Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод эквивалентных поверхностей

    Метод эквивалентных поверхностей. Особняком от других методов и подходов к анализу вакуумных систем стоит метод эквивалентных поверхностей. Данный подход не является методом анализа в непосредственном понимании, он представляет собой методику, органично дополняющую практически любой метод анализа, описываемый в данном параграфе. Суть этой методики сводится к замене сложного фрагмента вакуумной системы на некоторую поверхность, характеристики которой эквивалентны характеристикам всего фрагмента. С одной стороны, анализируемая структура существенно упрощается, а с другой — драматической потери точности результата не происходит, так как эквивалентная поверхность определяется как [c.20]


    МЕТОД ЭКВИВАЛЕНТНЫХ ПОВЕРХНОСТЕЙ [c.78]

    При анализе геометрически существенно сложных вакуумных систем часто возникает необходимость уменьшения уровня детализации структуры при минимальном снижении степени достоверности расчета. Такой подход особенно актуален для метода угловых коэффициентов, характеризующегося анализом разветвленных структур как крайне трудоемкой задачей. Метод эквивалентных поверхностей представляет собой универсальную логическую модель и одновременно алгоритм вычислений при анализе молекулярных потоков в многокомпонентных структурах практически неограниченной сложности. Универсальность данного подхода позволяет использовать его совместно с любым известным методом расчета. [c.78]

    Кроме того, использование метода эквивалентных поверхностей возможно и в обратном направлении — с увеличением степени детализации. Это бывает необходимо, когда выполняются предварительные расчеты в целях обнаружения наиболее ответственных узлов и агрегатов вакуумной системы. В данном случае все сложные элементы заменяются эквивалентами, после чего намечаются наиболее ответственные части проекта и увеличивается степень их детализации. [c.79]

    Все расчеты осуществлялись методом Монте-Карло пробной частицы. Часть из них потребовала применения классических соотношений вакуумной техники и метода эквивалентных поверхностей. В описаниях расчетов, где использовались данные подходы, есть соответствующие упоминания. [c.192]

    Метод эквивалентных параметров применяется для приближенного расчета распределения потенциала и тока на поверхностях конструкций сложной формы. Он основан на выделении из рассматриваемой области коррозионной среды 12 более простой ее части (подобласти) О,, (см. рис. 1.23) при учете остальной (отброшенной) подобласти путем введения ее эквивалентных параметров - эквивалентной э.д.с. е, и эквивалентного сопротивления г 3 [38]. [c.59]

    Метод "сшивания" приводит во многих случаях к тем же результатам, что и метод эквивалентных параметров. Так, в последнем из рассмотренных случаев (при рассмотрении контактной коррозии трубопровода при его взаимодействии с удаленными участками поверхности резервуара) суммарный ток коррозии, найденный по методу эквивалентных параметров, определяется выражением  [c.66]

    Гомогенное осаждение [61—63] является методом получения относительно стабильных и высокодисперсных металлических катализаторов, пригодных для применения в процессах переработки угля. В этом методе при разложении карбамида осаждаемые гидроксильные ионы генерируются по всей суспензии носителя в растворе активного металла, тем самым устраняются концентрационные градиенты и получается гомогенное осаждение, обеспечивающее более развитую поверхность катализатора. Если осаждаемое соединение легче кристаллизуется на поверхности носителя, то происходит осаждение на носителе.. Данным методом получен катализатор на основе оксида кремния, содержащий 13—70% (масс.) никеля с размерами кристаллитов 1,5—4,0 нм [62, 63], что эквивалентно поверхностям никеля 170—450 м /г. Способ широко используется и должен найти практическое применение также в синтезе полиметаллических систем. [c.56]


    Вообще толщина диффузионного пограничного слоя изменяется от точки к точке на поверхности диска. Поэтому, как правило, различные точки поверхности не эквивалентны в диффузионном отношении, так что основное предположение метода равнодоступной поверхности не выполнено. [c.171]

    Метод эквивалентных остовов полезен для оценки сдвигов линий при адсорбции атомов и молекул на поверхности твердого тела [177]. Рассмотрим как это делается. [c.59]

    Экспериментальное измерение емкости двойного слоя может быть произведено при помощи компенсационного метода. Емкость двойного слоя отличается от емкости обычного конденсатора наличием большой утечки . Действительно, прохождение переменного тока через поверхность раздела может быть обусловлена как наличием емкости, так и обычной проводимости. Поэтому электрическая схема, эквивалентная поверхности электрода, должна представлять собой емкость и омическое сопротивление, включенные параллельно (рис. 75). [c.336]

    Наиболее прямой способ определения формы и размеров элементов катализатора основан на электронной микроскопии. Но такие измерения позволяют непосредственно анализировать только элементы простейшей формы. Характерный размер Xi частиц или пор сложной формы с объемом V и поверхностью Л, в общем случае может быть выражен через эквивалентные размеры тел простой формы, например, сферы с эквивалентным объемом (при этом Xv = (6М/л ) / , или сферы с эквивалентной поверхностью (при этом Ха = (А,/л) ), или сферы с эквивалентным отношением объема к поверхности (при этом XvA = 6Xi/Ai = Xv Xa ) и т.д. Существующие экспериментальные методы измерения размера частиц (или пор) базируются на разных типах эквивалентных размеров и [c.111]

    В основу метода положена концепция замещения реальных компонентов вакуумной системы некоторыми эквивалентами простейшей формы, имеющими интегральные характеристики, отражающие газокинетические свойства данного компонента. Обычно в качестве эквивалентов используют плоские поверхности, являющиеся фактически граничными сечениями заменяемых элементов. Нужно отметить, что часто используется последовательное замещение с уменьшением уровня детализации. Например, сложный элемент насоса заменяется эквивалентной поверхностью, имеющей газокинетические характеристики данного элемента. После этого анализируются характеристики насоса в подобной упрощенной конфигурации. Далее сам насос может быть заменен эквивалентной поверхностью, если анализируемая вакуумная система геометрически более сложная и т. д. Следовательно, возможно проведение последовательных замещений с уменьшением уровня детализации. Такой подход не влечет существенного снижения достоверности полученных результатов, если речь идет об интегральных характеристиках системы. Если же речь идет о получении полей распределенных дифференциальных характеристик, то применение подобной схемы нежелательно, поскольку обычно эквивалентная поверхность отражает лишь интегральные характеристики замещенного элемента, а ее дифференциальные параметры принимаются так же, как у всех простых поверхностей, составляющих систему. [c.78]

    С учетом указанных обстоятельств при выполнении расчетов реализован комбинированный подход. При анализе молекулярного переноса в узких полостях, стенки которых имеют существенно разную температуру, применялись методы статистических испытаний (Монте-Карло) и эквивалентных поверхностей. В свою очередь, в приложении к изотермическим конструктивным элементам использовались классические категории и соотношения вакуумной техники (проводимость, перепад давлений и т. п.). [c.191]

    Поверхность частиц нерегулярной формы находят по перепаду давлени-я при течении жидкости через слой таких частиц из соотношения (11.55). При этом (см. стр. 50) существенно определение входящей в это уравнение константы Козени — Кармана. Последнее можно сделать, если поверхность частиц или эквивалентный диаметр слоя определены одновременно с перепадом давления каким-либо из независимых методов, описанных в разделе И. 4, В отсутствие таких данных приходится задаваться значением К в зависимости от типа элементов слоя. [c.56]

    В настоящее время разработано достаточное количество моделей коалесценции капли у поверхности раздела фаз жидкость— жидкость. Уравнения моделей выводятся на основе макроскопических балансов массы, силы и энергии и уравнений изменения микроскопических объемов жидкости и изменения поверхностей раздела фаз. Граничные условия и выражения для потока вместе с уравнениями состояния позволяют замкнуть систему уравнений для данной физической ситуации. Однако обобщенная полная система уравнений сложна для решения. Поэтому использование аппроксимирующих решений различной точности является наиболее распространенным методом. К сравнительно простым моделям можно отнести модели жесткой капли и жесткой поверхности раздела [32] и модели с учетом деформации капли и поверхности раздела с образованием углубления в центре капли [33, 34]. В [351 показано, что модели коалесценции, основанные на представлении однородной пленки, отделяющей каплю от поверхности, приводят к степенной зависимости времени коалесценции капли, пропорциональной пятой степени эквивалентного диаметра. Эти модели отрицают влияние разности давлений, возникающих вследствие искривления пленки, и поэтому дают завышенные значения показателя степени. [c.290]


    Реальная возможность разработки универсальных алгоритмов численного решения указанных задач появилась лишь в последнее время, главным образом в связи с развитием и теоретическим обоснованием метода конечных элементов [29—34]. Существо этого метода состоит в аппроксимации сплошной среды, которая характеризуется бесконечным числом степеней свободы, совокупностью ограниченного числа подобластей (так называемых конечных элементов), каждая из которых описывается конечным числом степеней свободы. Сплошная среда разбивается воображаемыми линиями или поверхностями на конечное число частей (например, поверхности — на треугольные элементы объемные фигуры — на тетраэдры), в каждой из которых вводятся фиктивные силы, эквивалентные поверхностным напряжениям и распределенные по границам элементов. Разбиение на конечные элементы достигается с помощью вариационного метода, в соответствии с которым минимизируется функционал, математически эквивалентный исходному дифференциальному уравнению. Этот функционал имеет реальный физический смысл и связывается, как правило, с понятием диссипации энергии. [c.11]

    Как уже отмечалось, методы Лобо — Эванса и Белоконя отличаются способом подсчета величины эквивалентной черной поверхности. [c.81]

    При создании своего метода проф. Н.И. Белоконь исходил из предположения, что основным теплоизлучающим источником являются дымовые газы. Вследствие большой поглощающей способности дымовых газов при расчете прямой отдачи за температуру излучающего источника автор принимал температуру дымовых газов, покидающих топку. Им также было введено понятие об эквивалентной абсолютно черной поверхности, т.е. такой поверхности, излучение которой на радиантные трубы при температуре дымовых газов, покидающих топку, равно всему прямому и отраженному излучению в топке. В этом методе все излучающие источники (факел, кладка, дымовые газы), имеющие различную температуру, заменены излучающей абсолютно черной поверхностью, температура которой равна температуре дымовых газов, покидающих топку. Излучением такой условной поверхности при этой температуре передается такое же количество тепла, как и в реальной топке. [c.538]

    Для определения эквивалентной абсолютно черной поверхности Н, автор излагаемого метода предлагает формулу [c.540]

    Расчет необходимой высоты насадки абсорбера, на поверхности которой происходит абсорбция, может быть выполнен различными методами. Так же как и для тарельчатого абсорбера, может быть найдено число идеальных контактов (число теоретических тарелок), а затем определена высота насадки, эквивалентная одной теоретической тарелке, и общая высота насадки, необходимая для достижения заданного режима абсорбции. [c.232]

    Поверхность агрегата может заряжаться благодаря избирательной адсорбции ионов из дисперсионной среды или диссоциации молекул в поверхностном слое агрегата. В соответствии с правилом Пескова — Фаянса адсорбируются преимущественно ионы, входящие в состав агрегата, либо специфически взаимодействующие с ним. Ионы, сообщающие агрегату поверхностный заряд, называются потенциалопределяющими. Заряженный агрегат составляет ядро мицеллы. При данном методе получения золя гидроксида железа ядро [Ре(ОН)з] -тРе + имеет положительный поверхностный заряд за счет адсорбции иоиов Ре + из среды (т — число адсорбированных ионов). Заряд ядра компенсируется эквивалентным зарядом противоположно заряженных ионов— противоионов, расположенных в объеме среды. Противоионы, находящиеся непосредственно у поверхности ядра (на расстояниях, близких к диаметрам ионов), помимо электростатических сил испытывают силы адсорбционного притяжения поверхности. Поэтому они особо прочно связаны с ядром мицеллы и носят название противоионов адсорбционного слоя (их число т — х). Остальные противоионы составляют диффузно построенную ионную оболочку и называются противоионами диффузного слоя (их число соответствует. г). [c.163]

    С. В. Адельсон [118] на основе сравнительного анализа показала, что из предложенных методов наиболее точным является аналитический метод Н. И. Белоконя [119], основанный на совместном решении уравнений теплового баланса и теплопередачи и учитывающий основные факторы, влияющие на теплопередачу в радиантной секции. Н. И. Белоконь вводит понятие об эквивалентной абсолютно черной поверхности ко- [c.502]

    При анализе суспензий условие твердости частиц всегда соблюдается условие же гладкости частиц, т. е. отсутствия шероховатости на их поверхности, практически не выполнимо. В настоящее время нет надежных методов оценки шероховатости поверхности. Поэтому при определении размеров таких частиц седиментационными методами пользуются эквивалентным ра диусом  [c.11]

    В области использования дифракционных волн для обнаружения и оценки дефектов появились дельта-метод, варианты которого еще прорабатываются, зеркальный эхометод, дифракционно-временной метод измерения размеров. Можно ожидать разработки новых методов контроля, поскольку в теории дифракции упругих волн на дефектах еще много неясных вопросов. Отсутствует статистика, позволяющая оценить амплитуду дифракционных волн от реальных трещин (например, через эквивалентные диаметры), не вполне ясна картина распределения дифракционного поля с учетом трансформации волн на краю дефекта, распространения вдоль его поверхности рэлеевских и головных волн, не оценена погрешность определения края дефекта по максимуму отражения. [c.265]

    В отличие от обычного титриметрического метода, основанного на применении цветных индикаторов, в потенциометрическом методе титрования индикатором является электрод, на котором протекает индикаторная электрохимическая реакция. В первом методе показателем достижения точки эквивалентности служит переход окраски цветного индикатора, во втором — резкое изменение потенциала электрода (обычно называемое скачком потенциала), связанное с возникновением другой электрохимической реакции на поверхности раздела электрод — раствор. [c.37]

    Влитом и Россом [168] для воздуха и Бэком и Норрисом [17] для воздуха, а также в исследованиях перехода [153] для воды. Общий вывод, который можно сделать из этих исследований относительно экспериментальных данных о теплопередаче в ламинарном режиме, состоит в том, что корреляция по методу эквивалентной вертикальной пластины применима для наклонных поверхностей, нагреваемых как сверху, так и снизу, для углов 0 до 60° в воздухе и в воде. [c.227]

    В работе 1186] адсорбция полимерных молекул разбирается также с позиций статистической механики, на основе pa Moi репной ранее модели чередования последовательностей адсорбированных сегментов и петель. Однако основное внимание уделяется характеру распределения петель по размерам. При этом рассматривается низкая степень заполнения поверхности, при которой молекулы на поверхности не взаимодействуют друг с другом. В теории Симхи — Фриша —Эйриха учитывается поведение молекул в присутствии отражающего барьера, а силы притяжения, проявляемые поверхностью, не принимаются во внимание. В результате получается, что число адсорбированных единиц пропорционально квадратному корню из длины цепи, а не длине цепи, как это следует из теории Силберберга, но Силберберг допускает узкое распределение петель по размерам. В работе [186] авторы рассматривают не свободносочлененную цепь, как Силберберг, но учитывают ее жесткость, что ведет к большому размеру петель для гибкого полимера и низкой свободной энергии адсорбции. При решении вопроса они принимают математический метод, эквивалентный используемому при рассмотрении переходов типа спираль — клубок. Считается, что конфигурация полимерной цепи на поверхности зависит как от стерических препятствий и сил притяжения между группами вдоль цепи, так и от сил взаимодействия цепи с поверхностью. Принимая для такого случая существование адсорбированных последовательностей и петель и базируясь на Гауссовой статистике, авторы вычисляют статистическую сумму в виде  [c.131]

    В условиях, когда выполнить очистку металлоконструкций до 3-й и тем более 2-й степени не представляется возможным, например, при защите от коррозии реконструированных зданий, а также для малоответственных металлоконструкций (площадки для обслуживания оборудования, лестницы и др.), применяется окраска по ржавчине. Последнюю предварительно обрабатывают специальными составами, так называемыми преобразователями или модификаторами ржавчины. С помощью преобразователей продукты коррозии превращаются в плотный слой, обладающий адгезией с основным металлом. Толщина слоя продуктов коррозии не должна превышать 80—120 мкм. При пластовой ржавчине необходима предварительная очистка щетками. По обработанной преобразователем поверхности наносятся химически стойкий грунт и покрытие. Преобразователи ржавчины пока не являются эквивалентной заменой лакокрасочных покрытий — они используются лишь как один из методов подготовки поверхности металлических конструкций, когда другие виды очистки невыполнимы. Долговечность лакокрасочной защиты с применением преобразователей пока что уступает защите с применением дробеструйной, дробеметной или пескоструйной подготовки поверхности. [c.71]

    Ключевой этап проектировочного расчета - нахождение пространственного распределения молекулярных потоков и потоков активных центров в полости проектируемого насоса. Анализ этого распределения может быть выполнен уже названным методом угловых коэффициентов либо другими методами - Монте-Карло, интегра/1ьно-ктети-ческим, эквивалентных поверхностей. Здесь будем использовать метод угловых коэффициентов. При анализе простых структур с числом поверхностей не более пяти (а именно такой структурой является обычно ЭФН) этот метод предпочтителен он наиболее нагляден, его применение основано на табулированных структурно-геометрических характеристиках ЭФН и не требует громоздких вычислений. При расчете более сложных структур, например геометрически разветвленных систем на основе электрофизических средств откачки, необходимо переходить к другим методам. [c.78]

    Прежде чем перейти к рассмотрению метода определения эквивалентной абсолютно черной поверхности необходимо заменить фактическую поверхность труб экрана. 9квпва.пентной плоской [c.121]

    Поскольку при описании процессов дифференциальными уравнениями второго и более высоких порядков граничные условия могут быть заданы в разных точках (так называемая краевая задача), численные методы для этих случаев должны быть модифицированы. Например, химический процесс в зерне пористого катализатора радиусом Л, описываемый уравнением О С = = f С), обычно характеризуют краевыми условиями для концентрации у внешней поверхности С (Н)х=н = в центре зерна д,С1д.х)х о = 0. Поскольку одно уравнение к-то порядка можно заменить эквивалентной системой к уравнений первого порядка [например, приведенное уравнение второго порядка можно заменить системой <1С1йх = у, В д.у1д,х = / (С)1, рассмотрим систему [c.147]

    Оба упомянутых метода основаны на общед решении уравнения теплового баланса и уравнения теплопередачи и отличаются, в сущности, только способом вычисления величины эквивалентной черной поверхности. [c.78]

    Корреляция между общей отражательной способностью и показателем выхода летучих веществ изображена на рис. 13. Общая отражательная способность зависит одновременно от отражательной способности мацералов и их способности давать полированную поверхность на аншлифе. Эта способность максимальная в коксующихся углях и обусловлена их способностью превращаться в пластическую массу при соответствующей температуре окружающей среды. Она снижается, когда степень метаморфизма углей увеличивается или уменьшается, что выражает форма кривой рис. 13. Особенно сильное уменьшение отражательной способности наблюдается в углях с выходом летучих веществ от 22 до 40%, и в зтих пределах она весьма сильно ощутима. Те или иные показания аншлифов позволяют в принципе различать два угля, дающих одинаковую общую отражательную способность РКО по обе стороны максимума. Метод пригоден, следовательно, для получения однозначного показателя и дает чаще всего точность, эквивалентную 1 % выхода летучих веществ. Представилось возможным полностью автоматизировать этот метод. [c.64]

    Построение эквивалентной электрической цепи позволяет глубже проникнуть в проблему переноса излучения, чем это возможно при применении метода обращения матриц. Анализ эквивалентной цепи позволяет понять роль различных физических величин, таких, как степень черноты поверхностей. Поэтому рекомендуется строить эквивалентную цепь, пусть упрощенную (п. должно быть не СЛИШ1С0М большим), даже в том случае, когда для нахождения численных зпачений используется метод обращения матриц. [c.473]

    При изложении своего метода проф. Белоконь исходит из предположения, что основным тенлоизлучающим источником являются топочные газы. Вследствие достаточно большой поглош,ающей способности дымовых газов при расчете прямой отдачи за температуру излучаюш его источника автор принил1ает температуру дымовых газов на перевале. Кроме того, им вводится понятие эквивалентной абсолютно черной поверхности, т. е. такой поверхности, излучение которой на радиантные трубы нри температуре дымовых газов на перевале равно всему прямому и отраженному излучению в топке. В этом методе все излучающие источники (факел, кладка, дымовые газы) с различной температурой заменены излучающей абсолютно черной поверхностью, температура которой равна температуре дымовых газов на перевале. [c.456]

    Для обезвреживания воды и почв изготавливают на основе штамма Рзеи(1отопа5 ри11с1а сухой порошок с содержанием влаги не более 10% и концентрацией бактериальных клеток не ниже 10" на 1 г сухого вещества в сочетании с необходимым для жизнедеятельности бактерий набором минеральных солей. Такой препарат способен очищать воду и почву, загрязненные нефтью до 25 и 10 кг/м соответственно [25], что эквивалентно толщине слоя разлитой нефти, находящейся на поверхности воды или пропитавшей почву, около 3 и 1 см соответственно. Препарат разработан ЗапСИБНИГНИ (г. Тюмень). Основным недостатком микробиологического метода является существенное ограничение по температуре очистки, поскольку бактериальная деструкция нефти при температуре ниже 10 С практически прекращается [24]. [c.21]

    Вследствие образования пересыщенных растворов при добавлении рабочего титрованного раствора осадок получается не сразу, и поэтому изменение интенсивности помутнения отстает от изменений концентраций (в соответствии с кривой титрования). Если в точке эквивалентности (а также в других точках) прекратить прибавление рабочего раствора, то степень помутнения продолжает возрастать. Эти обстоятельства затрудняют применение метода в случае образования кристаллических осадков (например ВаЗО , MgNH POJ, для которых характерно образование пересыщенных растворов. Кроме того, вблизи точки эквивалентности часто меняется заряд частиц осадка (см. гл. 3). В результате меняются размер и число частиц, что вызывает различные колебания степени помутнения вблизи точки эквивалентности. Эти обстоятельства особенно заметны в аморфных осадках с сильно развитой поверхностью. [c.441]

    На электродах 1 и 2 возникают поляризационные сопротивления и 2, отличающиеся от омического сопротивления, поскольку зависят от потенциала и включают в себя сопротивления, соответствующие всем видам перенапряжений. Кроме того, электроды можно представить (исходя из теории электрохимического двойного слоя) как конденсаторы с емкостью Сг и Сг. Поверхности Р этих конденсаторов равны поверхностям электродов, расстояние между пластинами конденсаторов й составляет 10 см (порядка диаметров молекул). Параллельно конденсаторам С и Сг включены сопротивления и Яя. Рис. Д.90. Эквивалентная схема из- Эти системы разделены рас-иерительной ячейки для электрохи- твором электролита с ОМИче-мических методов анализа. [c.278]

    Наиболее прямым методом изучения двойного электрического слоя является адсорбционный метод. Так, если при установлении электрохимического равновесия между серебряной пластинкой и раствором AgNOз некоторое число ионов Ag+ переходит из раствора на металл, то поверхность электрода заряжается положительно и к нему притягивается эквивалентное количество анионов МОз. В результате из раствора уходит некоторое количество AgN08. Уменьшение концентрации соли в растворе определяет заряд поверхности металла и, соответственно, величину адсорбции анионов. [c.29]


Смотреть страницы где упоминается термин Метод эквивалентных поверхностей: [c.302]    [c.79]    [c.104]    [c.178]   
Смотреть главы в:

Методы расчета вакуумных систем -> Метод эквивалентных поверхностей




ПОИСК







© 2024 chem21.info Реклама на сайте