Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация межмолекулярное притяжение

    С1ЧЛЫ межмолекулярного взаимодействия имеют электрическую природу. На сравнительно больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, проявляется только действие сил притяжения. Еслп молекулы полярны, то сказывается электростатическое взаимодействие их друг с другом, называемое ориентиционным. Оно тем значительнее, чем больше дииольный момент молекул [х. Повыи1ение температуры ослабляет это взаимодействие, так как тепловое движение нарушает взаимную ориентацию молекул. Притяжение полярных молекул быстро уменьшается с расстоянием г между ними. Теории (В. Кеезом, 1912 г.) в простейшем случае для энергии ориентационного взаимодействия дает следующее соотношение  [c.136]


    Величина ориентационного эффекта тем больше, чем выше электрический момент диполя молекул и чем меньше расстояние между ними. С ростом температуры эффект уменьшается, так как усиливающееся тепловое движение нарушает взаимную ориентацию диполей. Уравнение (У.2) хорошо оправдывается при высоких температурах и небольших давлениях, когда расстояния между молекулами значительно больше длины диполей. Вклад ориентационного эффекта в суммарное межмолекулярное притяжение велик для молекул, обладающих большим электрическим моментом диполя (вода, аммиак и др.). Для оксида углерода, электрический момент диполя которого аномально мал, взаимодействие будет меньше, а у неполярных частиц (например, атомы инертных газов) он вообще отсутствует. [c.134]

    ННа и др.) в воду, в которой велико действие сил межмолекулярного притяжения, а углеводородных цепей — в воздух или неполярную фазу. При малой концентрации адсорбированных молекул в поверхностном слое тепловое движение нарушает их ориентацию и молекулы в основном лежат в поверхностном слое (рис. 91а). При повышении концентрации усиливается взаимодействие углеводородных цепей между собой, что благоприятствует их вертикальной ориентации (рис. 91, б), а при насыщении адсорбционного слоя образуется мономолекулярный слой (толщиной в одну молекулу) ориентированных молекул (рис. 91 в). Зависимость адсорбции от концентрации выражается также уравнением Лангмюра ( 126)  [c.276]

    Таким образом, все три составляющие межмолекулярного потенциала, определяющего притяжение молекул, зависят от шестой степени расстояния. Учет эффектов запаздывания повышает степень до 8—7. При взаимодействии двух молекул воды в зависимости от их обоюдной ориентации различные составляющие в ккал/моль, определяющие [c.29]

    Межмолекулярные силы между нейтральными молекулами обусловлены электростатическими силами притяжения, называемыми силами Ван-дер-Ваальса, и силами отталкивания. Электростатическое притяжение между ядрами одной молекулы и электронами другой в значительной мере, но не полностью, компенсируется взаимным отталкиванием ядер и электронов обеих молекул. Силы Ван-дер-Ваальса проявляют себя на достаточно близких расстояниях (0,3...0,5 нм) и быстро ослабевают при удалении молекул друг от друга. При значительном сближении молекул резко возрастает роль сил отталкивания, которые начинают уравновешивать силы притяжения. Происходит взаимопроникновение внешних электронных орбиталей молекул, приводящее к специфическому типу взаимодействий -обменному взаимодействию, определяемому квантовыми законами и зависящему от направления спинов электронов взаимодействующих частиц. В зависимости от степени перекрывания и ориентации спинов, обусловленных природой контактирующих атомов, возникают либо силы отталкивания, либо ковалентные связи. [c.126]


    При большем сжатии расстояние между молекулами газа уменьшается настолько, что они уже не могут двигаться свободно по поверхности, а при столкновении их парафиновые цепи могут подняться над поверхностью. Одновременно нарастают силы межмолекулярного взаимодействия, проявляющиеся как в притяжении между парафиновыми цепями, так и в отталкивании параллельно ориентированных диполей полярных групп. Обычно преобладают силы притяжения, стремящиеся объединить молекулы. Поэтому при площади немного большей, чем площадь, соответствующая точке А (см. рис. 20), некоторые из молекул начинают принимать вертикальную ориентацию (рис. 21,6). [c.51]

    Если вещество состоит нз полярных молекул, например, молекул НгО или НС1, то в конденсированном состоянии соседние молекулярные диполи ориентируются друг по отношению к другу противоположно заряженными полюсами, вследствие чего наблюдается их взаимное притяжение. Такой вид межмолекулярного взаимодействия называется ориентационным взаимодействием. Тепловое движение молекул препятствует взаимной ориентации молекул, поэтому с ростом те.мнературы ориентационный эффект ослабевает. [c.150]

    Объяснить образование волокна, вероятно, можно образованием параллельной ориентации отдельных молекул в частице. Вначале возникают только зародыши таких расположений, но удлинение при вытягивании закрепляет эту структуру, молекулы как бы расчесываются при скольжении. Понижение температуры увеличивает межмолекулярное трение в силу увеличения взаимного притяжения молекул, вызванного уменьшением расстояния (связанного с повышением плотности) и уменьшением [c.154]

    Как известно, в мицеллах, образованных ПАВ в углеводородных средах, полярные части дифильных молекул расположены в центре агрегатов, т. е. ориентация мицеллообразующих молекул обратна той, которая существует в воде. Так как диэлектрическая проницаемость обычных неводных растворителей мала и ионогенные ПАВ в неполярной среде не диссоциируют, то мицелла не несет на себе ионов, подобно тому как это имеет место в водном растворе. Притяжение, необходимое для образования агрегата, в этом случае является результатом сильного взаимодействия полярных групп или дипольного взаимодействия через водородные связи или, наконец, возникает вследствие образования специфических координационных связей, сопровождающегося некоторой изоляцией олеофильной части молекулы от растворителя. Главным фактором, приводящим к изолированию молекул в таких системах, является энтропия смешения. Силы, регулирующие образование мицелл в неводном растворе и в водной среде, совершенно отличны, что видно, например, из того, что в углеводородных растворителях длина углеводородной цепи не влияет так сильно на ККМ [62]. Так как взаимодействие между молекулами ПАВ, как правило, больше, чем взаимодействие молекул неполярных растворителей, то поверхностная активность ПАВ в углеводородных средах почти не проявляется. Только фторуглеродные и некоторые кремнийорганические соединения, у которых межмолекулярное взаимодействие выражено слабее, чем у углеводородов, обнаруживают в них поверхностную активность. [c.100]

    В этой главе детально рассмотрена проблема получения информации о межмолекулярных силах из экспериментальных данных по вириальным коэффициентам (и коэффициенту Джоуля— Томсона). На основании самых общих наблюдений в отношении межмолекулярных сил можно сделать несколько качественных замечаний. Во-первых, тот факт, что газы конденсируются в жидкости, позволяет сделать предположение о существовании сил притяжения между молекулами на больших расстояниях. Во-вторых, очень сильное сопротивление жидкостей сжатию свидетельствует о том, что на небольших расстояниях действуют силы отталкивания, резко изменяющиеся с расстоянием. При условии парной аддитивности сил можно ожидать, что потенциальная энергия взаимодействия между двумя молекулами изменяется таким образом, как показано на фиг. 4.1. [Эта потенциальная энергия может зависеть также от ориентации, если молекулы не являются сферически симметричными, а в некоторых случаях иметь отклонения (на фиг. 4.1 не показаны), которые несущественны для общего рассмотрения.] Квантовая механика дает обширную информацию о форме кривой потенциальной энергии, однако точные расчеты на основании этой информации не всегда возможны. Не рассматривая эту дополнительную информацию, поставим перед собой следующий вопрос возможно ли в принципе однозначное определение межмолекулярной потенциальной энергии, если известна зависимость второго вириального коэффициента от температуры Этот вопрос был рассмотрен Келлером и Зумино [1] (см. также работу Фриша и Хелфанда [2]), которые нашли, что только положительная ветвь и г) определяется однозначно [2а], а отрицательная часть (потенциальная яма) может быть известна лишь частично, т. е. определяется ширина ямы как функция ее глубины. Таким образом, потенциальная яма на фиг. 4.1 может быть произвольно смещена вдоль оси г без изменения В Т), если ее ширина не изменяется при смещении. Поэтому для температур, при которых положительная ветвь ы(г) не дает большого вклада в В Т), значения В Т) будут определяться почти одинаково хорошо [c.168]


    Из уравнения следует, что сила взаимодействия имеет один знак, выражает притяжение и изменяется обратно пропорционально седьмой степени межмолекулярного расстояния. Большое влияние на энергию взаимодействия частиц оказывают также их дипольные моменты, потенциалы ионизации и поляризуемость. Энергия межмолекулярного взаимодействия также зависит от взаимной ориентации молекул. Точный расчет межмолекулярного взаимодействия [c.32]

    Хотя стабильность соединения обусловливается в первую очередь прочностью химических связей, в полимерах дополнительным источ- ником их стабильности могут быть силы вторичные — ван-дер-вааль-, совы. Эти силы определяют когезию, т. е. притяжение между моле-V— кулярными цепями. Они влияют на температуры стеклования и плавления и в некоторой степени на стойкость к термическому разложению. Величина сил межмолекулярного взаимодействия зависит от средней длины цепи, полярности макромолекул, их симметрии и степени ориентации . Эти силы имеют различную природу они могут обусловливаться притяжением между разноименными диполями (дипольный эффект, до 8,7 ккал моль) взаимодействием между постоянными и индуцированными диполями (индукционный эффект, до 0,5 ккал моль) временным смещением ядер и электронов при колебаниях (дисперсионный эффект, 2—6 ккал моль). И, наконец, следует упомянуть о водородной связи (порядка 6—10 ккал моль) — взаимодействии атома водорода с двумя другими атомами (преимущественно Р, О, Ы), — которую можно рассматривать как прочную вторичную или слабую первичную связь. [c.17]

    Попытки объяснить поверхностные явления в чистых жидкостях с точки зрения тангенциального натяжения поверхности до сего времени имеют место довольно часто. При этом можно отметить две тенденции в этих попытках. Некоторые авторы считают, что силовые поля поверхностных молекул деформированы таким образом, что эти молекулы образуют дискретную, но прочно связанную структуру в виде плёнки, в которой межмолекулярные силы притяжения направлены преимущественно тангенциально к поверхности, а не равномерно во все стороны. Помимо того, что такое искажение силовых полей трудно было бы объяснить иначе, как приписав молекулам совершенно особую ориентацию на поверхности, можно думать, что столь прочно сотканная поверхностная ткань должна скорее затруднять, чем облегчать сокращение поверхности, так как существенное условие сокращения поверхности заключается в выталкивании из неё молекул, а особо прочная связь между поверхностными молекулами препятствовала бы такому выталкиванию. Этот пример вскрывает противоречивость теории, стремящейся приписать физическую реальность чисто математическому понятию поверхностного натяжения. [c.15]

    Для получения достаточно прочных волокон необходимо, чтобы между соседними макромолекулами действовали значительные межмолекулярные силы притяжения. Это возможно только в том случае, если макромолекулы имеют линейную структуру (или при наличии разветвленной структуры боковые цепи невелики) и если они будут расположены наиболее правильно, по возможности параллельно друг другу. Для этого макромолекулы полимера должны быть прежде всего в какой-то степени отделены друг от друга полимер переводят в раствор (прядильный раствор) или получают его расплав. Это первая стадия в процессе получения химических волокон. Второй стадией является прядение (или формование) волокон из расплава или прядильного раствора продавливанием через фильеру (небольшой металлический колпачок, в дне которого имеются тончайшие отверстия, 0,06—0,5 мм) с последующим затвердеванием струек расплава, или коагуляцией струек раствора, или же удалением из них растворителя. Образующиеся при этом из струек волокна затем в большинстве случаев вытягивают. При формовании и вытягивании как раз и осуществляется взаимная ориентация молекул. Волокна или скручиваются вместе, образуя нить искусственного шелка (филаментную нить), или режутся на небольшие кусочки (штапельки), длиной 4—15 см, образуя штапельное волокно, или реже (при большем диаметре отверстий) каждое волокно остается отдельным моноволокном (применяется для изготовления щеток и трикотажа). Третья стадия процесса заключается в обработке полученного волокна различными реагентами (отделка), а для шелка также в проведении текстильной подготовки (кручение нити, перематывание на бобины — катушки и т. д.). [c.329]

    Аналогичные представления можно применить и к макромоле-кулярному строению волокон. При вытягивании волокна макромолекулы смещаются одна относительно другой, так как они не связаны между собой. Однако по мере ориентации макромолекул они начинают связываться между собой за счет сил взаимного притяжения. В невытянутом волокне, когда расстояния между макромолекулами велики, эти силы чрезвычайно слабы и неэффективны однако при ориентации и распрямлении макромолекул и увеличении плотности их упаковки расстояния между макромолекулами значительно уменьшаются и возникают более прочные силы межмолекулярного взаимодействия. Эти силы оказывают значительное сопротивление сдвигу макромолекул и в хорошо ориентированном волокне могут быть настолько велики, что легче разорвать макромолекулу, чем сдвинуть ее относительно других молекул. Если расположение макромолекул достаточно упорядоченно и они ориентированы настолько, что разрыв волокна [c.79]

    Вудворд считает, что причиной такой взаимной ориентации является электростатическое притяжение между молекулами диена и диенофила, поляризующимися перед реакцией в результате возникновения межмолекулярной акцепторно-донорной связи  [c.329]

    Как видно из п. 1, в большинстве случаев энергию взаимодействия между двумя молекулами можно представить как функцию межмолекулярного расстояния и взаимной ориентации взаимодействующей пары. Энергия притяжения между двумя молекулами с постоянными электрическими моментами выразится в первом приближении как ( [c.80]

    Действительно, энергия дисперсионного притяжения убывает как [33, 34], энергия кулоновского притяжения заряда или диполя к диполю, наведенному ими в другой молекуле (например, в мономере), — соответственно как и [35], кулоновское же взаимодействие Е тех же заряда или диполя, но со статическим дипольным моментом мономера убывает как и [35 ]. Правда, знак Е,, в отличие от знака других перечисленных взаимодействий, непостоянен. Он зависит от ориентации мономера, а результат его усреднения по всем этим ориентациям (с учетом, конечно, их энергетической неэквивалентности) убывает уже как и [34]. Однако протеканию химической реакции благоприятствует не любая, а вполне определенная взаимная ориентация молекул реагентов, в которой Е убывает с расстоянием медленнее других составляющих межмолекулярного взаимодействия. [c.75]

    Специфика распределения межмолекулярных сил и молекулярная масса полимера оказывают заметное влияние на уровень локального накопления механической энергии на химических связях. Роль этих факторов может затушевать различия в прочности связей основной цепи. Силы межмолекулярного взаимодействия определяют когезионную прочность материала, которая в свою очередь влияет на значения температур стеклования и плавления и в значительной степени — на стабильность макромолекул при нагреве и сдвиге. Величина и эффективность вторичных сил взаимодействия зависят от средней длины цепи, полярности, симметрии и ориентации макромолекул. Эти силы являются следствием притяжения диполей одного или разных знаков (до 33,5 кДж/моль), взаимодействия постоянных и индуцированных диполей (индукционный эффект достигает 2,1 кДж/моль), временных перемещений ядер и электронов при вибрации, которые вызывают возникновение сил притяжения (дисперсионный эффект порядка 8,4— 25,2 кДж/моль). И, наконец, следует учитывать водородные связи, создающие усилия притяжения атомов водорода к атомам фтора, кислорода или азота до 42 кДж/моль [114, 236]. [c.99]

    С учетом всех перечисленных выше фактов предлагается следующая модель деформационного поведения эластомеров ниже их температуры перехода в стеклообразное состояние. В области I межмолекулярное притяжение достаточно сильное и сегменты цепей подвергаются энергоэластическому деформированию. Вначале постеиенно и затем за пределом вынужденной эластичности более активно происходит проскальзывание и иереориентация сегментов цепей. Разрыв цепей незначителен, поскольку цепи проскальзывают, а не разрываются. В температурной области II, где происходит хрупкое разрушение независимо от предварительной ориентации, межмолекулярное притяжение, по-видимому, достаточно велико, так что осевое нагружение сегментов цепей сравнимо с их напряжением разрушения. При отсутствии локального деформационного упрочнения наибольшая трещина, возникающая в образце в процессе его деформации до значения 5%, будет быстро расширяться, вследствие чего прекратится рост любых других зародышей трещин. На примере термопластов было показано, что образования, по существу, одной плоскости разрушения едва достаточно для получения регистрируемого количества сво- [c.214]

    Совершенно ясно, что роль нагружения цепи и ее разрыв будут совсем разными для трех механизмов, определяющих прочность полимера. В данной книге неоднократно утверждалось, что способность цепных молекул нести нагрузку становится более эффективной, если ориентация цепи и межмолекулярное притяжение вызывают постепенное накопление больших напряжений вдоль оси цепи и препятствуют проскальзыванию последней и образованию пустот. Именно по этой причине высокоориентированные волокна полимеров наиболее удобны для изучения нагружения цепи и ее разрыва. В гл. 7 были рассмотрены экспериментальные результаты образования механорадикалов и их преобразование. В отношении феноменологических представлений о процессе разрушения в литературе мало разногласий. В первом разделе данной главы будет рассмотрен наиболее спорный вопрос о возможном влиянии разрыва цепи и реакций радикалов на предельную прочность. [c.227]

    Введение в состав звеньев макромолекул различных функциональных или полярных групп вызывает поляризацию этих звеньев и придает им свойства диполя. Величины дипольного момента каждого звена макромолекулы зависят от степени поляризации, вызванной присутствием полярных групп, от количества полярных групп и их взаимного сочетания. В тех случаях, когда межмолекулярные расстояния сравнимы с расстояниями между зарядами, между молекулами, имеющими структуру диполей, возникают дополнительные связи, вызванные притяжением противо-. положиых полюсов соседних молекул, т. е. дипольные силы межмолекулярного притяжения. Взаимной ориентации молекулярных диполей противодействует тепловое движение молекул, поэтому величина дипольных сил в значительной степени зависит от температуры. Макромолекулы, состоящие из полярных звеньев, представляют собой совокупность диполей, создаваемых каждым звеном. Взаимодействие таких макромолекул в полимере вызывает взаимную ориентацию звеньев соседних цепей и притяжение их друг к другу. Чем больше дипольные моменты отдельных [c.28]

    В жидких кристаллах, называемых нематическими, дальняя упорядоченность чисто ориентационная. Она характеризуется тем, что существует преимущественное направление ориентации осей молекул, но центры масс расположены беспорядочно рис. IV. 18,а). Возможность образования такой структуры Определяется геометрическими характеристиками молекул, асимметрией их формы. Показано, что дальняя ориентационная упорядоченность возникает (в некотором интервале значений плотности) во флюиде из твердых стержней без притяжения, но на структуру реальных нематиков влияют, безусловно, и силы межмолекулярного притяжения. В жидких кристаллах, называемых смектическими, имеется одномерная или двумер- [c.200]

    Другим примером кристаллического полимера является политетрафторэтилен, имеющий также большое значение как диэлектрик. Способность цепей политетрафторэтилена кристаллизоваться объясняется малым размером атома фтора, благодаря чему цепи могут близко располагаться относительно друг друга. Среди кристаллических полимеров можно выделить группу веществ, характеризуемых сильным межмолекулярным притяжением, благодаря симметричности их строения и действию особых связей, называемых в о дородными (стр. 43). Энергия межмолекулярного притяжения у таких полимеров, отнесенная к единице длины цепи (5 Л), более 5 ккал, тогда как у таких аморфных полимеров, как полихлорвинил, полистирол, полиметилметакрилат, она находится в пределах 2—5 ккал. К первым относятся полиамиды, полиэтиленгликольтерефта-лат, полиуретан и др. Эти полимеры отличаются высокой температурой плавления (у полиамида капрон — 214—218° С, у полиэтилен-гликольтерефталата — 260—264° С). Благодаря способности цепей макромолекул располагаться параллельно и прочной связи между ними, полимеры такого строения обладают большой прочностью вдоль расположения цепей (или вдоль волокна), что особенно важно для синтетических волокон и пленок. Повышение прочности достигается дополнительной ориентацией макромолекул при применении холодной вытяжки. [c.15]

    Введение в состав звеньев цепи поляррых групп хлора вызывает поляризацию этих звеньев, зависящую от количества полярных групп и их взаимного расположения. Хотя дипольньем силам межмолекулярного притяжения и взаимной ориентации противодействует тепловое движение, но, в общем случае, чем выше динольный момент, тем больше величина энергии когезии. Прочность связи между группами в поливинилхлориде почти в 2 раза больше, чем в полиизобутиленв. Это влечет за собой большую трудность перемещения этих групп, следствием чего является повышение некоторых физических и механических свойств поливинилхлорида по сравнению с полиизобутиленом. [c.57]

    СТОЯНИЯ сравнимы с радиусом действия диполей, между матсро-молекулами возникают дополнительные связи. Дипольные силы межмолекулярного притяжения повышают энергию взаимодействия цепей полимера, чему способствует взаимная ориентация з веньев соседних цепей. Тепловое движение нарушает ориентацию соседних цепей. Поокольку интенсивность тепловых движений макромолекул изменяется с изменением температуры, то и величина дипольных сил в значительной степени зависит от температуры. [c.29]

    Второй разновидностью вандерваальсовых межмолекулярных сил является притяжение, обусловленное такой синхронизацией движения электронов на заполненных орбиталях взаимодействующих атомов, при которой они по возможности избегают друг друга. Например, как показано на рис. 14-12, электроны на орбиталях атомов, принадлежащих взаимодействующим молекулам, могут синхронизировать свое движение таким образом, что в результате возникает притяжение между мгновенными диполями и индуцированными ими диполями. Если в некоторый момент времени атом, изображенный на рис. 14-12 слева, имеет большую электронную плотность слева (как и показано на рисунке), то этот атом превращается в крошечный диполь с отрицательно заряженным левым концом и положительно заряженным правым концом. Положительно заряженный конец притягивает к себе электроны атома, изображенного на рис. 14-12 справа, и превращает его в диполь с аналогичной ориентацией. В результате между двумя атомами возникает притяжение, потому что положительно заряженный конец левого атома и отрицательно заряженный конец правого атома сближены. Аналогичные флюктуации электронной плотности правого атома индуцируют мгновенный диполь, или асимметрию электронной плотности, на левом атоме. Флюктуации электронных плотностей происходят непрерывно, а их результирующим эффектом является очень слабое, но важное по своему значению притяжение между [c.611]

    Дисперсионные силы. Несмотря на симметричное распределение зарядов в иеполяриых молекулах электроны неполярной молекулы А в любой момент могут образовать такую конфипурацию, в результате которой молекула приобретает мгновенный дипольный момент. Этот дипольный момент поляризует другую неполярную молекулу В, что приводит к взаимному притяжению молекул А и В. В результате непрерывного возникновения кратковременных диполей и их согласованной ориентации действие дисперсионных сил постоянно возобновляется. Дисперсионное взаимодействие не зависит от температуры и проявляется при любой температуре и при взаимодействии не только неполярных, но и полярных молекул, т. е. является наиболее универсальным по сравнению с другими силами межмолекулярного взаимодействия. [c.71]

    Общее сечение обмена энергией аобщ( о) должно быть чувствительно к величине межмолекулярного потенциала, определяющего взаимодействие молекул при их различных ориентациях. Исходя из порядка величин экспериментально найденных констант скоростей, можно заключить, что ОобщС Бо) порядка сечения газокинетических столкновений. Заметные различия в эффективностях столкновений, например, воды или некоторых атомов можно приписать влиянию дальнодействующих сил притяжения, увеличивающих аобщ( о)- Данные об области действия межмолекулярных сил, полученные при исследованиях колебательной релаксации [88], можно, по-видимому, использовать при изучении процессов диссоциации. Однако влияния этих сил на продолжительность периода колебательной релаксации и скорость диссоциации соверщенно различны вследствие различия между сложными столкновениями во втором случае и простыми переходами между далеко отстоящими друг от друга уровнями колебательной энергии — в первом. [c.78]

    В pa Tgope усиление взаимодействия молекул растворенного органического вещества между собой всегда приводит к более или менее выраженной ассоциации. Ассоциация.является следствием притяжения соответствующим образом ориентирующихся диполей, образования межмолекулярных водородных связей или гидрофобного взаимодействия углеводородных радикалов дифильных молекул, например ПАВ, В адсорбционной фазе между молекулами одного вида может возникать как притяжение, ведущее к образованию адсорбированных ассОциатов (в случае адсорбции ПАВ, прямых красителей, гуминовых веществ — к образованию мицелл, состоящих из нескольких десятков молекул или ионов), так и к взаимному отталкиванию ионов и диполей, единообразная ориентация которых навязана взаимодействием углеродного скелета молекул с атомами поверхности адсорбента. При такой, ориентации нормальные к поверхности составляющие всех адсорбированных диполей имеют одинаковый знак заряда и поэтому между ними возникает отталкивание при любом вращении в плоскости, параллельной поверхности адсорбента. Целесообразно коэффициент ф —представить как произведение двух величин, из которых одна характеризует эффект ассоциации (притяжения) молекул с ростом концентрации органического компонента в обеих фазах fass, а вторая характеризует эффект взаимного отталкивания одинаково ориентированных диполей или ионов в адсорбционной фазе ф . Разумеется, изменения энергии Гиббса избирательной адсорбции растворенных веществ, связанные с этими факторами, будут иметь противоположный знак. [c.86]

    Необходимо отметить, что на ориентацию и динамику полярных головок липидов влияет образование межмолекулярных водородных связей на поверхности мембраны. Донорами и акцепторами при образовании этих связей могут служить фосфатидилсерин, фосфатидилэтаноламин, гликолипиды. Однако не ясно, каким образом водородные связи воздействуют на структуру мембраны, С точки зрения термодинамики, основной силой, стабилизирующей гидратированные липидные агрегаты, являются гидрофобные взаимодействия. К другим стабилизирующим факторам относятся водородные связи и ван-дер-ваальсовы силы (короткодействующие слабые силы притяжения между соседними гидрофобными цепями). [c.25]


Смотреть страницы где упоминается термин Ориентация межмолекулярное притяжение: [c.81]    [c.215]    [c.19]    [c.187]    [c.35]    [c.70]    [c.144]   
Химия коллоидных и аморфных веществ (1948) -- [ c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Межмолекулярные



© 2025 chem21.info Реклама на сайте