Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поворотные изомеры см Конформация молекул

    Изобразите молекулу этана в различных конформациях (заслоненной и заторможенной), пользуясь формулами Ньюмена. Сравните устойчивость поворотных изомеров. [c.11]

    В реальных молекулярных цепях полимеров на конусе вращения имеется один-два (или больше) минимума с различными потенциальными энергиями. Связь С—С может находиться либо в одном, либо в другом из этих положений с минимальными значениями потенциальной энергии. Подобные различные конформации молекул, отличающиеся потенциальной энергией, относятся к поворотным изомерам [41 11], характерным как для полимеров, так и для низкомолекулярных веществ. У полимеров они представляют собой набор различных конформаций цепей —от свернутых до распрямленных. Анализ с этих позиций формулы (4.13) привел М. В. Волькенштейна и О. Б. Птицына к заключению, что формула Тейлора относится к полимерам с симметричными привесками (полиэтилен, полиизобутилен), в которых потенциал внутреннего вращения симметричен относительно трансположения, т. е. /(ф) = = и —ф) (см. рис. 4.8 и 4.10). [c.94]


    Как видно из табл. Х,5 и Х,6, термодинамические характеристики адсорбции гош-поворотных изомеров этих молекул заметно отличаются от таковых для транс-изомера, причем это различие растет в ряду и-бутан, к-пентан и к-гексан. Значения К1, 1 и —АС/ , для гош-изомеров всегда меньше, чем для транс-изомера, который может расположиться на поверхности плоско, т. е. энергетически наиболее выгодным образом. Термодинамические характеристики адсорбции для всех гош-изомеров сравнительно близки. Мольные доли транс-поворотных изомеров в адсорбированном состоянии значительно больше, чем в объеме газа, причем с понижением температуры они увеличиваются. Однако даже при самых низких рассмотренных температурах в адсорбированном состоянии еще содержится значительная доля молекул в гош-конформациях. [c.318]

    Для некоторых веществ конформация в твердой фазе может зависеть от условий замораживания вещества. Например, при охлаждении 1,1,1-трифтор-З-хлорпропана ниже —103,4° С образуется кристаллическая модификация, в которой все молекулы имеют одинаковую гош-конформацию. При температурах от —103,4°С до температуры плавления вещества (—93,8° С) в кристалле находятся в равновесии оба поворотных изомера, что фиксируется по появлению в колебательном спектре полос анти-изомера. Если же очень быстро охладить вещество жидком азотом (—196° С), то при этом вымораживаются обе конформации, но равновесия между ними нет из-за невозможности преодоления потенциального барьера при низкой температуре. При нагревании такого образца до —157° С все молекулы переходят в гош-конформацию. [c.221]

    Конформерами, или поворотными изомерами, называют молекулы, находящиеся в наиболее устойчивых конформациях, при незначительном отклонении от которых атомы самопроизвольно возвращаются в первоначальное положение. [c.100]

    Явление поворотной изомерии, существующей относительно одинарной связи, иллюстрируется молекулами этана и 1,2-дихлорэтана (рис. 3-6). В ходе полного поворота одной метильной группы относительно связи С — С (при этом вторая метильная группа закреплена) в молекуле этана трижды реализуется устойчивая шахматная конформация и трижды неустойчивая затененная форма. Вследствие эквивалентности трех атомов водорода в метильной группе три энергетических максимума имеют одинаковую высоту, а три энергетических миниму-ма-одинаковую глубину, что показано на рис. 3-6,а. Положение усложняется, когда три заместителя при атоме углерода не одинаковы. Это видно на примере 1,2-дихлорэтана (рис. 3-6, a). Здесь имеются три формы с высокой симметрией. Две из них являются шахматными конформациями с симметрией Сг и С . Третья, затененная форма имеет симметрию (затенение наблюдается для пар I/ 1 и Н/Н). Из-за недостаточной симметрии другие полностью затененные формы не могут реализоваться [3]. [c.98]


    Использование новых физических методов исследования позволило существенно углубить представления о пространственном строении молекул, позволило подметить новые, ранее неизвестные особенности. Важнейшим из них оказалось возникновение понятия о поворотной изомерии (конформации) органических молекул. Это представление легло в основу истолкования большинства наблюдений, сделанных как в области статической, так и в области динамической стереохимии. [c.85]

    Изучение конформаций молекул. Всякие изменения в структуре молекулы отражаются на колебаниях входящих в ее состав атомов, что в свою очередь проявляется в ИК-спектрах. Таким образом изучение колебательных спектров в разбавленных растворах (для исключения межмолекулярных взаимодействий) дает информацию о различных конформационных взаимодействиях. Изучение ИК-спектров позволяет, например, исследовать поворотную изомерию, которая обусловлена заторможенным вращением объемистых заместителей вокруг данной связи. Если высота энергетического барьера вращения достаточно высока, то это приводит к крутильным колебаниям группы атомов такие колебания обычно расположены в дальней ИК-области (v<200 см" ), а их частоты позволяют рассчитать высоту соответствующего потенциального барьера. [c.220]

    Простейшей молекулой, у которой можно ожидать существования поворотных изомеров, является молекула этана, для которой устойчивую (нечетную) конформацию можно представить следующим образом  [c.88]

    Этот термодинамический метод оценки барьеров вращательной энергии не дает, разумеется, никаких указаний относительно возможной конформации молекулы. В случае этана возможны два поворотных изомера. Наблюдая молекулу в направлении ее оси, легко различить возможные конформации этана у одного из изомеров атомы водорода совпадают (заслоненная конформация), а у другого — связи [c.94]

Рис. 2. Потенциальная ф-ция внутр. вращения молекул типа 1,2-дизамещенного этана. 1-Г-поворотные изомеры (конформеры), или стабильные заторможенные конформации, 11-1Г-неста-бильные заслоненные конформации. Рис. 2. Потенциальная ф-ция внутр. <a href="/info/3617">вращения молекул</a> типа 1,2-дизамещенного этана. 1-Г-<a href="/info/29091">поворотные изомеры</a> (конформеры), или стабильные заторможенные конформации, 11-1Г-<a href="/info/1143125">неста</a>-бильные заслоненные конформации.
    Обычно поворотную изомерию иллюстрируют на примере этана. Конформации молекулы этана отличаются положениями метиль-ных групп СНз друг относительно друга. В остальном этан похож на молекулу водорода оба радикала СНз удерживаются одной -электронной обменной связью (а-связью), вокруг которой, казалось бы, возможно свободное вращение. Но, с другой стороны, можно трактовать этан как метан, в котором один водород заменен на группу СНз. Хотя атомы водорода каждого метильного радикала и удалены от атомов водорода партнера , обменное взаимодействие между ними сохраняется, причем, поскольку все связи насыщены, то возникает отталкивание. Поэтому, если считать этан замещенным метаном и соответственно изображать его двумя тетраэдрами с взаимопроникающими вершинами, необходимо предположить, что энергетически выгоднее будет конформация, при которой один тетраэдр повернут вокруг оси С—С на 60° по отношению к другому. Такой поворотный гранс-изомер (рис. 1.4,6), следовательно, должен преобладать в равновесной смеси над цис-изомером (рис. 1.4, а). [c.30]

    Большая длина макромолекулы при возможности вращения частей молекулы вокруг простых связей обусловливает еще один вид изомерии — поворотную изомерию, которая выражается в возникновении различных конформаций. Конформацией макромолекулы называют пространственное расположение атомов или групп атомов в молекуле, которое может меняться под действием теплового движения без разрушения химических связей. Конфор-мационные перестройки происходят и в малых молекулах, где разнообразие поворотных изомеров намного меньше, чем в макромолекулах. [c.92]

    Энергия различных конформеров неодинакова, а поэтому неодинакова и вероятность нахождения молекулы в данном состоянии. Молекулы органических соединений стремятся путем поворота вокруг простых связей принять наиболее устойчивую при данных условиях, энергетически выгодную форму. Энергетический барьер, разделяющий различные поворотные изомеры, обычно невелик. Поэтому при обычных условиях, как правило, нельзя зафиксировать молекулы в одной строго определенной конформации обычно сосуществуют несколько легко переходящих друг в друга поворотных форм. Употребляя иную терминологию, говорят о равновесии между различными конформациями молекул. [c.29]

    Оптически активные соединения ряда дифенила — это поворотные изомеры, конформеры, ставшие стабильными вследствие своеобразных пространственных условий в их молекулах. О том, что как раз в этой области трудно провести четкую грань между стереоизомерией и конформацией, мы уже говорили на стр. 34. [c.511]


    Геометрические формы молекул, превращающиеся друг в друга при повороте вокруг простых связей, называют конформациями (конформерами), а иногда — поворотными изомерами. Такие формы не способны к самостоятельному существованию — они слишком легко переходят друг в друга, и органические молекулы почти [c.238]

    Конформационный анализ), когда устойчивым конформациям соответствуют разные по глубине минимумы потенциальной энергии, т. е. возникают различающиеся по форме и св-вам поворотные изомеры (конформеры). В частности, у молекул типа 1,2-дизамещенных этана имеются три стабильных конформации-одна транс- (или анти-) и две гош-конформации (см. рис. 2). Относит, стабильность поворотных изомеров определяется разностью их энергий АЕ, т. е. разностью значений энергии в минимумах потенциальной кривой. Напр., транс-изомер 1,2-дихлорэтана более устойчив, чем гош-изомер, т.к. его энергия (в газовой фазе) ниже на 5,6 кДж/моль. При достаточно низких потенциальных барьерах (неск. десятков кДж/моль) поворотные изомеры находятся в термодинамич. равновесии, положение к-рого зависит от т-ры, давления и природы среды. Для барьеров порядка 10 к Дж/моль время жизни конформеров составляет 10 °с. При высоких значениях Уд (выше 100 к Дж/моль), когда В. а отсутствует, конформеры даже при малой разности их энергий могут существовать как индивидуальные в-ва. В. в. молекул возможно в газовой и жиДкой фазах, параметры К(ф) зависят от характера среды и электронного состояния молекулы. В кристаллах В. в., как правило, отсутствует и стабилен лишь один конформер иногда существуют твердые фазы (напр., у некоторых фреонов), в которых стабильны разные конформеры и между ними осуществляются переходы. [c.392]

    Такие молекулы, как жирные кислоты, при переходе в кристаллическое состояние могут принимать одну предпочтительную конформацию, повышая интенсивность тех характеристических полос, которые полезны для определения длины цепи [194]. В веществах, подобных 1,2-дихлорэтану, поворотная изомерия в кристаллическом состоянии часто исчезает, поскольку все изомеры при затвердевании занимают низшее энергетическое состояние, в результате чего спектр упрощается [234]. Явление полиморфизма хорошо известно, и ИК-спектры различных кристаллических форм одного и того же вещества могут часто заметно различаться. Переохлаждение некоторых жидкостей приводит к образованию стекол. Обычно спектр стекла не очень сильно отличается от спектра жидкости. Спектры монокристаллов ряда веществ были исследованы и интерпретированы с точки зрения структуры решетки. Для предсказания активности колебаний кристаллов разработаны правила отбора [85]. Влияние изменения фазы и давления на колебательные спектры рассмотрено Дэвисом [67]. [c.177]

    Аллильные производные ртути обладают еще одной особенностью. По аналогии с аллилгалогенидами [61 — 64] можно предположить явление заторможенного внутреннего вращения относительно связи С—С, прилежащей к связи С—Hg, и поворотную изомерию рассматриваемых молекул. В ИК-спектрах были найдены лишние полосы, которые можно было бы отнести за счет поворотной изомерии, но без изучения температурной зависимости интенсивностей полос и других дополнительных исследований пока трудно делать конкретные выводы о конформациях молекул аллилмеркургалогенидов. [c.253]

    В области С—С1-частот ИК-спектра 3,3-дихлорпропена-1 наблюдается число полос больше, чем должно быть для одной конформации. Поэтому можно думать, что в этой молекуле имеется поворотная изомерия. Для выяснения этого, а также вопроса об идентификации возможных поворотных изомеров в соединениях такого типа по их колебательным спектрам произведен расчет колебаний двух поворотных изомеров этой молекулы, отличающихся между собой поворотом группы — H I2 вокруг ординарной связи С-С на 180° [55]. [c.658]

    Прежде чем перейти к рассмотрению более сложных цепных молекул, следует указать, что представления, основанные на стерических помехах, иногда оказываются недостаточными для того, чтобы объяснить относительную стабильность различных поворотных изомеров малых молекул. Волькенштейн [234] приводит спектроскопические данные, показывающие, что скошенная конформация для н-пропилхлорида и ге-пропилбро-мида является формой, обладающей низкой энергией. Подобный же вывод можно сделать па основе исследования газообразного н-бутилхлорида методом дифракции электронов [237]. Природа сил, ответственных за обращение обычного порядка стабильности поворотных изомеров, выяснена не полностью. При значительной разнице дипольных моментов поворотных изомеров более полярная форма в жидком состоянии должна быть более устойчивой, чем в газообразном, вследствие диполь-дипольных взаимодействий близко расположенных молекул. Исходя из этого, Мидзусима и др. [238] по спектроскопическим данным рассчитали, что в газообразном 1,2-дихлорэтане при 25° содержится 25% изомера в скошенной форме, а в жидком состоянии скошенной конформацией обладают 57% молекул. [c.95]

    Поворотная изомерия. Если для молекулы возможны две (или более) формы расположения ядер, переходящие друг в друга посредством внутреннего вращения, говорят о двух (или более) конформациях (конформеры, поворотные изомеры). Так, у 1,2-дизамешен-ных этана СНаХ—СНаХ уже возможны не одна, а две шахматные формы (рис. 44), которые могут переходить друг в друга посредством вращения. Наиболее устойчива транс-конформация (рис. 44, а), несколько менее устойчива гош-конформация (рис. 44, б). Максимумам на потенциальной кривой (рис. 44, в) отвечают затененные конформации. В газообразном и жидком состоянии веществ осуществляется взаимный переход одной конформации в другую и устанавливается термодинамическое равновесие между ними, зависящее от температуры. [c.107]

    В конформационно подвижных молекулах алканов изменение конформаций осуществляется за счет заторможшного вращения вокруг связей - J. Отметим, что вращение вокруг связей С -С2, С -Сд, С2-С4, Сд-С , С4-С4 в алканах на приводит к кон-формационным превращениям, в то время как вращение вокруг связей С2-С2, С2-С3, Сд-Сз сопровождается поворотной изомерией /99/. [c.146]

    Говоря об устойчивых (или неустойчивых) конформациях в конфор-мационном анализе, имеют в виот относительную термодинамическую устойчивость, определяемую значениями конформационной свободной энергии /103/, В условиях равновесии в алкаке существует бесчисленное множество конформаций. Однако основное конформационное состояние молекул определяется стереохимическими особенностями лшяь некоторых, термодинамически наиболее устойчивых поворотных изомеров /102/, Если конформационную свободную энергию определять только значением энтальпии конформационного перехода АН, пол .-гая изменение энтропии равным нулю, то наиболее устойчивой будет трансоидная конформация. Образование скошенных форм может оказаться предпочтительней только вследствие изменения энтропии. При повышении температуры и удлинении молекулы роль энтропийного фактора растет, В наших расчетах свободная энергия конформеров определялась как разность энергии данной конформации и полностью трак-соидной. [c.147]

    Конформационный анализ посвящен рассмсп рению тех бесчисленных молекулярных структур, которые возникают и результате вращения в молекуле групп атомов вокруг ординарных связей эти структуры называются конформациями. Каждая конформация характеризуется определенным пространственным расположением атомов н, в связи с этим, определенным содержанием энергии. При вращении группы атомов вокруг ординарной связи потенциальная энергия молекулы претерпевает изменение, которое может быть описано синусоидальной кривой. Те конформации, которым на этой кривой соответствуют минимумы, способны реально существовать и называются поворотными изомерами или у с т о н ч и з ы ми к о н ф о р м а-циями . Остальные конформации представляют такие энергетические состояния, которые молекула должна пройти для превращения одной устойчивой конформации в другую. Относительно низкие значения энергии активации взаимного превращения устойчивых конформаций, как правило, являются причиной невозможности разделения поворотных изомеров при обычных температурах (исключением являются некоторые производные дифенила и аналогичные нм соединения, рассмотренные на стр. 490). Так как разные поворотные изомеры обычно энергетически неравноценны, то большинство молекул каждого соединения существует преимущественно в одной или лишь в очень немногих устойчивых конформациях. Однако под действием специфических сил в условиях химической реакции соединение может также временно принять какую-либо из энергетически менее выгодных конформаций. [c.800]

    Удобно начать с рассмотрения молекулы полиэтилена по Печхолду [7]. Последний получил изолированную функцию поворотных изомеров цепи с п независимыми С—С-связями. Разрешается поворот цепи вокруг своих С—С-связей, в результате чего достигаются три минимума потенциальной энергии, из которых абсолютный минимум соответствует вытянутой транс-конформации (/). Два относительных минимума при углах отклонения связей к плоской конформации 120° соответствуют двум гош-конформациям g, ) с энергией конформации Кинк-изомеры образуют подкласс поворотных изомеров, когда лишь п/2 несоседних связей могут находиться в положениях g или . Для кинк-изомеров энтропия, внутренняя и свободная энергия в зависимости от средней концентрации гош-конформаций получаются в виде [7] [c.123]

    Атом углерода в алканах пребывает в первом валентном состоянии (5/ -гибридизация). Если представить, что атом углерода находится в центре правильного тетраэдра, то его связи будут направлены к вершинам последнего, образуя углы 109°28 (см. рис. 4). Тетраэдрическая конфигурация четырехвалентного атома углерода в алканах впервые была представлена Я- Вант-Гоффом и Ле-Белем (1871 г.). Поскольку вокруг ординарной связи С—С возможно вращ,ение, для алканов, начиная с этана, характерно существование множества поворотных изомеров (конформеров), отличающихся взаимным расположением атомов или групп атомов, связанных с атомами углерода. Состояние молекулы, характеризующееся определенным расположением атомов водорода или их заместителей вокруг двух атомов углерода, связанных г-связью, называется конформацией. [c.54]

    Явление атропоизомерии показало ограниченность принципа свободного вращения атомов вокруг простых связей, выдвинутого Вислиценусом, и заставило искать предпочтительное пространственное расположение радикалов и групп внутри молекулы друг относительно друга. Различная скорость ацетонирования, комплесообразования с борной кислотой у диастереомеров 1,2-бутандиола привела Безекена к заключению о существовании поворотных изомеров у этого соединения. Физические исследования подтвердили гипотезу, согласно которой вращение вокруг простых связей никогда не бывает полностью свободным, в некоторых случаях оно заторможено, что обусловлено преодолением некоторых энергетических барьеров, вызвано наличием энергетически более выгодных относительных пространственных положений атомных групп. Так возникло представление о конформациях — динамц-ческих изомерах (конформерах) органических молекул, отличающихся друг от друга пространственным расположением атомов в одной и той же конфигурации. Взаимные переходы конформеров могут осуществляться только в итоге вращения связей, но не их разрыва. [c.125]

    Явление заторможенного внутреннего вращения наблюдается помимо этана в перекиси водорода, в молекулах замещенных углеводородов и многих других молекулах. Заторможенное внутреннее вращение в молекулах некоторых замещенных углеводородов и в других молекулах приводит к появлению тгж называемых поворотных изомеров или конформеров, что легче всего продемонстрировать на 1,2-дизамещенных этана СН Х—СНдХ. Здесь уже возможны не одна, а две шахматные формы, или конформации (рис. 86). Различными конформациями молекулы называют такие расположения ее атомов в пространстве, которые получаются при внутреннем вращении или изгибе связей и которые [c.206]

    Конформацию ф (IIIб), изображенную справа, называют заторможенной, подразумевая, что свободное вращение вокруг связи С—С тормозится в этом положении, т. е. молекула существует преимущественно в этой конформации. Поворотные изомеры такого типа называют также нечетными (ф=1,3, 5). [c.31]

    Изменение формы молекул под влиянием теплового движения или под действием внещяего поля, ие сопровождающееся разрывом химических связей, называется конформационпым превращё нием. Формы молекул, переходящие друг в друга без разрыва химических связен, называются конформациями, или поворотными изомерами. [c.82]

    ПОВОРОТНАЯ ИЗОМЕРИЯ, частный случай конформац. изомерии (см. Конформации). Обусловлена заторможенным вращением фрагментов молекулы вокруг соединяющей их связи. Наблюдается, напр., у молекул 1,2-дизамещеи-ного этана. Возникающие в результате П. и. конформации молекул обладают разл. термодинамич. стабильностью. В кристаллах, как правило, стабилен лишь один изомер, в газах и жидкостях изомеры находятся в динамич. равновесии, положение к-рого зависит от т-ры, давления и природы среды. Поворотные изомеры идентифицируют и изучают с помощью спектроскопич., дифракционных и др. физ. методов. См. также Внутреннее вращение молекул. ПОГРЕШНОСТИ АНАЛИЗА, см. Метрология химическо-го анализа. [c.452]

    Если взять молекулу А В — ВС , то иллюстрацией ее щахматной и затененной конформаций могут служить рисунки Дега Конец арабески и Присевщая танцовщица, завязывающая туфельки , которые приведены на рис.3-4,а соответствующие проекционные изображения-на рис 3-4,6, а конформеры молекулы-на рис. 3-4, в. Рисунки Дега оказываются полезными и для понимания самой системы представления поворотных изомеров, которую мы пояснили выше. Проекции на рис. 3-4 представляют собой вид вдоль связи В — В, т. е. тела танцовщицы. Плоскость, пересекающая связь В — В, изображена в виде окружности, точно соответствующей юбке танцовщицы. Ее руки и ноги-это связи В — А и В — С. Случайно оказавшийся букет в правой руке танцовщицы, находящейся в шахматной конформации, можно воспринимать в качестве дополнительного заместителя. [c.96]

    Исследование различных поворотных изомеров одного соединения в разных кристаллических формах (полиморфах) также является эффективным средством для изучения природы межмолекулярных взаимодействий. Это явление названо конформационным полиморфизмом. Разница в энергиях полиморфов органических кристаллов подобна разнице в свободных энергиях поворотных изомеров многих свободных молекул и составляет несколько ккал/моль. В тех случаях, когда в различных полиморфах молекулы приобретают разные конформации, изменение в поворотной изомерии приписывается влиянию кристаллического поля, поскольку в полиморфных системах единственная переменная величина-разница в межмолекулярных силах. Бернштейн и сотр. [49, 77] широко исследовали конформационный полиморфизм многих органических соединений с помощью различных методов наряду с рентгеноструктурным анализом. Среди исследуемых молекул были N-( 1 -хлорбензилиден)-йа/)а-хлоранилин [c.478]

    В случае поворотной изомерии св-ва в-ва определяются как св-ва равновесной смеси изомеров и зависят от внеш. условий, влияющих на положение равновесия. Напр., эффективный дипольный момент ц зависит от т-ры. Если (I поворотных изомеров различны, как, напр., у транс- (ц = = 0) и гош- (ц О) конформеров 1,2-дихлорэтана, то при изменении т-ры значение измеряемого ц будет приближаться к значению, характерному для изомера, концентрация к-рого будет при этом возрастать.В жидкой фазе и в среде полярных р-рителей повышается устойчивость более полярного гош-изомера в результате взаимод. молекул р-рителя и растворенного в-ва. Поворотные изомеры, имея разл. равновесные конфигурации, различаются своими колебат. и вращат. спектрами. При увеличении числа осей В. в. в молекуле возрастает и число ее возможных конформаций. [c.393]

    Ограничения внутр. вращения количественно описываются в терминах поворотной изомерии (см. Внутреннее вращение молекул). Для фрагмента М., построенной из атомов углерода, соединенных простыми связями, схема энергетич. барьеров внутр. вращения изображена на рисунке. Степень свободы этого вращения определяет гибкость М., с к-рой связаш>1 каучукоподобная эластичность, способность полимеров к образованию надмолекулярных структур, почти все их физ. и мех. св-ва. Разница энергий Ае между минимумами на кривой зависимости внутр. энергии Е от угла вращения ф определяет термодинамич. (статич.) гибкость М., т. е. вероятность реализации тех или иных конформаций (напр., вытянутых, свч>нутых), размер и форму М. величины энергетич. барьеров АЕ определяют кинетич. (динамич.) гибкость М., т.е. скорость перехода из одной конформации в другую. Величины энергетич. барьеров зависят от размеров и характера боковых радикалов при атомах, образующих хребет цепи. Чем массивнее эти радикалы, тем выше барьеры. Конформация М. может изменяться и под действием внеш. силы (напр., растягивающей) податливость М. к таким деформациям характеризуется кинетич. гибкостью. При очень малых гибкостях, напр. в случаях лестничных полимеров или наличия действующей вдоль цепи системы водородных или координац. связей (см. Координационные полимеры), внутр. вращение сводится к относительно малым крутильным колебаниям мономерных звеньев друг относительно друга, чему соответствует макроскопич. модель упругой плоской лиггы или стержня. Число возможных конформаций М во-растает с увеличением степени полимеризации, и термо/(нна шч. гибкость по-разному проявляется на коротких и ДJIИHHЫX участках М. Это можно понять с помощью др. макроскопич. модели-металлич. проволоки. Длинную проволоку можно скрутить в клубок, а короткую, у к-рой длина и размер в поперечном направлении соизмеримы,-невозможно, хотя физ. ее св-ва те же. Непосредств. численная мера термодинамич. гибкости (персистентная длина 1) ог деляется выражением / = 1ое р(А /кТ), где Де > О, 10 м (т.е. порядка длины хим. связи), к-постоянная Больцмана, Т-т-ра. Если контурная диина, т.е. длина полностью вытянутой М. без искажения валентных углов и связей, равна Ь, то Ь< I соответствует ситуации с короткой проволокой, и гибкость просто не может проявляться из-за малого числа допустимых конформаций. При Ь I М. сворачивается в статистич. клубок, среднеквадратичное расстояние между концами к-рого при отсутствии возмущающих факторов пропорционально / 2 (Р-степень полимеризации). [c.636]

    Конформация (от лат. onformatio—форма, построение, расположение) молекул— геометрические формы, которые могут принимать молекулы органических соединений прн вращении атомов или групп атомов (заместителей) вокруг простых связей при сохранении неизменным порядка химической связи атомов (химического строения), длины связей и валентных углов. Молекулы, отличающиеся только своей К., называют поворотными изомерами. Примером могут служить несколько плоских конформаций молекул пентана  [c.70]

    В качестве замещенных биядерных мономеров были использованы разнообразные диолы и дихлорангидриды. Строение выбранных мономеров в принципе допускало возможность появления в их молекулах таких поворотных изомеров, которые бы при одной конформации диарилалканового фрагмента отличались расположением заместителей, например атомов хлора. Подобными поворотными изомерами являлись, в частности, цис- и транс-изомеры. [c.84]


Смотреть страницы где упоминается термин Поворотные изомеры см Конформация молекул: [c.38]    [c.92]    [c.119]    [c.273]    [c.134]    [c.150]    [c.103]    [c.274]   
Физикохимия полимеров Издание второе (1966) -- [ c.0 ]

Физикохимия полимеров (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Изомерия молекул

Изомерия поворотная

Конформация молекул

Поворотная изомерия конформации

Поворотные изомеры

поворотные



© 2025 chem21.info Реклама на сайте