольца, впервые предложившего теорию строения двойного слоя (1853 г.). Разность потенциалов, возникающую на границе раздела металл — раствор, называют электродным потенциалом.( [c.327]

    Ряд стандапдных электродных потенциалов металлов. Причиной возникновения и протекания электрического тока в гальваническом элементе является разность электродных потенциалов. I При погружении любого металла в раствор электролита на границе раздела металл/раствор возникает разность потенциалов, называемая электродным потенциалом. Причины возникновения электродного потенциала могут быть различными. Так, например, в случае погружения цинковой пластинки в раствор соли цинка, полярные молекулы воды, действуя своими отрицательными полюсами на положительные ионы металла, переводят их в раствор. При этом электроны остаются на поверхности металла, заряжая ее отрицательно. Гидратированные ионы металла, перешедшие в раствор, притягиваются заряженной поверхностью пластинки и располагаются вблизи нее. В результате образуются два слоя с противоположными зарядами — так называемый двойной электрический слой. Этот слой можно уподобить плоскому микроконденсатору с определенной разностью потенциалов, у которого роль отрицательной обкладки играет металлическая поверхность, а роль положительной — ионы металла, находящиеся в растворе (рис. 81, [c.160]

    Электродвижущая сила двойного электрического слоя не поддается прямому измерению и вместо нее рассматривают э. д. с. элемента, один электрод которого изготовлен из исследуемого металла, а вторым служит стандартный водородный электрод, э. д. с. которого условно принимается равной нулю. Электродвижущую оилу такого эле.мента Е называют электродным потенциалом. Так как для стандартного водородного электрода э, д. с. = 0, то э. д. с. элемента по величине и знаку равна э. д. с. исследуемого металла Е=Уже-Через число Фарадея Р э. д. с. связана с изменением термодина.ми-ческого потенциала реакции AZ соотношением [c.231]


Смотреть страницы где упоминается термин МЕТАЛЛОВ Двойной электрический слой и электродные потенциалы: [c.253]    [c.265]    [c.103]    [c.266]    [c.19]    [c.229]    [c.161]    [c.53]    [c.101]   
Смотреть главы в:

Курс теории коррозии и защиты металлов Изд2 -> МЕТАЛЛОВ Двойной электрический слой и электродные потенциалы




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Металл электродные потенциалы

Потенциал двойного слоя

Потенциал двойного электрического слоя

Потенциал электродный потенциал

Потенциалы металлов

Электрический потенциал

Электродные потенциалы металло

Электродный потенциал



© 2024 chem21.info Реклама на сайте